

MD3901

Dual Full Bridge Low Voltage Motor Driver

Features and Benefits

- Low R_{DS(on)} MOSFET output drivers
 Full- and half-stepping capability
- Low DC current
- Forward, reverse, and brake modes for dc motors
- Sleep mode with zero current drain
- PWM control up to 50 kHz
- Crossover-current protection
- Thermal shutdown (TSD)
- ESD protected: 3KV (HBM)

Description

The MD3901 is a dual full-bridge motor driver, designed for low voltage portable applications involving bipolar stepper or brush dc motors. The outputs have been optimized for low voltage drop, and an operating voltage range of 2V to 9.6V with currents up to ±1A (±2A with outputs paralleled).

The four inputs (IN1 to IN4) can control a bipolar stepper motor in full- or half-step mode, or dc motors in forward, reverse, or brake mode. The inputs can be at frequencies up to 50 kHz for PWM current or speed control.

Internal protection circuitry includes thermal shut down

(TSD) and crossover (shoot-through) protection.

Typical Application

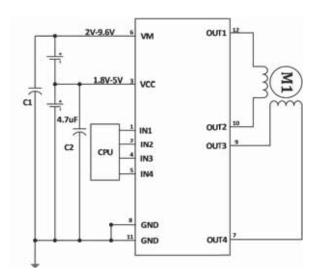


Figure 1. Typical stepper motor control

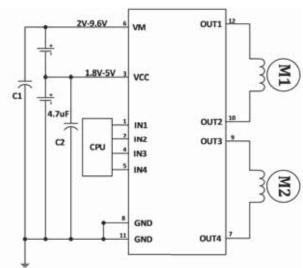


Figure 2. Typical dual dc motor control

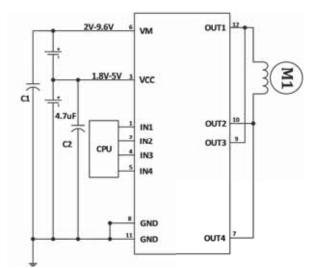
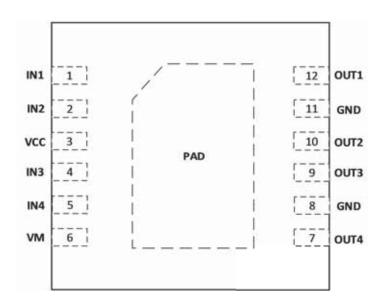
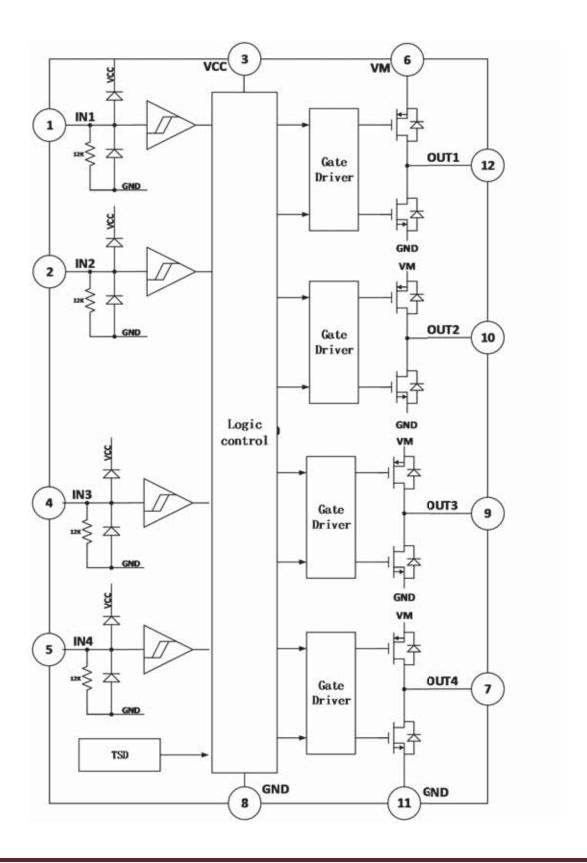



Figure 3. Typical single dc motor control (paralleled outputs)

Selection Guide

Order Number	Operating Temperature Range	Package	Marking Information	Transport Media, Quantity	
MD3901	-20 to 85℃	DFN12	MD3901	Tape and Reel,3000	

Package Diagram



Number	Name	I/O	Description
1	IN1	I	Line1 Logic input 1
2	IN2	I	Line1 Logic input 2
3	VCC	Р	Logic power supply, not near connect with VM
4	IN3	I	Line2 Logic input 3
5	IN4	I	Line2 Logic input 4
6	VM	Р	Load supply terminal
7	OUT4	0	Line 2 Bridge H output
8	GND	-	Ground terminal
9	OUT3	0	Line 2 Bridge H output
10	OUT2	0	Line 1 Bridge H output
11	GND	-	Ground terminal
12	OUT1	0	Line 1 Bridge H output

Remark: Logic power supply VCC can not be approached directly into the VM as VCC weak in Motor peak voltage resistance. Recommended by PCB line connected to the control IC power supply.

