

# **User Guide**

MP6570 Evaluation Kit (EVKT-MP6570)



## **Table of Contents**

| Overview                                                                 | 3  |
|--------------------------------------------------------------------------|----|
| Introduction                                                             | 3  |
| Kit Contents                                                             | 3  |
| Features and Benefits                                                    | 4  |
| Kit Specifications                                                       | 4  |
| Section 1. Hardware Specifications                                       | 5  |
| 1.1 Personal Computer Requirements                                       | 5  |
| 1.2 EV6570-R-00B Specifications                                          | 5  |
| 1.3 eMotion System Commmunication Kit Specifications                     | 5  |
| Section 2. Software Requirements                                         | 6  |
| 2.1 Software Installation Procedure                                      | 6  |
| Section 3. Evaluation Kit Test Set-Up                                    | 7  |
| 3.1 Hardware Set-Up                                                      | 7  |
| 3.2 Powering Up the EVB                                                  | 7  |
| 3.3 Software Set-Up                                                      | 8  |
| 3.4 Run the Motor                                                        | 8  |
| 3.5 Device Programming Instructions                                      | 11 |
| 3.6 Troubleshooting Tips                                                 | 12 |
| Section 4. Evaluation Board Schematic, Bill of Materials, and PCB Layout | 14 |
| 4.1 Evaluation Board Schematic                                           | 14 |
| 4.2 EV6570-R-00B Bill of Materials                                       | 15 |
| 4.3 PCB Layout                                                           | 17 |
| Section 5. Ordering Information                                          | 18 |



#### **Overview**

#### Introduction

The EVKT-MP6570 is an evaluation kit for the MP6570, a high-performance motor controller that incorporates field-oriented control (FOC) algorithms, SVPWM modulation technology, and an accurate embedded angle sensor. It is used for applications with three-phase permanent magnet synchronous motors (PMSMs) and brushless DC (BLDC) motors.

#### Kit Contents

EVKT-MP6570 kit contents (items below can be ordered separately, and the GUI installation file and supplemental documents can be downloaded from the MPS website):

| # | Part Number                         | Item                                                                                                        | Quantity |
|---|-------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|
| 1 | EV6570-R-00B                        | MP6570 evaluation board                                                                                     | 1        |
| 2 | eMotion System<br>Communication Kit | Includes one USB to SPI/I <sup>2</sup> C/RS485 communication interface, one USB cable, and one ribbon cable | 1        |
|   |                                     | SB Cable eMotion System Comm. Kit Ribbon Cable EV6570-R-00B                                                 | Motor    |

Figure 1: EVKT-MP6570 Evaluation Kit Set-Up



#### **Features and Benefits**

- Flexible Parameter Configuration via:
  - Non-Volatile Memory (NVM)
  - Selectable SPI/I<sup>2</sup>C/RS485 Interface
- Embedded Accurate Angle Sensor with Up to 14-Bit Resolution
- Field-Oriented Control (FOC)
- Supports Position Mode, Speed Mode, and Torque Mode
- Pulse-Width Modulation (PWM)/Clock/Digital Interface Reference Input
- Energy Regeneration Brake Mode
- 10-Bit Analog-to-Digital Converter (ADC) with Configurable Gain
- Up to 80kHz Configurable Switching Frequency (f<sub>SW</sub>)
- Up to 32 Configurable Slave Addresses
- Selectable Oscillator Source:
  - Integrated Internal Oscillator
  - External Passive Crystal Input
- Input Bus Over-Current Protection (OCP) and Over-Voltage Protection (OVP)
- Low-Power Standby Mode
- Locked-Rotor Detection and Restart
- Configurable Current Limit Threshold

#### **Kit Specifications**

| Feature                     | Specification                                          |
|-----------------------------|--------------------------------------------------------|
| Supply for Board            | 8V to 55V                                              |
| Output Phase Current        | 20A (peak), 10A (continuous)                           |
| Communication Support       | I <sup>2</sup> C, SPI, RS485, default I <sup>2</sup> C |
| Operating Systems Supported | Windows XP, 7, or later                                |
| System Requirement          | Minimum 100MB free                                     |
| GUI Software                | eMotion Virtual Bench                                  |
| EVB Size (LxW)              | 50.4cmx30cm                                            |



