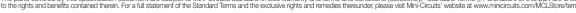
Low Noise, High IP3 **Monolithic Amplifier**

PSA-5454+

0.05 to 4 GHz 50Ω

The Big Deal

- Ultra Low Noise Figure, 0.8 dB
- High IP3/Low Current, 20mA at +5V
- Wideband, up to 4 GHz


Product Overview

Mini-Circuits PSA-5454+ is a E-PHEMT based Ultra-Low Noise MMIC Amplifier operating from 50 MHz to 4 GHz with a unique combination of low noise and high IP3 making this amplifier ideal for sensitive receiver applications. This design operates on a single 5V supply at only 20mA and is internally matched to 50 ohms.

Feature	Advantages		
Ultra Low Noise, 0.8 dB	Outstanding Noise Figure, measured in a 50 Ohm environment without any external matching		
High IP3, 25 dBm	Combining Low Noise and High IP3 makes this MMIC amplifier ideal for Low Noise Receiver Front End (RFE) because it gives the user advantages at both ends of the dynamic range: sensitivity & two-tone spur-free dynamic range		
Low Current, 20 mA	At only 20mA, the PSA-5454+ is ideal for remote applications with limited available power or densely packed applications where thermal management is critical.		
Broad Band	Operating over a broadband the PSA-5454+ covers the primary wireless communications bands: Cellular, PCS, LTE, WiMAX		
Internally Matched	No external matching elements required to achieve the advertised noise and output power over t full band		
SOT-363 Package	Small size, industry standard package		
Max Input Power, +15dBm	Ruggedized design operates up to input powers of +15dBm without the need of an external limiter		
High Reliability	Low, small signal operating current of 30 mA nominal maintains junction temperatures typically below 105°C at 85°C ground lead temperature		

Key Features

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Nini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit shandard limited warranty and terms and conditions (collectively, "Standard Terms"). Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

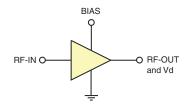
www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

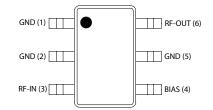
Low Noise, High IP3 **Monolithic Amplifier**

0.05 to 4 GHz **50**Ω

Product Features

- Single Positive Supply Voltage, +5V, Id=20mA
- Ultra Low Noise Figure, 0.8 dB typ. at 1GHz
- High IP3, 25 dBm typ. 1GHz
- · Gain, 18dB typ. at 1GHz
- Output Power, up to +14 dBm typ.
- Micro-miniature size SOT-363 package
- Aqueous washable


Typical Applications


- Cellular
- ISM
- GSM
- WCDMA
- LTE
- WiMAX
- WLAN
- UNII and HIPERLAN

General Description

PSA-5454+ is an advanced wide band, high dynamic range, low noise, high IP3, high output power, monolithic amplifier. Manufactured using E-PHEMT* technology enables it to work with a single positive supply voltage.

simplified schematic and pin description

Function	Pin Number	Description (See Application Circuit, Fig. 3)	
RF IN	3	RF input pin (connect to RF-IN via blocking cap C1 and Pin 4 via L2)	
RF-OUT & Vd	RF-OUT & Vd 6 RF output pin (connected to RF-out via blocking cap C2 and supply voltage V via RF Choke L1)		
BIAS	4	Connected to Vs via Rbias. (Connect to ground via C4 & R1)	
GND	1,2,5	Connections to ground	

* Enhancement mode pseudomorphic High Electron Mobility Transistor.

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit shandard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchases of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

PSA-5454+

Generic photo used for illustration purposes only CASE STYLE: CA1389

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Monolithic Low Noise E-PHEMT MMIC Amplifier

PSA-5454+

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units	
Frequency Range		0.05		4.0	GHz	
DC Voltage (V _d)			5.0		V	
DC Current (I _d) ⁽⁶⁾		12	20	40	mA	
DC Current (I _{Rbias})			0.6		mA	
	0.05		2.6	_	dB	
	0.5		0.8	_		
Noise Figure	1.0		0.8			
Noise Figure	2.0		1.1	1.3		
	3.0		1.4	_		
	4.0		1.7	—		
	0.05	_	21.1	_	dB	
	0.5	_	21.6	l —		
Gain	1.0	_	18.3	_		
Gain	2.0	12.2	13.6	14.9		
	3.0	_	10.9	l —		
	4.0		9.3			
Input Return Loss	0.05-0.5		8.0		dB	
Input Neturi Loss	0.5-4.0		6.0		uв	
	0.05-0.5		7.0		dB	
Output Return Loss	0.5-4.0		15.0			
	0.05		21.2		dBm	
	0.5		24.7			
0.1.170	1.0		25.3			
Output IP3	2.0		26.3			
	3.0		26.2			
	4.0		26.0			
	0.05		6.6		dBm	
	0.5		14.6			
Output Power @ 1 dB compression (P1dB) (2)	1.0		15.0			
Output Fower @ 1 db compression (F1dB)	2.0		14.0			
	3.0		14.0			
	4.0		14.5			
DC Current Variation vs. Temperature (3)			-0.08		mA/°C	
Thermal Resistance			165		°C/W	