Functional Block Diagram

Motor Operation Truth Table

		١x		OUT1	OUT2	OUT3	OUT4	Function	
Stepper Motor									
IN1	IN2	IN3	IN4					Full	Half-
								Stepping	Stepping
0	0	0	0	OFF	OFF	OFF	OFF	Sleep Mode	Sleep Mode
1	0	1	0	Н	L	Н	L	Step1	Step1
0	0	1	0	OFF	OFF	Н	L	-	Step2
0	1	1	0	L	Н	Н	L	Step2	Step3
0	1	0	0	L	Н	OFF	OFF	-	Step4
0	1	0	1	L	Н	L	Н	Step3	Step5
0	0	0	1	OFF	OFF	L	Н	-	Step6
1	0	0	1	Н	L	L	Н	Step4	Step7
1	0	0	0	Н	L	OFF	OFF	-	Step8
DC M	otor (Du	al)							
IN1 c	or IN3	IN2 c	r IN4						
(0	()	OFF	OFF	OFF	OFF	Hi-Z (Sleep Mode)/Coast	
	1	()	Н	L	Н	L	Forward	
0		,	1	L	Н	L	Н	Reverse	
	1		1	L	L	L	L	Brake	
DC Mo	otor (Sir	ngle, Pa	ralleled	d)					
IN1 c	or IN3	IN2 c	r IN4						
(0	()	OFF	OFF	OFF	OFF	Hi-Z (Sleep N	/lode)/Coast
	1	()	Н	L	Н	L	Forward	
(0	,	1	L	Н	L	Н	Reverse	
	1	•	1	L	L	L	L	Bra	ake
DC Mo	otor (Ex	ternal P	WM)						
IN1 d	or IN3	IN2 c	r IN4						
	1	()	Н	L	Н	L	Forward	
0		()	OFF	OFF	OFF	OFF	Fast Decay	
(0	,	1	L	Н	L	Н	Reverse	
0		()	OFF	OFF	OFF	OFF	Fast Decay	
	1	()	Н	L	Н	L	For	ward
	1	,	1	L	L	L	L	Slow	Decay
(0	,	1	L	Н	L	Н		rerse
	1	_	1	L	L	L	L	Slow	Decay

Absolute Maximum Ratings at TA = 25°C

Charac	teristics	Symbol	Тур.	Unit	
Logic supply control Voltage Motor Driver Voltage Output Current per Channel		VCC(MAX)	7		
		VM(MAX)	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		VOUT(MAX)	VM	V	
Logic Input Voltage Range		VIN(MAX)	VCC		
Peak Current output	Line 1	IOUT(PEAK)	1.5	Α	
reak Current output	Line 2	IOUT(PEAK)	1.5	A	
Maximum Power Disp	Maximum Power Dispation		-	W	
Package Thermal	DFN12 Package	θ_{JAD}		°C/W	
Resistance	DI N12 Fackage	OJAD		C/VV	
Operating Temperature Range		T _{opr}	-20~+85	$^{\circ}\mathbb{C}$	
Junction Temperature		TJ	150	$^{\circ}\mathbb{C}$	
Storage Temperature	e Range	Tstg	-55~+150	$^{\circ}\!\mathbb{C}$	
Soldering Temperate	ure	T _{LED}	260°C, 10 seconds		
ESD(*3)			3000	V	

Remark: (1), Line1 represent as OUT1&OUT2, and line2 asOUT3&OUT4;

Suggest Operation Condition(T_A=25℃)

Characte	Symbol	Min	Typ.(VM=6.5V)	Max	Unit	
Logic supply control Vo	VCC	1.8		5	V	
Load Supply Voltage		VM	2		9.6	V
Line2 Sleep mode	Line1 continuous current	I _{OUT1}		1		
Line1 Sleep mode	Line2 continuous current	I _{OUT2}		1		А
Line1 continuous current=0.8A	Line2 continuous current	I _{OUT2}		0.8		

Remark: (1), Line1 represent as OUT1&OUT2, and line2 asOUT3&OUT4;

^{(2).} Maximum Power Dispation is $P_D=(150\,^{\circ}\text{C}-T_A)/\theta_{JA}$ for different temperature.