## **Section 1. Hardware Specifications**

#### **1.1 Personal Computer Requirements**

The following minimum conditions must be met to use the EVKT-MP6570:

- Operating System of Windows XP, 7, or later
- Net Framework 4.0
- PC with a minimum of one available USB port
- At least 100MB of free space

#### 1.2 EV6570-R-00B Specifications

The EV6570-R-00B is an evaluation board for the MP6570.



| Feature                         | Specification |
|---------------------------------|---------------|
| Supply for the Evaluation Board | 8V to 55V     |
| Operating Input Voltage         | 8V to 55V     |
| EVB Size (LxW)                  | 50.4cmx30cm   |

Figure 2: EV6570-R-00B Evaluation Board

#### **1.3 eMotion System Communication Kit Specifications**

The eMotion system communication kit refers to the USB to SPI/I<sup>2</sup>C/RS485 communication interface device, which connects the EVB, the PC, and its supporting accessories. Together with MPS's eMotion Virtual Bench tool, it provides a quick and easy way to evaluate the performance of MPS digital products.



Figure 3: eMotion System Communication Kit



## **Section 2. Software Requirements**

#### 2.1 Software Installation Procedure

Programming occurs through the MPS eMotion Virtual Bench GUI. Follow the instructions below to install the software:

Note: This software can be downloaded from the MPS website.

- 1. Download and extract the zip package titled "eMotion Virtual Bench.zip".
- 2. Double-click the "eMotion Virtual Bench.exe" file to open the set-up guide (see Figure 4 and Figure 5). If a protection window comes up, click "More info," then click "Run anyway."
- 3. Follow the prompts in the set-up guide.
- 4. Wait for the status screen to verify that the installation is complete.



Figure 4: eMotion Virtual Bench Icon



Figure 5: eMotion Virtual Bench



## Section 3. Evaluation Kit Test Set-Up

#### 3.1 Hardware Set-Up

The hardware must be properly configured prior to use. Follow the instructions below to set up the EVB:

- 1. Install the evaluation board at the back of the motor by connecting the three-phase motor windings to the board. Note that the center of the board should be aligned with the center of the magnet attached to the motor shaft. The distance between the magnet surface and the MP6570 surface should be between 1mm and 2mm (see Figure 6).
- 2. Connect the EVB to the eMotion system communication interface with the ribbon cable.
- 3. Connect the eMotion system communication kit to the PC with the USB cable.



Figure 6: EVKT-MP6570 Evaluation Kit Set-up

#### 3.2 Powering Up the EVB

- 1. Connect the power supply terminals to:
  - a. Positive (+): VIN
  - b. Negative (-): GND
- 2. Preset the power supply output between 8V and 55V. The power supply should be fused or currentlimited, and be capable of supplying current up to the motor's set current limit.



#### 3.3 Software Set-Up

After connecting the hardware according to the steps above, follow the steps below to use the GUI software:

- 1. Start the software. It should check the EVB connection automatically.
  - If the connection is successful, the connection status will be listed as "Communication Success" in green (see Figure 5).



Figure 7: Connection Status

- If the connection is unsuccessful, the connection status will be listed as "USB device unconnected" or "Communication failed" in red (see Figure 7). Check the connections between the EVB, communication interface, and PC or re-plug the USB into the computer.
  - If the MP6570 demo board is listed as "USB device unconnected," this means that the eMotion system communication kit is not connected correctly or the USB driver is not installed.
  - If the USB is listed as "Communication failed," this means that the EVB is not connected correctly.

#### 3.4 Run the Motor

- 1. Click the "Load Design" button (see Figure 8).
- 2. Select the *EV6570-R-00B demo design.xls* design file in the *DesignList* folder and load it to the eMotion Virtual Bench software.