Electrical Specifications⁽¹⁾ at 25°C, Zo=50Ω, (refer to characterization circuit, Fig. 1)

Absolute Maximum Ratings⁽⁴⁾

Parameter	Ratings		
Operating Temperature (5)	-40°C to 85°C		
Storage Temperature	-65°C to 150°C		
Channel Temperature	150°C		
DC Voltage (Pin 6)	6V		
Power Dissipation	390mW		
DC Current (Pin 6)	60mA		
Bias Current (Pin 4)	10mA		
Input Power (CW) (7)	15dBm		

- (1) Measured on Mini-Circuits Characterization test board TB-533+
- See Characterization Test Circuit (Fig. 1)
- (2) Specified with external current limiting of 30 mA. Capable of higher P1dB at higher currents (see Fig. 2)
 ⁽³⁾ Current at 85°C - Current at -45°C)/130
- ⁽⁴⁾ Permanent damage may occur if any of these limits are exceeded.
- ⁽⁵⁾ Defined with reference to ground pad temperature.
 ⁽⁶⁾ Specified DC current consumption is under small signal conditions.
- Current will increase with input RF Power. To maintain maximum current consumption, external DC current limiting circuits are required on Vd line.
- ⁽⁷⁾ Maximum input power is specified based upon external Vd current limiting of 40 mA. Maximum input power will degrade without external current limiting.

Page 3

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Min-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuits andard limited warranty and terms and conditions (collectivity, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Page 4

Characterization Test Circuit

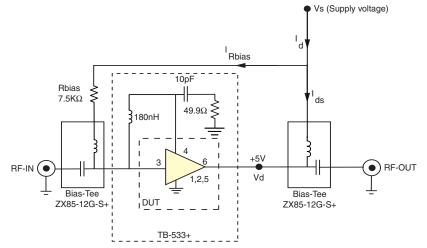


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization Test Board TB-533+) Gain, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. Vs adjusted for 5V at device (Vd), compensating loss of bias tee.

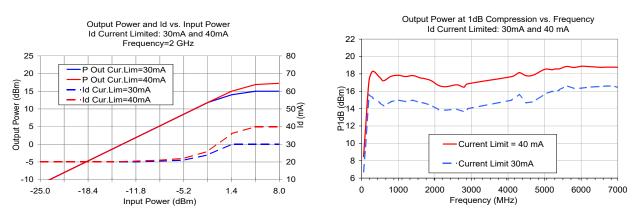
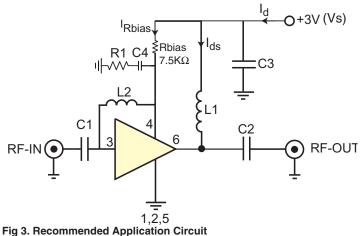


Fig 2. Output Power and Id vs. Input Power and Frequency.

Performance measured on Mini-Circuits Characterization test board TB-533+. See Characterization Test Circuit (Fig. 1) Measurements performed with current (Id) limited as noted.

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Min-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Min-Circuits andard limited warranty and terms and conditions (collectivity, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

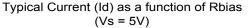

Mini-Circuits

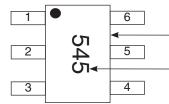

Page 5

Recommended Application Circuit

(refer to evaluation board for PCB Layout and component values)

Note: Resistance of L1, 0.1-0.2Ω typically




Fig 4. Id varies as a function of Rbias. The Id current range is defined based upon the specific Rbias value noted in the Application Circuit (Fig 3). Rbias may be adjusted to optimize Id for a customers' application. RF performance will vary accordingly.

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Nini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit standard limited warranty and terms and conditions (collectively, "Standard Terms"). Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/WCLStore/terms.jsp

Page 6

Product Marking

black body laser or white ink marking model family designation

Marking may contain other features or characters for internal lot control

Additional Detailed Technical Information

Additional information is available on our web site www.minicircuits.com. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: CA1389 Plastic molded SOT-363 package, lead finish: matte tin

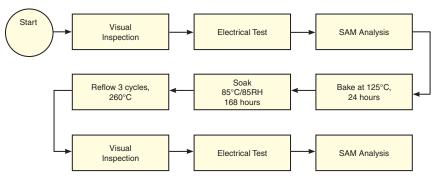
Tape & Reel: F101 Standard quantities availabe on reel: 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices.

Suggested Layout for PCB Design: PL-311

Evaluation Board: TB-534-4+

Environmental Ratings: ENV08T2

ESD Rating


Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (<100V) in accordance with ANSI/ESD STM5.2-1999; passes 40V

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's and and mini meant document are measurement instructions. to the rights and benefits contained therein. For a full statement of the Standard limited warranty and termes and conditions (collectivity, "Standard Terms"); Purchasers of this part are entitive to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms Purchasers of this part are entitled ww.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310