 T_A is instead of Operating Temperature, θ_{JA} is thermal resistance in package, 150 $^{\circ}$ C is highest junction temperature.

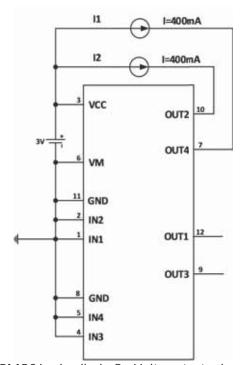
^{(3).} The Current Power Dispation: $P = I^2xR$

And P is Power Dispation, I is continuous output current, R is on-state resistance. P<PD

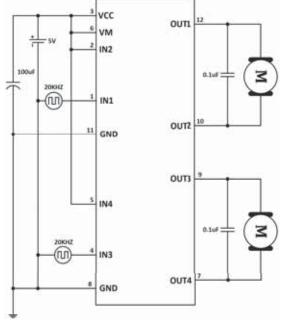
^{(4)、} HM, 100 pf capacitor discharge by 1.5 K Ω resistance.

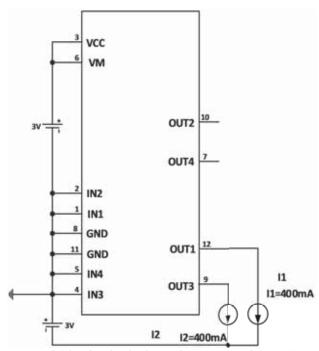
^{(2),} VCC and VM inside circuit independent completely, and supply respectively. the circuit will be standby if VCC off line.

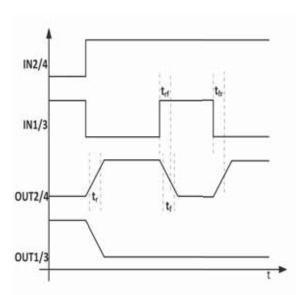
^{(3),} continuous output current test condition: Mount and PCB test.


ELECTRICAL CHARACTERISTICS at TA =25°C, and V_{CC} = 3V,VM=6V, unless noted otherwise

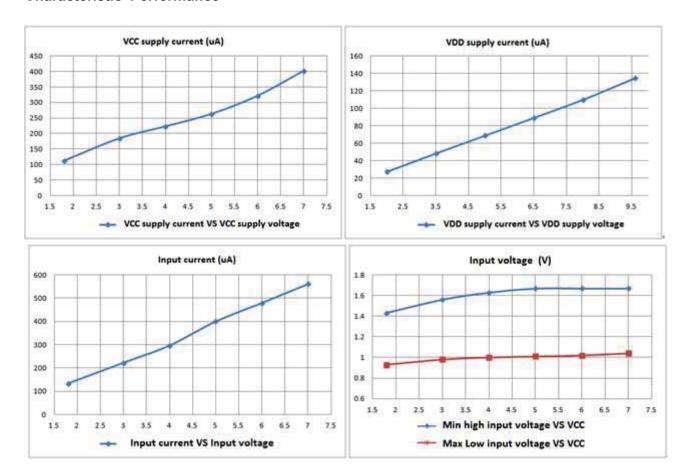
Characteristics	Symb ol	Test Conditions	Min.	Тур.	Max.	Unit s	
Motor Supply Parame	eters						
VCC standby current	I _{VCCST}	IN1=IN2= IN3= IN4=L;VCC=7V;		0	10		
VM standby current	I _{VMST}	VM=10V;output floating		0	10	uA	
VCC DC Current	I _{VCC}	INx=H; output floating		182			
VM DC Current	I _{VM}	INx=H; output floating		83		· uA	
Logic Input Voltage		gg					
Input High Voltage	V_{INH}		2				
Input Low Voltage	V _{INL}				0.8	V	
Input Voltage Delay	V_{HYS}			0.6			
Input High Voltage Current	I _{INH}	V _{INH} =2.5V;VCC=3V		191		uA	
Input On Resistance	R _{IN}	V _{INH} =3V;VCC=3V		12		ΚΩ	
Power Transistor On	Resisitance			1			
		IO=±200mA VM=6V TA=25℃		0.49			
Line1 On Resistance	R _{ON1}	IO=±800mA VM=6V TA=25 °C		0.53		-	
		IO=±200mA VM=6V TA=25 °C		0.49		Ω	
Line2 On Resistance	R _{ON2}	IO=±800mA VM=6V TA=25 °C		0.49		-	
Destroit for the co		IU=±800IIIA VIVI=0V TA=25 C		0.53			
Protect function Thermal Shut Down					1	1	
Temperature	TSD			150		°C	
Thermal Shut Down Hysteresis	TSDH			20		\mathbb{C}	
Power MOSFET Body	Diode Chara	cteritics-1 line		•			
DMOC Dark Diada		I=400mA,VCC=3V,		0.7/			
PMOS Body Diode	V_{PD}	VM=IN1=IN2=0V		0.76		.,	
NIMACCO I D' I	V _{ND}	I=-400mA, VCC=VM=3V,		0.75		V	
NMOS Body Diode		IN1=IN2=0V		0.75			
Power MOSFET Body	Diode Chara	cteritics-2 line			1		
PMOS Body Diode	V_{PD}	I=400mA,VCC=3V,		0.76			
		VM=IN3=IN4=0V				V	
NMOS Body Diode	V_{ND}	I=-400mA, VCC=VM=3V, IN3=IN4=0V		0.75			
Motor Drive time para	ameters-1 Li			l		l	
Output Rise Time	t _r	IN2=H,IN1 plus input 50%		300			
Output Fall Time	t _f			10		1	
Output delay (r-f)	t _{rf}	f=20KHz		40		ns	
Output delay (f-r)	t _{fr}	load driver R=1.3 Ω ,		240		1	
Motor Drive time para		·					
Output Rise Time	t _r	IN4=H,IN3 plus input50%		300			
Output Fall Time	t _f	IIV4=11,IIV3 PIUS IIIPUL30%		10		ns	
Output delay (r-f)	t _{rf}			40			
Output delay (f-r)	t _{fr}	load driver $R=1.3\Omega$,		240			

