

FLAT GAIN, ULTRA-WIDEBAND Monolithic Amplifier

GVA-123+

Mini-Circuits

50Ω 0.01 to 12 GHz

THE BIG DEAL

- Ultra broadband performance
- Excellent Gain Flatness, ±0.7 dB, 0.05-8 GHz
- Gain, 16.9 dB typ. at 2 GHz
- Excellent return loss, 20 dB typ., 2 GHz
- Low additive phase noise, typically -169 dBc/Hz @10 KHz
- Broadband without external matching components
- Suitable for low phase noise applications

Generic photo used for illustration purposes only

CASE STYLE: DF782

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Base station infrastructure
- Test instruments
- MMDS & Wireless LAN •
- LTE
- Satellite communication •
- Avionics
- Suitable for low phase noise applications

PRODUCT OVERVIEW

GVA-123+ (RoHS compliant) is an advanced ultra-wideband amplifier fabricated using GaAs HBT technology and offers excellent gain flatness over a broad frequency range. In addition, the GVA-123+ has good input and output return loss over this frequency range without the need for external matching components. Lead finish is tin-silver over nickel. It has repeatable performance from lot to lot and is enclosed in a SOT-89 package for very good thermal performance.

KEY FEATURES

Feature	Advantages				
Ultra Broad Band: 0.01 to 12 GHz	Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX in a single amplifier.				
Ultra Flat Gain ±0.7 dB typ: 0.05 - 8 GHz	Ultra Flat Gain, eliminates need for compensation networks to achieve published results				
No External Matching Components Required	GVA-123+ provides good Input and Output Return Loss of 12-28 dB over 0.05 - 6 GHz without the need for any external matching components				
Excellent ESD HBM: class 1C (1000 to <2000V) MM: class M2 (100 to <200V)	Simplifies ESD handling.				
Low additive phase noise, typically -169 dBc/Hz @10 KHz offset	Ideal for low phase noise synthesizer applications				

REV. C ECO-010563 GVA-123+ TH/RS/CP 211104

Mini-Circuits

FLAT GAIN, ULTRA-WIDEBAND

Monolithic Amplifier

Mini-Circuits

ELECTRICAL SPECIFICATIONS AT 25°C AND VCC=5V, R= 16.5Ω UNLESS NOTED

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units	
Frequency Range		0.01		12.0	GHz	
	0.05	-	16.2	—		
	0.85	_	17.2	—		
	2.0	15.2	16.9	18.6		
Gain	6.0	_	16.4	_	dB	
	8.0	_	16.3	_		
	10.0	_	12.5	_		
	12.0	_	7.1	_		
Gain Flatness	0.05-8		±0.7		dB	
	0.05	-	12.7	_		
	0.85	_	24.9	_		
	2.0	16.0	23.8	_		
nput Return Loss	6.0	_	22.2	_	dB	
	8.0	_	9.2	_		
	10.0	_	7.5	_		
	12.0	_	6.3	_		
	0.05		14.4			
	0.85		31.0			
	2.0		23.5			
Dutput Return Loss	6.0		15.5		dB	
	8.0		9.0		db	
	10.0		7.4			
	12.0		6.0			
Reverse Isolation	6.0		20.7		dB	
Reverse isolation	0.05		15.9		uв	
	0.85		16.3			
	2.0		16.2			
Nutruit Dower at 1dD Compression	6.0		13.4		ID	
Dutput Power at 1dB Compression	8.0		10.3		dBm	
	10.0		7.4			
	12.0		5.1			
	0.2		30.2			
	0.85		31.1			
	2.0		29.9			
Dutput IP3	6.0		24.5		dBm	
	8.0		21.8			
	10.0		19.1			
	12.0		14.9			
	0.2		3.8			
	0.85		3.9			
Noise Figure	2.0		4.0		dB	
	6.0		4.4			
	8.0		4.9			
	12.0		6.9			
Additive Phase Noise 2 GHz, 10 KHz offset			-169.2	dBc/Hz		
Supply Operating Voltage (Vcc)		4.8	5.0	5.2	V	
Device Operating Current			52	57	mA	
Device Current Variation vs. Temperature ²			56		µA/°C	
Device Current Variation vs. Voltage			0.020		mA/mW	
Thermal Resistance, junction-to-ground lead			156		°C/W	

(1) Measured on Mini-Circuits Characterization test board TB-665+. See Characterization Test Circuit (Fig. 1)
(2) (Current at 85°C - Current at -45°C)/130

FLAT GAIN, ULTRA-WIDEBAND Monolithic Amplifier

Mini-Circuits

MAXIMUM RATINGS

Parameter	Ratings	
Operating Temperature (ground lead)	-40°C to 85°C	
Storage Temperature	-65°C to 150°C	
Operating Current at 5V (Vcc) & 16.5 Ω resistor	100 mA	
Power Dissipation	0.34 W	
Input Power (CW)	28 dBm (5 min max.) 11 dBm (continuous)	
DC Voltage on Pin 3	6 V	

Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

SIMPLIFIED SCHEMATIC AND PIN DESCRIPTION

Function	Pin Number	Description
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit", Fig. 2
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

FLAT GAIN, ULTRA-WIDEBAND

Monolithic Amplifier GVA-123+

CHARACTERIZATION TEST CIRCUIT

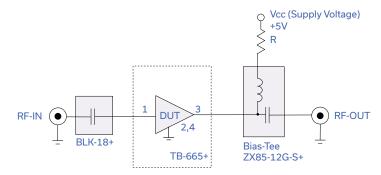


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-665+)

Gain, Return loss, Output power at 1dB compression (P1 dB) , output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer. (R=16.5Ω)

Conditions:

1. Gain and Return loss: Pin= -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

RECOMMENDED APPLICATION CIRCUIT

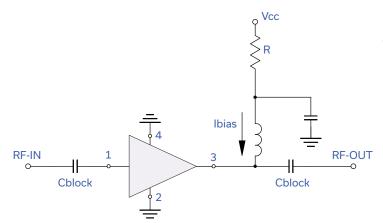


Fig 2. Test Board includes case, connectors, and components soldered to PCB (Cblock=0.001 μF, Cbypass=0.1 μF, R=16.5Ω)

PRODUCT MARKING

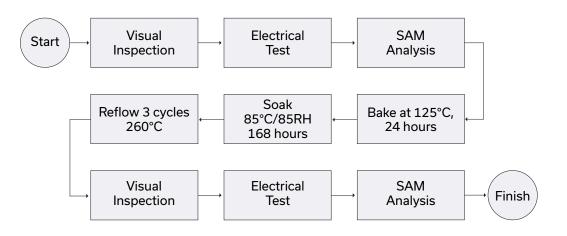
Marking may contain other features or characters for internal lot control

Monolithic Amplifier

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
5-200 MHz Operation	See Application Note AN-60-087
Case Style	DF782 (SOT 89) Plastic package, exposed paddle lead finish: Matte-tin
Tape & Reel Standard quantities available on reel	F55 7″ reels with 20, 50, 100, 200, 500 or 1K devices
Suggested Layout for PCB Design	PL-370
Evaluation Board	TB-781+
Environmental Ratings	ENV08T1

ESD RATING


Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M2 (100 to <200V) in accordance with ANSI/ESD STM5.2-1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310