Figure 8: Load the Design File

3. Click the motor picture and change the motor parameters according to the motor datasheet (see Figure 9).

| Motor Select                                                                               | -      | × |
|--------------------------------------------------------------------------------------------|--------|---|
| Motor Name: DemoMotor Winding Connection Type: Star Connection  Bhase Desistance De (0): 1 |        |   |
| Phase-Phase Inductance Ls (uH): 160                                                        |        |   |
| Rated DC Input(V): 12                                                                      |        |   |
| Rated Torque(mN*m):                                                                        |        |   |
| Rated Speed(rpm): 6000                                                                     |        |   |
| Inertia J (g*cm^2):                                                                        |        |   |
| Friction Factor F(N*m*s):                                                                  | Delete |   |
| Pole Pairs p:                                                                              |        |   |
| Flux Linkage Specified By:      Speed Constant      Torque Constant     O                  |        |   |
| Speed Constant (rpm/V): 625                                                                |        |   |
| Torque Constant (mN*m/A): (15.2788;                                                        |        |   |
| ОК                                                                                         |        |   |

Figure 9: Change the Motor Parameters

- 4. Follow the steps below to determine the theta bias (if the theta bias is saved to the design file, skip this step and proceed to step 5):
  - a. Navigate to the "Rotor Aligning" window from the home page (see Figure 10).Turn on the auto theta bias function.
  - b. Set the interval time and bias current, then click the "Start" button. The auto-theta bias function should turn off automatically.
  - c. Click the "OK" button to return to the home page.



| 🔤 Rotor Aligning                        |                           |
|-----------------------------------------|---------------------------|
| Please do rotor initial positioning fir | rst before run the motor. |
| Rotor Initial Positioning:              | ON OFF O                  |
| Interval Time(ms):                      | 1000                      |
| Bias Current(mA):                       | 500 Start                 |
| 👿 Input Theta Bias:                     | F99F H                    |
|                                         |                           |
|                                         |                           |
|                                         | ОК                        |

Figure 10: Rotor Aligning Window

- 5. Follow the steps below to run the motor:
  - a. Navigate to the "Online Test" window from the home page.
  - b. Click the "Load to RAM" button to load the design parameters to the MP6570 RAM.
  - c. Click the "Start/Stop" button to turn on the MP6570.
  - d. Click the "Update" button to set the motor speed. Monitor the speed curve in the scope.
  - e. Change and update the speed. Monitor the motor speed in the scope (see Figure 11).



Figure 11: eMotion Virtual Bench Software



6. Adjust the speed loop and current loop parameters for better performance.

#### 3.5 Device Programming Instructions

The MP6570 is a multiple-time programmable (MTP) part. Follow the steps below to create and export customized configurations:

- 1. Using a computer, open the eMotion Virtual Bench software and load a design file to the GUI.
- 2. Enter the Online Test window, then click the "Load to MTP" button (see Figure 12).

| Inline Test                  |                                                                                                                                                                                                                 |                  |           |         |          |             |    |        |         |     |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|---------|----------|-------------|----|--------|---------|-----|
| Direction:                   | Auto Design: O Y   N                                                                                                                                                                                            | Brake: O Yes     | No        |         |          |             |    |        |         |     |
| Speed Loop: ⑦                |                                                                                                                                                                                                                 | id Current(A):   |           |         | S        | oft Start>> | •  | Start/ | /Stop   |     |
| Ref. → EI → KI →             | $\begin{array}{c c} s+2\pi\cdot f_{i1}\\ s+2\pi\cdot f_{p1}\\ \hline \end{array} \qquad \qquad$ | Speed(r/min.):   | (3000     |         |          | Update      | ;  |        |         |     |
| Ť                            |                                                                                                                                                                                                                 |                  |           |         | Speed    |             |    |        |         |     |
| Ki:                          | (500                                                                                                                                                                                                            | 1.0              |           | <u></u> |          | · · : · ·   |    |        |         | ·   |
|                              |                                                                                                                                                                                                                 | 0.8              |           |         |          |             |    |        |         |     |
|                              |                                                                                                                                                                                                                 | € <sup>0.7</sup> |           |         |          |             |    |        |         |     |
| urrent Loop: (2)             |                                                                                                                                                                                                                 | e 0.6            |           |         |          |             |    |        |         |     |
| Ref.→ (∑) →                  | KP                                                                                                                                                                                                              | 0.4              |           |         |          |             |    |        |         |     |
| $\mathbf{Y}_{\underline{-}}$ |                                                                                                                                                                                                                 | <b>0</b> .3      |           |         |          |             |    |        |         |     |
|                              |                                                                                                                                                                                                                 | 0.1              |           |         |          |             |    |        |         |     |
|                              |                                                                                                                                                                                                                 | 0.0              |           |         |          | <del></del> |    |        |         | ••  |
|                              | (1000                                                                                                                                                                                                           | 0                | 2         | 4 6     | 8<br>Tim | 10<br>ie(s) | 12 | 14     | 16      |     |
| Fault Indication:            |                                                                                                                                                                                                                 |                  | ocition ( |         |          |             |    |        | ton Cl  |     |
| Over Current:                | Memory:                                                                                                                                                                                                         | © speed () P     |           |         |          |             |    | un 31  | iop Cit | :al |
| •                            | •                                                                                                                                                                                                               |                  |           |         |          |             |    |        |         | _   |

