Coaxial Low Noise Amplifier

50Ω 0.5 to 12 GHz

ZX60-123LN-S+

CASE STYLE: GC957

The Big DealUltra-wideband, 0.5 to 12 GHz

- Flat gain, 17 ±2.4 dB over full band
- Low noise figure, 2.4 dB
- High IP3, +28 dBm

Product Overview

Mini-Circuits' ZX60-123LN-S+ is an ultra-wideband low noise connectorized amplifier providing a unique combination of low noise figure, high IP3 and flat gain over a very wide frequency range, supporting a wide range of sensitive, high-dynamic range receiver applications and many systems where high performance over wideband is needed. This design operates on a single 12V supply and comes in a rugged, compact unibody case (0.74 x 0.75 x 0.46") with SMA connectors, making it an excellent candidate for tough operating conditions and crowded system layouts.

Key Features

Feature	Advantages
Ultra-wideband with excellent gain flatness, $\pm 2.4 \text{ dB}$	Enables a single amplifier to be used in a wide range of applications including WiFi, LTE, S-Band radar, C-band and X-band SatCom, defense, instrumentation and more.
Low noise over the whole band, 2.4 dB typ.	Enables lower system noise figure performance.
High gain, 17 dB typ.	Reduces the number of gain stages, lowering component count and overall system cost.
High IP3, +28 dBm typ.	The combination of low noise and high IP3 makes the ZX60-123LN-S+ ideal for use in low noise receiver front end (RFE) as it gives the user the advantages of sensitivity and two-tone IM performance at both ends of the dynamic range.
Rugged, unibody construction	Mini-Circuits unibody construction integrates the RF connector into the case body, providing high reliability and excellent survivability in critical applications.

Coaxial Low Noise Amplifier

50Ω 0.5 to 12 GHz

Features

- Low noise figure, 2.4 dB at 8 GHz
- High IP3, 28 dBm typ. at 8 GHz
- Excellent gain flatness, ± 2.5

Applications

- WiFi
- WLAN
- UMTS
- LTE
- WiMAX
- S-band Radar C-band Satcom

Electrical Specifications at 25°C

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		0.5		12	GHz
	0.5		2.6		
	2.0		2.1		
Noise Figure	8.0		2.4		dB
	10.0		2.7		
	12.0		3.1		
	0.5		18.4		
	2.0		18.9		
Gain	8.0	15.1	16.2	18.4	dB
	10.0		15.4		
	12.0		14.4		
	0.5		2.5		
	2.0		1.7		
Input VSWR	8.0		1.9		:1
	10.0		1.7		
	12.0		2.3		
	0.5		1.5		
	2.0		1.5		
Output VSWR	8.0		1.4		:1
	10.0		1.5		
	12.0		1.6		
	0.5		15.8		
	2.0		16.5		
Output Power @ 1 dB compression ¹	8.0		16.0		dBm
	10.0		14.8		
	12.0		13.4		
	0.5		29.4		
	2.0		31.2		
Output IP3	8.0		28.3		dBm
	10.0		27		
	12.0		25.1		
Device Operating Voltage (V _{DD})			12		V
Device Operating Current (IDD)		_	82	94	mA
Device Current Variation vs. Temperature ²			-11.7		μA/°C
Device Current Variation vs. Voltage			0.0187		mA/mV

1. Current increases at P1dB. 2. (Current at 85°C - Current at -45°C)/130

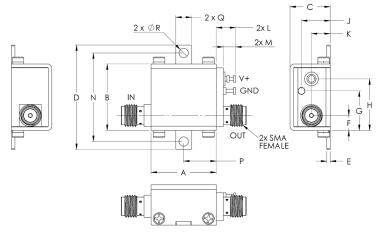
ZX60-123LN-S+

Generic photo used for illustration purposes only CASE STYLE: GC957

Model

Connectors SMA

ZX60-123LN-S+

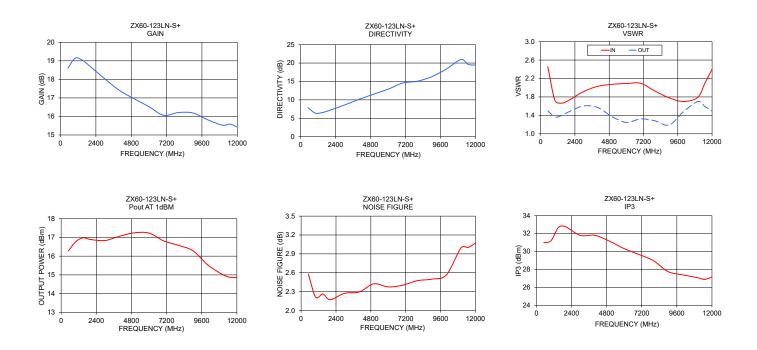

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Absolute Maximum Ratings³

Parameter	Ratings			
Operating Temperature (ground lead)	-40°C to 85°C			
Storage Temperature	-55°C to 100°C			
Total Power Dissipation	1.2W			
Input Power (CW), Vd=12	+23 dBm (5 minutes max.) +8 dBm (continuous)			
DC Voltage	13V			

3. Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

Outline Drawing


NOTE: When soldering the DC connections, caution must be used to avoid overheating the DC terminal. See Application Note. <u>AN-40-010</u>.

Outline Dimensions (inch)

wt	R	Q	Р	Ν	М	L	K	J	н	G	F	E	D	С	В	А
grams	.106	.18	.37	1.00	.14	.22	.21	.33	.59	.45	.17	.04	1.18	.46	.75	.74
23.0	2.69	4.57	9.40	25.40	3.56	5.59	5.33	8.38	14.99	11.4	4.32	1.02	30.0	11.68	19.1	18.80

Typical Performance Data/Curves

FREQUENCY (MHz)			VSWR (:1)		POUT at 1dB COMPR. (dBm)	NOISE FIGURE (dB)	OUTPUT IP3 (dBm)
			IN	OUT			
500	18.61	7.88	2.46	1.50	16.28	2.58	30.97
1000	19.15	6.42	1.73	1.36	16.77	2.21	31.21
1500	19.02	6.56	1.67	1.40	16.98	2.26	32.66
2000	18.71	7.17	1.73	1.48	16.89	2.17	32.75
3000	18.03	8.59	1.91	1.60	16.83	2.27	31.79
4000	17.41	10.13	2.03	1.57	17.06	2.29	31.80
5000	16.95	11.53	2.07	1.37	17.24	2.42	31.14
6000	16.53	12.89	2.09	1.25	17.23	2.38	30.32
7000	16.06	14.57	2.10	1.32	16.81	2.40	29.67
8000	16.21	15.06	1.93	1.28	16.58	2.47	28.97
9000	16.18	16.30	1.78	1.19	16.29	2.50	27.76
10000	15.82	18.37	1.70	1.48	15.54	2.57	27.39
11000	15.52	20.92	1.79	1.70	15.03	3.00	27.08
11500	15.59	19.63	2.10	1.59	14.87	3.00	26.89
12000	15.42	19.46	2.40	1.49	14.86	3.07	27.16

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

ZX60-123LN-S+

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310