

Monolithic Amplifier

MNA-4W+

 50Ω 0.5 to 4.5 GHz

THE BIG DEAL

- · Integrated matching, DC Blocks and bias circuits
- · High directivity, 19-32 dB typ.=
- Excellent Active Directivity
- Operates over 2.8-5V
- Choice of supply voltage, +2.8V to +5V
- Micro-miniature size .120"X.120"
- Internal DC blocking at RF input and output
- Output power, up to +19 dBm typ.
- Aqueous washable

Generic photo used for illustration purposes only CASE STYLE: DQ849

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Buffer amplifier
- Cellular infrastructure
- Communications satellite
- Defense

PRODUCT OVERVIEW

MNA-4W+ is a wideband PHEMT based MMIC amplifier with high active Directivity. MNA integrates the entire matching network and majority of the bias circuit inside the package, reducing the need for complicated external circuits. This approach makes the MNA amplifier extremely straightforward to use. This design operates on a single 2.8 to 5V supply, is well matched for 50Ω and comes in a tiny, low profile 3x3mm 8-lead MCLP package accommodating dense circuit board layouts.

KEY FEATURES

Feature	Advantages
Excellent Active Directivity (Isolation- Gain) 19-35 dB	Ideal for use as a buffer amplifier minimizing interaction of adjacent circuits
Integrates DC blocks and RF choke	Minimizes external components, component count and circuit area.
Single +2.8 to +5V operation	Amplifier can be used at low voltage such as +3V or standard +5V. +5V operation results in higher P1dB and OIP3.
3 x 3mm 8-lead MCLP package	Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.

REV. A ECO-011187 MNA-4W+ RS/CP 211220

Monolithic Amplifier

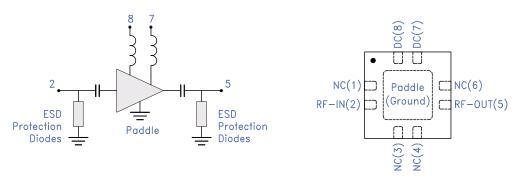
MNA-4W+

ELECTRICAL SPECIFICATIONS¹ AT 25°C

Parameter	Condition		Vs=5V		Vs=2.8V	Units
	(GHz)	Min.	Тур.	Max.	Тур.	
Frequency Range		0.5		4.5	0.5-4.5	GHz
	0.5	_	16.0	_	14.2	dB
	1.0	_	17.8	_	15.4	
Gain	2.0	16.0	17.8	19.6	14.9	
daiii	2.5	_	17.0	_	14.2	
	3.5	_	13.9	_	11.6	
	4.5	8.8	9.8	11.7	8.1	
	0.5		5.2		5.5	dB
	1.0		14.6		14.5	
Level Delevel eve	2.0		31.1		26.9	
Input Return Loss	2.5		29.8		30.4	
	3.5		15.6		15.4	
	4.5		7.8		8.0	
	0.5		12.9		12.1	dB
	1.0		25.9		12.7	
0	2.0		15.6		11.2	
Output Return Loss	2.5		15.0		11.3	
	3.5		17.7		12.6	
	4.5		16.7		11.8	
	0.5		18.7		10.7	dBm
	1.0		18.6		11.8	
	2.0		17.2		12.0	
Output Power at P1dB	2.5		16.8		12.1	
	3.5		15.2		11.9	
	4.5		13.5		10.8	
	0.5		30.9		22.8	dBm
	1.0		30.8		23.5	dbiii
	2.0		28.5		23.4	
Output IP3	2.5		27.9		23.4	
	3.5		26.3		22.4	
	4.5		25.0		21.3	
	0.5		4.9		5.0	dB
	1.0		4.4		4.5	uв
	2.0		4.5		4.6	
Noise Figure (dB)	2.5		4.5		4.6	
	3.5		4.5		4.6	
	4.5		5.5		5.8	-ID
	0.5		31.8		35.3 36.3	dB
B:	1.0		26.2		26.2	
Directivity	2.0		19.4		20.5	
(Isolation-Gain)	2.5		19.0		19.7	
	3.5		20.8		20.7	
200	4.5		23.9	24.0	23.5	
DC Current			75.1	94.0	70.6	mA
Device Current Variation vs. Temperature(2)			35		17	μΑ/°C
Device Current Variation vs Voltage			0.001(3)		0.003(4)	mA/mV
Thermal resistance at 85°C (Junction to Lead)			50		50	°C/W

⁽¹⁾ Measured on Mini-Circuits Characterization test board TB-186+. See Characterization Test Circuit (Fig. 1) (2) (Current at 85°C-Current at -45°C)/130 (3) (Current at 5.25V-Current at 3.9V)/1.35 (4) (Current at 3.9V-Current at 2.66V)/1.24

Monolithic Amplifier


MNA-4W+

MAXIMUM RATINGS⁵

Parameter	Ratings		
Operating Temperature	-40°C to 85°C		
Storage Temperature	-55°C to 100°C		
DC Voltage	7V at pin 7 (on TB-186+) 1V at pins 2 & 5		
Power Dissipation	500 mW		
Input Power	13dBm (continuous operation) 24dBm (5 minutes max)		

^{5.} Permanent damage may occur if any of these limits are exceeded. These ratings are not intended for continuous normal operation.

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description (See Fig 1)
RF-IN	2	RF input pin
RF-OUT	5	RF output pin
DC	7,8	DC Bias pads 7,8. Pad 7 connected to ground via 1000 pF. Pad 8 connected to pad 7 via 33 ohms.
NC	1,3,4,6	Not Connected, connect pad 3 and 4 to ground externally
GND	Paddle	Ground
OPTIONAL	1,6	No internal connection; recommended use: per PCB Layout PL-078

Monolithic Amplifier

MNA-4W+

CHARACTERIZATION & APPLICATION TEST CIRCUIT

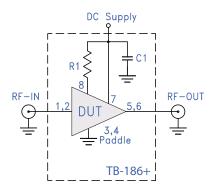


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-186+)

Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

Component	Size	Value	Units
R1	0805	33.2	Ω
C1	0402	1000	ρF

RECOMMENDED APPLICATION CIRCUIT

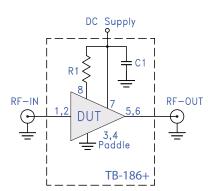
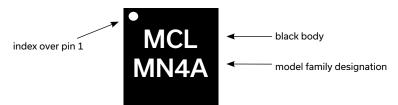



Fig 2. Test Board includes case, connectors, and components soldered to PCB

Component	Size	Value	Units
R1	0805	33.2	Ω
C1	0402	1000	ρF

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Monolithic Amplifier

MNA-4W+

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS

CLICK HERE

Performance Data	Data Table Swept Graphs S-Parameter (S2P Files) Data Set (.zip file)	
Case Style	DQ849 3x3x0.9 mm MCLP Plastic package, exposed paddle lead finish: Matte-Tin	
Tape & Reel Standard quantities available on reel	F104 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices	
Suggested Layout for PCB Design	PL-078	
Evaluation Board	TB-186-4W+	
Environmental Ratings	ENV08T1	

ESD RATING


Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (Pass 50V) in accordance with ANSI/ESD STM5.2-1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310