#### Figure 12: Write MTP

3. Changes can be made to the parameters outlined in red (see Figure 13).



Figure 13: Configurable Parameters



4. Click the "Save Design" button to save the parameters (see Figure 14).



Figure 14: Save the Parameters with "Save Design"

5. Select a location for the exported file, then click the "Save" button. The new configuration should save as a ".xls" file, a .txt file which has the same file name will also be saved with all register values (see Figure 15).

| File name:    | MP6570-xxxx -       |
|---------------|---------------------|
| Save as type: | Excel Files (*.xls) |
| Alide Folders | Save Cancel         |

Figure 15: New Configuration Saved as a ".txt" File

#### 3.6 Troubleshooting Tips

#### eMotion System Communication Kit Driver Installation Problem

If the eMotion system communication kit driver is not properly installed, manual installation is required. Follow the steps below to manually install the eMotion system communication kit driver:

Note: Check the driver version. Find "USBXpress Device" in the Device Manager under USB controllers.

USBXpress Device

Right-click and view properties. Ensure the driver version matches the newest version. If the PC is running Windows 10, Windows 10 may automatically install the older USB driver, which is not compatible. The correct driver version should be newer than 4.0.0.0 (see Figure 16 on page 14).

1. Install the correct ".exe" file.

Choose either the 32-bit or 64-bit operating system.

32-bit: \USB Driver\USBXpressInstaller\_x86.exe

64-bit: \USB Driver\USBXpressInstaller\_x64.exe

2. Connect the communication interface to the PC with a USB cable.



| USBXpress Device Properti | es 💌                                                                                         |
|---------------------------|----------------------------------------------------------------------------------------------|
| General Driver Details    |                                                                                              |
| USBXpress Dev             | ice                                                                                          |
| Driver Provider:          | Silicon Laboratories                                                                         |
| Driver Date:              | 2013/4/8                                                                                     |
| Driver Version:           | 4.0.0.0                                                                                      |
| Digital Signer:           | Microsoft Windows Hardware Compatibility<br>Publisher                                        |
| Driver Details            | To view details about the driver files.                                                      |
| Update Driver             | To update the driver software for this device.                                               |
| Roll Back Driver          | If the device fails after updating the driver, roll back to the previously installed driver. |
| Disable                   | Disables the selected device.                                                                |
| Uninstall                 | To uninstall the driver (Advanced).                                                          |
|                           | OK Cancel                                                                                    |

