Adapter SMA-Female to SMA-Male

SFR-SM50+

DC to 18 GHz 50Ω

The Big Deal

- Ultra-wideband, DC-18 GHz
- Low insertion loss, 0.14 dB typ. up to 18 GHz
- Excellent VSWR, 1.12:1 typ. up to 18 GHz

CASE STYLE: DJ2442-7

Product Overview

Mini-Circuits' SFR-SM50+ is a right-angle SMA-Female to SMA-Male adapter supporting a wide range of applications from DC to 18 GHz. This model provides excellent VSWR, low insertion loss, and flat response versus frequency. The SFR-SM50+ features Tri-metal alloy body and Gold-plated berillium copper construction center contact.

Key Features

Feature	Advantages
Wideband, DC to 18 GHz	Wide frequency range provides application flexibility and makes this model ideal for broadband and multi-band use.
Excellent VSWR • 1.12:1 typ. up to 18 GHz	Provides good matching for 50Ω systems and minimizes signal reflections across wide frequency range.
Low insertion loss • 0.14 dB typ. up to 18 GHz	Provides excellent signal power transmission from input to output.
Tri-metal alloy and Gold-plated berillium copper construction center contact	Stands up to wear and tear in demanding environments and provides excellent reliability.
Very wide operating temperature range, -55 to +100°C	Withstands extreme operating conditions and is suitable for use near high power componentry where heat rise is common.

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

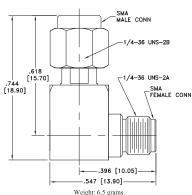
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.ninicircuits.com/MCLStore/terms.jsp

Adapter SMA-Female to SMA-Male

SFR-SM50+

CASE STYLE: DJ2442-7

Connectors	Model
SMA-Fem to SMA-Male	SFR-SM50+


+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

50Ω DC to 18 GHz

Maximum Ratings

Operating Temperature -55°C to 100°C -55°C to 100°C Storage Temperature Permanent damage may occur if any of these limits are exceeded.

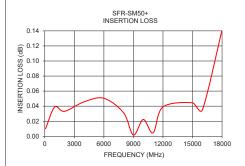
Outline Dimensions inches [mm]

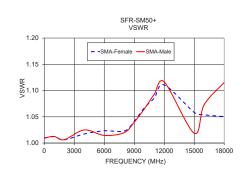
Dimensions are in inches (mm). Tolerances: 2 Pl.±.03; 3 Pl. ±.015

Features

- low insertion loss, 0.14 dB typ. up to 18 GHz
- excellent VSWR, 1.12:1 typ. up to 18 GHz
- low cost adapters, available from stock
- Tri-metal alloy and gold-plated berillium copper center connector

Applications


• interconnection of RF cable and equipment


Electrical Specifications at 25°C

= 100 till og 100							
Parameter	Condition (GHz)	Min.	Тур.	Max.	Units		
Frequency Range		DC		18	GHz		
Insertion Loss	DC - 18	_	0.14	_	dB		
	DC - 8	_	1.01	1.25			
VSWR	8 - 12	_	1.07	1.25	:1		
	12 - 18	_	1.09	1.25			

Typical Performance Data

Frequency (MHz)	Insertion Loss (dB)		VSWR (:1)	
. ,	. ,	SMA-Female	SMA-Male	
10	0.01	1.01	1.01	
100	0.01	1.01	1.01	
1000	0.04	1.01	1.01	
2000	0.03	1.01	1.01	
4000	0.05	1.02	1.03	
6000	0.05	1.02	1.01	
8000	0.03	1.02	1.02	
9000	0.00	1.04	1.04	
10000	0.02	1.07	1.06	
11000	0.00	1.09	1.09	
12000	0.04	1.11	1.12	
15000	0.04	1.06	1.02	
16000	0.04	1.05	1.07	
18000	0.14	1.05	1.12	

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.ninicircuits.com/MCLStore/terms.jsp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Adapters - Between Series category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below:

5945-9503-000 MCX/F-SMA/M R192417010 ADBJ20-E1-BJ379 ADM2 ADPL75-A1-PL75 242191 9317505 AD130 ADBJ20-E1-PL74 ADBJ20-E2-BJ79 ADBJ77-E1-UPL20 ADRMF370 242190 242215 242228 R125680000W R192430000 UAD95 1057367-1 8311505 R114704000 R451034500 R451030500 R451543000 HDVDPN ADBJ20-K1-PL20 R451570000 R192419000 R451034000 J9 J3WE-5 R451032500 242201RP 17K132-K00S5 03K719-S22S3 AD-RSMAF-RTNC 53K156-K00N5 53K160-KIMN1 29S132-K01N5 53S156-K00N5 02S119-S00E3 28K132-K00N5 02S109-K00S3 27-8200TP 242235 ADBJ20-E1-BJ89 ADP-SMAF-MMCXM 000-2900 321-102-003 (SMA-50/2-H155/W1.03 AU)