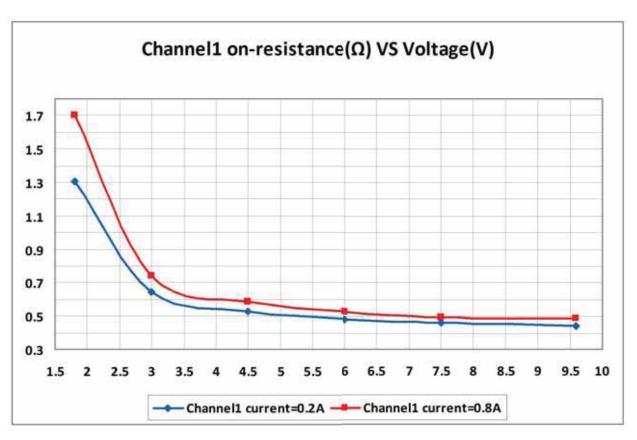

Remark: x respond 1, 2, 3 or 4.


Test Schematic Program


PMOS body diode On Voltage test schematic

Time parameters test schematic

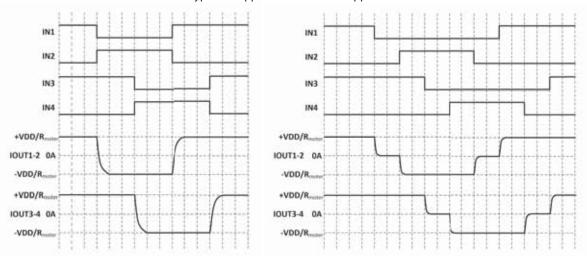

NMOS body diode On Voltage test schematic



Time parameters definition

Characteristic Performance

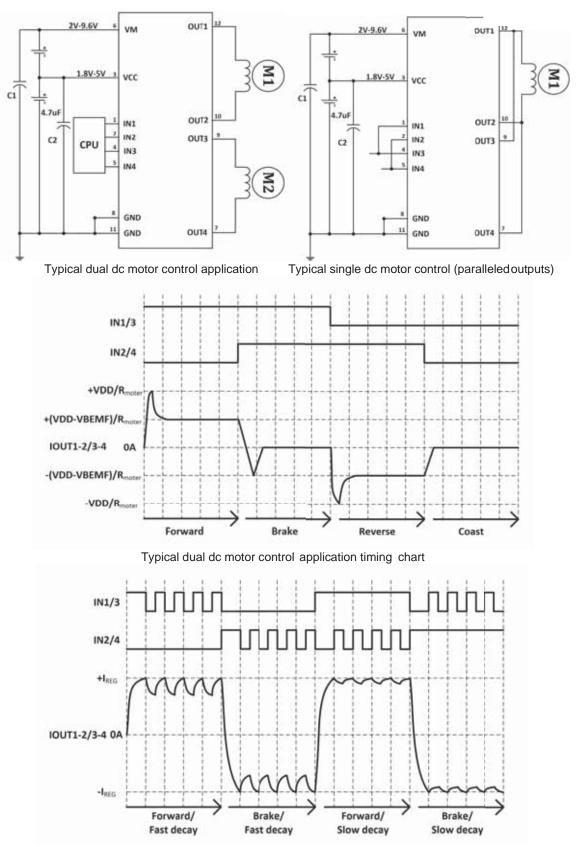




Application Information

1. Typical stepper motor control application

Typical stepper motor control application



Full step mode timing chart

Half step mode timing chart

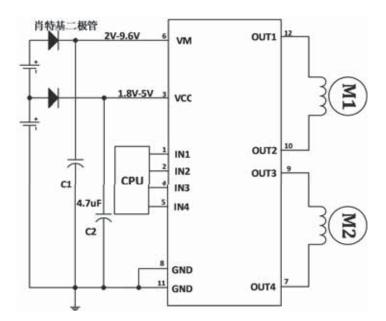
2 dc motor control application

External PWM current control in fast and slow delay modes

Notice:

the decoupling C1 funtion is connected between power and ground, the C1 value is as various as actual application, details as below:

A, the C1 can be removed if the VM voltage is less than 7.2V and the peak current is less than 2A B, if the VM votage is between 7.2 and 9.6V, peak current over 2A, the C1 must added and the

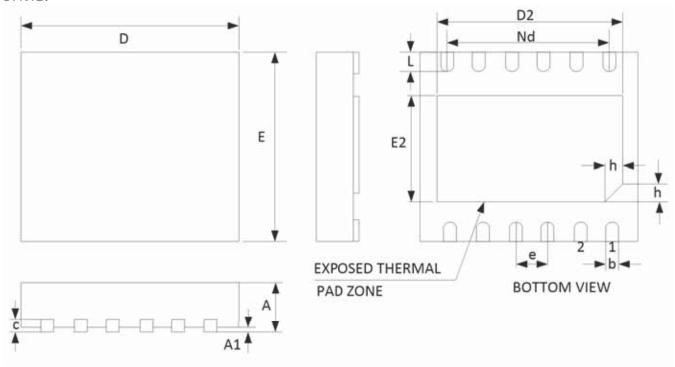

value should be from 47uF to 100uF.

C, ceramic or electrolytic capacitor are fit for C1.

the C2 that connect the logic suplly to ground is 4.7uF at least, it is not necessary to add one more capacitor that close the IC,C2 can share the capacitor with RX2,MCU. if there are not capacitor between VCC and ground, if occur OTP, will cut in lock function, changing the singal input to recover, no lock stutas occur if the capacitor is over 4.7uF.

Pls mind:

