Wideband Low Noise Bypass Amplifier TSS-53LNB+

50 Ω 0.5 to 5 GHz

The Big Deal

- Very wideband, 500 MHz 5 GHz
- Ultra-flat gain, ±0.7 dB from 700 to 2100 MHz
- Low NF over entire frequency band, 1.4 dB
- Internal bypass switching extends useable dynamic range

CASE STYLE: DQ1225

Product Overview

TSS-53LNB+ (RoHS compliant) is an advanced ultra-flat gain Low Noise wideband amplifier fabricated using E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier during high signal conditions. In addition, the TSS-53LNB+has good input and output return loss over a broad frequency range without the need for external matching components. It is enclosed in a 12-lead 3x3mm MCLP package for good thermal performance.

Feature	Advantages
Ultra-wideband: 500 MHz – 5 GHz	Ideal for a wide range of receiver applications including military, commercial wireless, and instrumentation.
Very flat gain	Ideal for broadband or multi-band applications. Just one, cost-efficient model required for multiple frequency usage.
Minimal external matching components required. 15 dB return loss typ.	Minimizes the need for external matching networks, simplifying circuit designs, and enabling the amplifier to operate over multiple bands in a single application circuit.
High IP3: 48 dBm typ. (bypass mode)	Provides enhanced linearity over broad frequency range under high signal conditions.
Internal bypass switch feature	Unique design handles low to high signal levels with minimal noise distortion.
Built-in DC blocking cap at RF-Out port & separate pads for RF-Out & Vdd	Simplifies biasing eliminates need for Bias-Tee at output.
Compact size: 3 x 3 x 0.9 mm	Saves space in dense system layouts. Low inductance, repeatable transitions, and excellent thermal contact.

Key Features

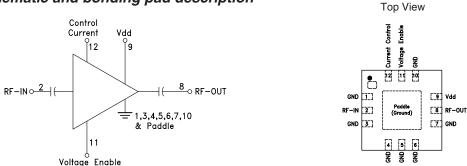
Wideband Low Noise Bypass Amplifier 0.5-5 GHz

Product Features

- Wideband: 0.5-5 GHz
- Built-in Bypass switching
- Low Noise figure: 1.4 dB typ. at 2.0 GHz
- High Gain: 21.7 dB typ. at 2 GHz
- Ultra Flat Gain: 0.7 dB from 0.7 to 2.1 GHz
- P1dB: +21 dBm typ. at 2.0 GHz
- Minimal matching components
- Specified over full band operation

Typical Applications

- Wireless Base Station Systems
- Test and Measurement Systems
- Multi-Band Receivers



+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

TSS-53LNB+ (RoHS compliant) is an advanced ultra-flat gain Low Noise wideband amplifier fabricated using E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier during high signal conditions. In addition, the TSS-53LNB+has good input and output return loss over a broad frequency range without the need for external matching components. It is enclosed in a 12-lead 3x3mm MCLP package for good thermal performance.

simplified schematic and bonding pad description

Function	Pad Number	Description (See Figure 2)	
RF-IN	2	RF-Input pad. Connect to Ground Via L1. Add a DC blocking cap in series of appropri- ate value if required.	
RF-OUT	8	RF-Output pad. No external DC blocking cap required.	
Current Control	12	Control Current pad, voltage level on this pad sets the ldd. Connect to pad 11 via 3.92 $k\Omega$ resistor.	
Voltage Enable	11	Voltage Enable Pad. Voltage level on this pad determines Amplifier is ON or bypassed.	
Vdd	9	Supply Voltage Pad. Connect to Vdd via L2.	
Ground	1,3,4,5,6,7,10 Paddle	Connect to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.	

TSS-53LNB+

Electrical Specifications⁽¹⁾ at 25°C, Zo=50 Ω and vdd=5V, unless otherwise noted

Devementer		Amplifier-ON			Amplifier-Bypass	Unite
Parameter	Condition (GHz)	Min.	Тур.	Max.	Тур.	Units
Frequency Range		0.5		5.0		GHz
	0.5		1.3		0.7	
	1.0		1.2		0.9	
	2.0		1.4		0.9	
Noise Figure	3.0		1.4		1.0	dB
	4.0		1.6		1.4	
	5.0		1.7		1.1	
	0.5	_	22.8	_	-0.7	
	1.0	_	22.7	_	-0.7	
0-1-	2.0	19.5	21.7	23.9	-0.9	-10
Gain	3.0	_	20.5	_	-1.0	dB
	4.0	_	19.5	_	-0.9	
	5.0	_	18.7	—	-1.0	
Gain Flatness	0.7 - 2.1		±0.7		±0.14	dB
	0.5	_	16.0		25.8	
	1.0	—	15.1		18.5	
Input Return Loss	2.0	10.5	14.5		12.3	dB
Input Heldin Loss	3.0	_	13.1		11.1	UD UD
	4.0	_	14.5		14.5	
	5.0		16.9		16.9	
	0.5		11.8		22.8	
	1.0		12.5		17.1	
Output Return Loss	2.0		17.0		12.6	dB
Ouipui Heium Loss	3.0		14.1		11.7	uв
	4.0		10.7		14.0	
	5.0		10.0		11.9	
	0.5		21.1		32.0	
	1.0		21.0		—	
Output Power @1dB compression AMP-ON (2)	2.0		20.6		33.0	dBm
Input Power @1dB compression AMP-Bypass (2)	3.0		20.1		_	UDIT
	4.0		20.2		-	
	5.0		19.2		27.0	
	0.5		35.1		48.0	
	1.0		34.5		48.4	
Output IP3	2.0		33.9		45.2	
Output IF3	3.0		32.7		42.9	
	4.0		33.4		42.0	
	5.0		30.9		40.8	
Device Operating Voltage (Vdd)		4.8	5.0	5.2	4.8-5.2 (5.0 typ.)	V
Device Operating Current (Id)			82	105	2	mA
Enable Voltage (Ve)			5.0		0	V
Enable Control Current (le)			2.0		0	mA
DC Current (Id) Variation Vs. Temperature (3)			-19			µA/°C
DC Current (Id) Variation Vs. Voltage			0.008		—	mA/mV
Thermal Resistance, junction-to-ground lead			60		-	°C/W