Figure 16: Determining the Driver Software



## Section 4. Evaluation Board Schematic, Bill of Materials, and PCB Layout

#### 4.1 Evaluation Board Schematic







#### 4.2 EV6570-R-00B Bill of Materials

| Qty | Ref                              | Value  | Description                                  | Package     | Manufacturer                 | Manufacturer PN    |
|-----|----------------------------------|--------|----------------------------------------------|-------------|------------------------------|--------------------|
| 4   | C1, C2,<br>C5, C12               | 1nF    | Ceramic capacitor, 50V,<br>X7R               | 0402        | Murata                       | GRM155R71H102KA01  |
| 5   | C3, C4,<br>C13, C15,<br>C16, C18 | 33pF   | Ceramic capacitor, 50V,<br>C0G               | 0402        | Murata                       | GRM1555C1H330JA01D |
| 3   | C6, C10,<br>C11                  | 1µF    | Ceramic capacitor, 6.3V,<br>X7R              | 0402        | Murata                       | GRM155R70J105KA12D |
| 3   | C7, C14,<br>C24                  | 10µF   | Ceramic capacitor, 16V,<br>X5R               | 0603        | Murata                       | GRM188C81C106MA73D |
| 3   | C8, C19,<br>C21                  | 100nF  | Ceramic capacitor, 25V,<br>X7R               | 0402        | Murata                       | GRM155R71E104KE14D |
| 1   | C9                               | 1nF    | Ceramic capacitor, 50V,<br>C0G               | 0603        | Murata                       | GRM188R71H102KA01D |
| 1   | C17                              | 22µF   | Ceramic capacitor, 10V,<br>X5R               | 1206        | Murata                       | GRM31CR71A226KE15L |
| 1   | C20                              | 1µF    | Ceramic capacitor, 100V,<br>X7R              | 1206        | Murata                       | GRM31CR72A105KA01L |
| 1   | C22                              | 100nF  | Ceramic capacitor, 100V,<br>X7R              | 0603        | Murata                       | GRM188R72A104KA35D |
| 1   | C23                              | 470nF  | Ceramic capacitor, 16V,<br>X7R               | 0603        | Murata                       | GRM188R61E474KA12D |
| 1   | C25                              | 10nF   | Ceramic capacitor, 50V,<br>X7R               | 0402        | Murata                       | GRM155R71H103KA88D |
| 4   | C26, C32,<br>C33, C34            | 2.2µF  | Ceramic capacitor, 100V, X7S                 | 1206        | TDK                          | C3216X7S2A225K     |
| 4   | C27, C28,<br>C29, C30            | 1µF    | Ceramic capacitor, 25V,<br>X6S               | 0402        | Murata                       | GRM155C81E105KE11D |
| 1   | C31                              | NS     |                                              |             |                              |                    |
| 5   | R1, R2,<br>R4, R5, R7            | 2.2kΩ  | Film resistor, 1%                            | 0402        | Yageo                        | RC0402JR-072K2L    |
| 6   | R8, R10,<br>R14, R15,<br>R16     | 1kΩ    | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-071KL     |
| 1   | R6                               | 1Ω     | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-071RL     |
| 2   | R3, R9                           | 100Ω   | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-07100RL   |
| 2   | R11, R24                         | 1MΩ    | Film resistor, 5%                            | 0402        | Yageo                        | RC0402JR-071ML     |
| 1   | R12                              | 470kΩ  | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-07470KL   |
| 1   | R13                              | 10kΩ   | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-0710KL    |
| 2   | R17, R18                         | 47kΩ   | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-0747KL    |
| 1   | R19                              | 402kΩ  | Film resistor, 1%                            | 0402        | Shenzhen<br>Bangdayuan       | 0402-F4023TCE      |
| 1   | R20, R22                         | 100kΩ  | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-07100KL   |
| 1   | R21                              | 10Ω    | Film resistor, 1%                            | 0402        | Yageo                        | RC0402FR-0710RL    |
| 1   | R23                              | 10Ω    | Film resistor, 1%                            | 0603        | LIZ                          | CR0603JA01R0G      |
| 3   | R25, R26,<br>R27                 | 10mΩ   | Sense resistor, 1%, 2W                       | 2512        | Yageo                        | PF2512FKF7W0R01L   |
| 1   | CON1                             | 2.54mm | 10-position, double-row, 2.54mm pitch header | DIP         | Any                          |                    |
| 1   | L1                               | 22µH   | Inductor, 369mΩ, 0.49A                       | SMD         | TDK                          | VLCF4018-220MR49-2 |
| 3   | M1, M2,<br>M3                    | 60V    | Dual N-channel MOSFET,<br>15A                | PQFN-<br>12 | Fairchild (On Semiconductor) | FDMD8260LET60      |
| 1   | M4                               | 100V   | N-channel MOSFET, 9.5A                       | DFN3x3      | Analog Power                 | AM7102NA           |



