Wideband Monolithic Amplifier

TSY-172LNB+

50Ω 0.03 to 1.7 GHz

2mm x 2mm

The Big Deal

- Very wideband, 30 MHz 1.7 GHz
- Low NF over entire frequency band, 1.4 dB
- Low current and low voltage (2.7V and 7.7 mA)
- · Internal bypass switching
- · Suitable for low phase noise applications

Product Overview

TSY-172LNB+ (RoHS compliant) is an advanced Low Voltage, Low Current, Low Noise wideband Bypass amplifier fabricated using GaAs E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier. TSY is enclosed in a 8-lead 2 x 2 mm MCLP package for good thermal performance.

Feature	Advantages
Ultra-wideband: 30 MHz – 1.7 GHz	Ideal for a wide range of receiver applications including military, commercial wireless, and instrumentation.
Low Voltage & Low Current 2.7V & 7.7 mA	Ideal for Battery operates systems
High IP3 24.7 dBm typ at 1 GHz	Provides enhanced linearity over broad frequency range under high signal conditions.
Bypass feature Low insertion loss	Unlike other amplifiers, insertion loss is low in Bypass mode. (For Bypass, both V_{DD} and Ve are set to 0V.)
Compact size: 2 x 2 x 1 mm	Saves space in dense system layouts. Low inductance, repeatable transitions, and excellent thermal contact.
Low additive phase noise, typically -155 dBc/Hz @10 KHz offset	Ideal for low phase noise synthesizer applications

Key Features

Wideband Monolithic Amplifier

TSY-172LNB+

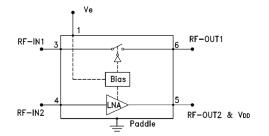
50Ω 0.03 to 1.7 GHz

Product Features

- Wideband: 0.03-1.7 GHz
- Built-in Bypass switching
- Low Noise figure: 1.4 dB typ.
- P1dB: +17.5 dBm typ.
- Low current and low voltage (2.7V and 7.7 mA)

Typical Applications

- Wireless Base Station Systems
- Test and Measurement Systems
- Multi-Band Receivers


Generic photo used for illustration purposes only CASE STYLE: MC1631-1

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

TSY-172LNB+(RoHS compliant) is an advanced Low Voltage, Low Current, Low Noise wideband Bypass amplifier fabricated using GaAs E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier. TSY is enclosed in a 8-lead 2 x 2 mm MCLP package for good thermal performance.

simplified schematic & pad description

Function	Pad Number	Description (See Figure 1)
RF-IN 1 & RF-IN 2	3,4	RF-Input pads. Pad 4 is connected to Pad 3 via two 0.1µF Capacitors
RF-OUT 1 & RF-OUT2 & VDD	5,6	RF-Output pads. Pad 6 is connected to Pad 5 via 0.1µF Capacitor.
Voltage Enable (Ve)	1	Enable Voltage pad. Ve is always connected to $V_{\text{DD.}}$ For amplifier bypass, V_{DD} & Ve should be turned OFF simultaneously.
Ground	Paddle	Connect to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.
N/C	2,7,8	No connection

Electrical Specifications¹ at 25°C, Zo=50 Ω & V_{DD}=2.7V unless otherwise noted

Parameter	Condition	Amplifier - ON			Amplifier - Bypass	Units
	(GHz)	Min.	Тур.	Max.	Тур.	
Frequency Range		0.03		1.7	0.03 - 1.7	GHz
Noise Figure	0.03		1.3		0.5	dB
	0.5		1.2		0.8	
	1.0		1.4		1.8	
	1.5		1.8		3.2	
	1.7		1.9		3.7	
Additive Phase Noise 2.0 GHz, 10	KHz offset		-155		_	dBc/Hz
Gain	0.03	_	15.3	_	-0.5	dB
	0.5	_	14.7	_	-0.8	
	1.0	11.8	13.1	14.4	-1.8	
	1.5	_	11.0	_	-3.2	
	1.7	_	10.1	_	-3.7	
Input Return Loss	0.03		13		19	dB
	0.5		14		14	
	1.0		10		8	
	1.5		6		6	
	1.7		6		5	
Output Return Loss	0.03		16		18	dB
	0.5		18		13	
	1.0		14		7	
	1.5		11		5	
	1.7		10		6	
Output Power at 1dB Compression, AMP-ON ²	0.03		15.8		1.2	dBm
	0.5		17.1		2.7	
	1.0		17.5		3.1	
	1.5		17.8		2.6	
	1.7		17.4		1.4	
Output IP3 ³	0.03		25.6		24.9	dBm
	0.5		26.4		28.4	
	1.0		24.7		30.4	
	1.5		24.0		23.5	
	1.7		22.4		19.5	
Device Operating Voltage (V _{DD}) ⁵		2.5	2.7	2.9	0	V
Device Operating Current (I _{D+} I _e)		—	7.7	10.6	0	mA
Enable Voltage (V _e) ⁵		2.5	2.7	2.9	0	V
Device Current Variation vs. Temperature ⁴			1.5		—	µA/°C
Device Current Variation vs. Voltage			0.0067		—	mA/mV
Thermal Resistance, junction-to-ground lead			229		—	°C/W