1, the circuit can be damaged if reverse connection between supply and ground.adding 2 schottky diodes can prevent damage



- 2, decouple capacitor C1 has two function:1,absorb more motor energy to enable the voltage constant,avoid the over voltage damage.2,can spply high peak current for motor starting,the value of decople capacitor can be 4.7uF to 100Uf
 - 3, ESD protection: PLS note the ESD protection at any status, specially in production line.
 - 4, PLS make sure that do not short the output
 - 5, PLS make sure that do not short the Low output to the power supply
 - 6, PLS prevent the motor working abnormally.
 - 7, PLS make sure that the peak current do not over the rated current.

Package

DFN12:

SYMBOL	MILLMETER					
SIMBOL	MIN	NOM	MAX			
A	0.70	0.75	0.80			
A1	-	0.02	0.05			
b	0.16	0.23	0.28			
c	0.18	0.20	0.25			
D	2.90	3.00	3.10			
D2	2.40	2.50	2.60			
e	0.45BSC					
Nd	2.25BSC					
E	2.90	3.00	3.10			
E2	1.45	1.55	1.65			
L	L 0.30		0.50			
h	0.20	0.25	0.30			
L/F Base (mil)	106*75					

- **Version Log** V1.0 The primary version;
- V1.1 Revise some mistakes in the electric characteristic test condition.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by Mixic manufacturer:

Other Similar products are found below:

LV8133JA-ZH LV8169MUTBG LV8774Q-AH MC33931EKR2 FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LC898111AXB-MH LC898300XA-MH LV8281VR-TLM-H IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW54-14-4 TB6552FNG,C,8,EL LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 IKCM10H60GA MC33PT2000AF TDA21801 LB11851FA-BH LB1938FAGEVB