#### 4.2 EV6570-R-00B Bill of Materials (continued)

| Qty | Ref | Value    | Description                                                               | Package                 | Manufacturer | Manufacturer PN |
|-----|-----|----------|---------------------------------------------------------------------------|-------------------------|--------------|-----------------|
| 1   | U1  | NS       |                                                                           |                         |              |                 |
| 1   | Y1  | 10MHz    | Crystal oscillator                                                        | SMD-<br>3225            | NDK          | NX3225GA-10MHz  |
| 1   | U2  | MPQ2013A | Linear regulator, low I <sub>Q</sub> ,<br>40V, 150mA                      | QFN-8<br>(3mmx<br>3mm)  | MPS          | MPQ2013AGQ      |
| 1   | U3  | MP6570   | 3-phase BLDC controller<br>with high-accuracy<br>angular sensor, 55V, 10A | QFN-32<br>(4mmx<br>4mm) | MPS          | MP6570GR        |
| 1   | U4  | MPQ4569  | Synchronous buck converter, 75V, 0.3A                                     | QFN-10<br>(3mmx<br>3mm) | MPS          | MP4569GQ        |
| 1   | U5  | MP6530   | 3-phase BLDC motor pre-<br>driver, 60V                                    | QFN-28<br>(4mmx<br>4mm) | MPS          | MP6530GR        |



#### 4.3 PCB Layout



Figure 18: Top Silk and Top Layer



Figure 19: Bottom Layer and Bottom Silk



## **Section 5. Ordering Information**

The components of the evaluation kit can be purchased separately, depending on user needs.

| Part Number                      | Description                                                                                                 |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|
| EVKT-MP6570                      | Complete evaluation kit                                                                                     |
| Contents of EVKT-MP6570          |                                                                                                             |
| EV6570-R-00B                     | MP6570 evaluation board                                                                                     |
| eMotion System Communication Kit | Includes one USB to SPI/I <sup>2</sup> C/RS485 communication interface, one USB cable, and one ribbon cable |

Order directly from MonolithicPower.com or our distributors.



## **REVISION HISTORY**

| Revision # | <b>Revision Date</b> | Description     | Pages Updated |
|------------|----------------------|-----------------|---------------|
| 1.0        | 1/12/2022            | Initial Release | -             |

**Notice:** The information in this document is subject to change without notice. Users should warrant and guarantee that thirdparty Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below :

EVB-EP5348UI BQ25010EVM ISLUSBI2CKIT1Z ISL8002AEVAL1Z ISL91108IIA-EVZ ISL28022EVKIT1Z STEVAL-ISA008V1 DRI0043 NCP10671B05GEVB EVB-EN6337QA SAMPLEBOXILD8150TOBO1 AP63300WU-EVM AP61100Z6-EVM KITA2GTC387MOTORCTRTOBO1 AEK-MOT-TK200G1 EVLONE65W STEVAL-ILH006V1 STEVAL-IPE008V2 STEVAL-IPP001V2 STEVAL-ISA013V1 STEVAL-ISA067V1 STEVAL-ISQ002V1 TPS2306EVM-001 TPS2330EVM-185 TPS40001EVM-001 SECO-HVDCDC1362-15W-GEVB BTS7030-2EPA LTC3308AIV#WTRPBF TLT807B0EPV BTS71033-6ESA EV13N91A EV55W64A Si8285\_86v2-KIT NCP-NCV51752D2PAK3LGEVB ISL81807EVAL1Z EVALM7HVIGBTPFCINV4TOBO1 903-0300-000 902-0173-000 903-0301-000 ROA1286023/1 REFSHA35IMD111TSYSTOBO1 150037482 TDINV3000W50B-KIT NCP1681CCM1KWGEVB I7C08A-CC3-EVK-P2 I7C12A-CC3-EVK-P2 i7C20A-CC3-EVK-P2 APEK89303KET-01-T NCP1681MM500WGEVB SI83401BAA-KIT