Measured on Mini-Circuits Characterization Test Board TB-943+. See Characterization Test Circuit (Fig. 1)
Current increases to 28-54 mA typ. at P1dB
Tested at Pout=+6 dBm/tone
((Current at 85°C - Current at -45°C)/130)

5.VDD is always connected to Ve

Absolute Maximum Ratings⁶

Parameter		Ratings		
Operating Temperature (ground lead)		-40°C to 85°C		
Storage Temperature		-65°C to 150°C		
Total Power Dissipation		0.2W		
Innut Dowor	Amplifier - ON	10 dBm (continuous), +23 dBm (5 min. max)		
Input Power Amplifier Byr		15 dBm (continuous), +22 dBm (5 min. max)		
DC Voltage V _{DD} (Pad 5)		6V		
DC Voltage Ve (Pad 1)		6V		

	Min.	Тур.	Max.	Units
Amplifier-ON (V _{DD} , V _e)	2.5	2.7	2.9	V
Amplifier-Bypass (V _{DD} , V _e)	_	—	0.3	v

6. Permanent damage may occur if any of these limits are exceeded.

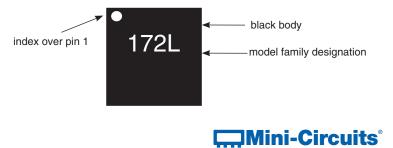
Electrical maximum ratings are not intended for continuous normal operation.

Switching Specifications

Parameter		Min.	Тур.	Max.	Units
Amplifier ON to Dupos	OFF TIME (50% Control to 10% RF)	_	6	_	
Amplifier ON to Bypass	FALL TIME (90 TO 10% RF)	_	7	_	μS
Američiau Dumana ta ON	ON TIME (50% Control to 90% RF)	_	59	_	0
Amplifier Bypass to ON	RISE TIME (10% to 90% RF)	_	20	_	μS
Control Voltage Leakage		_	443	_	mV

Characterization Test Circuit

Component	P/N	Supplier	Value	Size
L1	1008CS-102XJLC	Coilcraft	1uH	0.115" x 0.11"
L2	LQG15HS3N0S02D	Murata	3nH	0402
C1 to C8	GRM155R71C104KA88D	Murata	0.1uF	0402
C9	GRM1555C1H102JA01D	Murata	1000pF	0402
R1	RK73H1ETTP4320F	KOA	432 Ω	0402


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-943+) Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

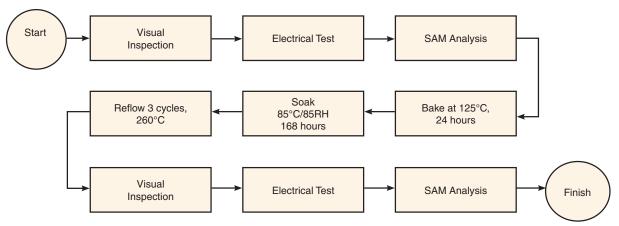
1. Gain and Return loss: Pin= -25dBm

- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, +6 dBm/tone at output.
- 3. Switching Time RF Signal: Pin=-10 dBm at 500 MHz. V_{DD}=Ve=0 to 2.5. / 2.7 / 2.9V, Pulse Signal=500 Hz, 50% duty cycle.

Product Marking

additional information is available on our dash board. To access this information <u>click here</u>

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	MC1631-1 Plastic package, exposed paddle, lead finish: matte-tin
Tape & Reel	F66
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500,1K or 2K devices
Suggested Layout for PCB Design	PL-536
Evaluation Board	TB-943+
Environmental Ratings	ENV08T1


ESD Rating

Human Body Model (HBM): Class 1A (Pass 250) in accordance with ANSI/ESD STM 5.1 - 2001 Machine.

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310