⁽¹⁾ Measured on Mini-Circuits Characterization test board TB-780+. See Characterization Test Circuit (Fig. 1)

⁽²⁾ Current increases at P1dB
 ⁽³⁾ (Current at 85°C - Current at -45°C)/130)

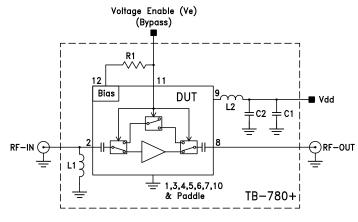
Absolute Maximum Ratings⁽⁵⁾

Parameter		Ratings		
Operating Temperature	e (ground lead)	-40°C to 85°C		
Storage Temperature		-65°C to 150°C		
Total Power Dissipation		0.7 W		
Innut Devices	Amplifier-ON	8 dBm (continuous), 19 dBm (5 min max.)		
Input Power	Amplifier Bypass	16 dBm (continuous), 29 dBm (5 min max.)		
DC Voltage Vdd		7.0 V		
DC Voltage Enable		7.0 V		
Max. Voltage on pad 8		15 V		

⁽⁵⁾ Permanent damage may occur if any of these limits are exceeded.

Electrical maximum ratings are not intended for continuous normal operation.

ous normal operation. Mini-Circuits

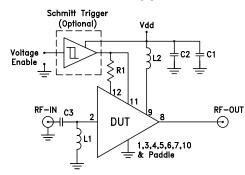

Enable Voltage (Ve) Fig. 1

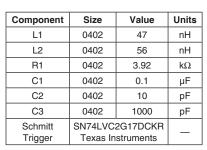
	Min.	Тур.	Max.	Units
Amplifier-ON	4.5	5.0	5.5	V
Amplifier-Bypass	0	_	0.5	V

Parameter		Min.	Тур.	Max.	Units
Amplifier ON to Dunges	OFF TIME (50% Control to 10% RF)	_	50	—	
Amplifier ON to Bypass	FALL TIME (90 to 10% RF)	_	12	_	ns
Amerikian Dumana ta ON	ON TIME (50% Control to 90% RF)	_	740	_	
Amplifier Bypass to ON	RISE TIME (10% to 90% RF)	_	240	_	ns
Control Voltage Leakage		_	65	_	mV

Characterization Test Circuit

Component	Size	Value	Units
L1	0402	47	nH
L2	0402	56	nH
C1	0402	0.1	μF
C2	0402	10	pF
R1	0402	3.92	KΩ


Fig 1. Block diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-780+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.


Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. Switching Time: Pin=-25 dBm at 500 MHz. Venable=4.5, 5.0, 5.5V at 10 kHz.

Vd=4.75, 5.0 and 5.5V.

Recommended Application Circuit

Product Marking

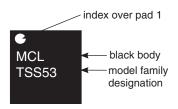
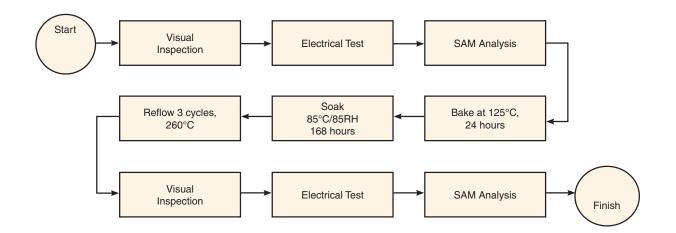


Fig 2. Recommended Application Circuit.

Additional Detailed Technical Information additional information is available on our dash board. To access this information <u>click here</u>		
	Data Table	
Performance Data	Swept Graphs	
	S-Parameter (S4P Files) Data Set (.zip file)	
Case Style	DQ1225 Plastic package, exposed paddle, terminal finish: matte-tin	
Tape & Reel	F66	
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500 or 1K devices.	
Suggested Layout for PCB Design	PL-421	
Evaluation Board	TB-779+	
Environmental Ratings	ENV12	


ESD Rating

Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (pass 50V) in accordance with ANSI/ESD STM5.2-1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310