

9 Lamp, 36V Precision White LED Driver

DESCRIPTION

The MP1528 is a step-up converter designed for driving up to nine (9) series White LEDs (LED) from a single cell Lithium-lon battery. It regulates the LED current and includes an analog input for varying the LED brightness.

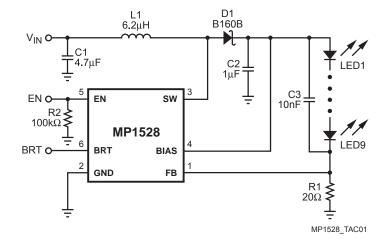
The MP1528 uses current limited, variable frequency architecture to regulate the LED current while maintaining high efficiency. The BIAS pin measures the output voltage and turns off the converter if an over voltage condition is present to prevent damage due to an open circuit condition. The LED current is measured with an external current sense resistor. The low 0.4V full-scale regulation threshold and 0.63 Ω power switch minimize power loss.

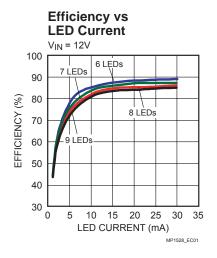
The MP1528 is available in an 8-pin MSOP, an 8-pin 2mm x 2mm QFN and a 6-pin 3mm x 3mm QFN packages.

EVALUATION BOARD REFERENCE

Board Number	Dimensions
EV1528DQ-00A	2.0" x 1.5" x 0.5"

FEATURES

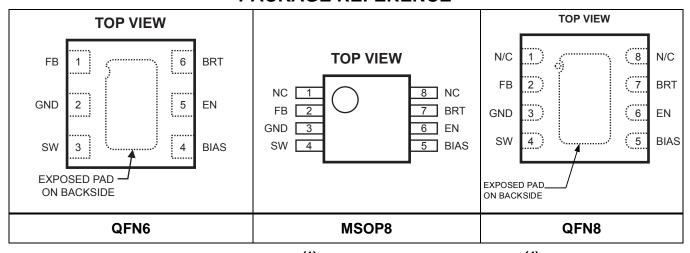

- Drives up to 9 Series White LEDs
- Integrated 0.63Ω Power MOSFET
- Low 0.4V Full-Scale Current Sense Threshold
- Over 20mA Output Current Capacity
- Analog and Digital PWM Brightness Control
- Open Load Shutdown
- Soft-Start
- Internal Current Limit
- Under Voltage Lockout
- Thermal Shutdown
- Available in 8-Pin MSOP, 8-pin 2mm x 2mm QFN and 6-Pin 3mm x 3mm QFN Packages


APPLICATIONS

- Handheld Computers
- PDAs
- PDA Phones
- Digital and Video Cameras
- Small LCD Displays

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	Top Marking	Temperature
MP1528DQ	QFN6 (3mm x 3mm)	A6YW	–40°C to +85°C
Part Number**	Package	Top Marking	Temperature
MP1528DK	MSOP8	1528D	–40°C to +85°C
Part Number***	Package	Top Marking	Temperature
MP1528DG	QFN8 (2mm x 2mm)	A6Y	–40°C to +85°C

^{*}For Tape & Reel, add suffix –Z (e.g. MP1528DQ–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP1528DQ–LF–Z)

PACKAGE REFERENCE

ABSOLUTE I	MAXIMUM	RATINGS (1)
-------------------	---------	-------------

Supply Voltage V _{BIAS} to GND	42V
V _{SW} to GND	0.5V to +42V
V _{EN} , V _{BRT} , V _{FB} to GND	0.3V to +6V
Continuous Power Dissipation	$(T_A = +25^{\circ}C)^{(2)}$
QFN6 (3mm x 3mm)	2.5W
QFN8 (2mm x 2mm)	1.6W
MSOP8	0.83W
Storage Temperature	65°C to +150°C

Recommended Operating Conditions (3) Supply Voltage V_{BIAS}......2.7V to 36V Operating Temperature......40°C to +85°C

Thermal Resistance ⁽⁴⁾	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
QFN6 (3mm x 3mm)	50	14 °	C/W
QFN8 (2mm x 2mm)	80	16 °	C/W
MSOP8	150	65 °	C/W

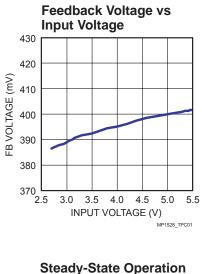
Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer board.

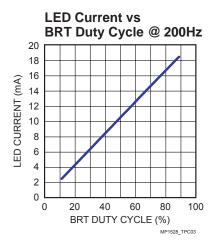
^{**}For Tape & Reel, add suffix –Z (e.g. MP1528DK–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP1528DK–LF–Z)

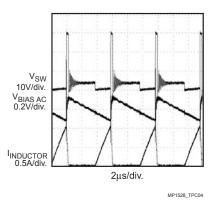
^{***}For Tape & Reel, add suffix –Z (e.g. MP1528DG–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP1528DG–LF–Z)

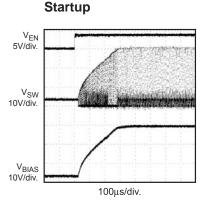
ELECTRICAL CHARACTERISTICS

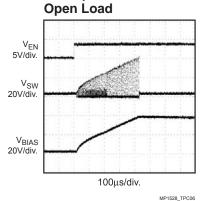

 $V_{\text{BIAS}} = V_{\text{EN}} = 5.0 \text{V}, V_{\text{BRT}} = 1.2 \text{V}, T_{\text{A}} = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.}$

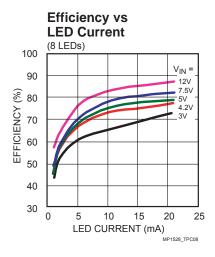
Parameter	Symbol	Condition	Min	Тур	Max	Units
Supply Current (Shutdown)		V _{EN} < 0.4V		1	3	μΑ
Supply Current (Quiescent)		V _{EN} > 2.0V, BRT = GND		650	800	μA
Minimum Off Time (Normal Operation)				330		ns
Minimum Off Time (Startup)				1.2		μs
Under Voltage Lock Out						
BIAS Under Voltage Lock Out	UVLO	V _{BIAS} Rising, 100mV Hysteresis	2.1		2.65	V
Enable						
EN High Threshold			0.8	1.2	1.5	V
EN Hysteresis				60		mV
EN Input Leakage Current					150	nA
Open Load Shutdown						
Threshold		Measured at BIAS		40		V
Bias Current		$V_{BIAS} = 20V, V_{EN} < 0.4V$			5	μA
Bids Guiterit		$V_{BIAS} = 40V, V_{EN} < 0.4V$		70	100	μA
Feedback Comparator						
FB Regulation Threshold	V_{FB}	V _{BRT} = 1.2V	0.38	0.40	0.42	V
FB Hysteresis				10		mV
FB Input Leakage Current		V _{FB} = 0.2V	-150	-80		nA
PWM Mode Using BRT						
Output-Off Threshold			0.18		0.27	V
BRT Input Leakage Current		V _{BRT} = 0.6V	-100			nA
BRT Full-Scale Threshold					1.2	V
Output Switch						
SW On-Resistance	R _{ON}	V _{BIAS} = 5.0V		0.63		Ω
SW Current Limit				950		mA
Thermal Shutdown				160		°C

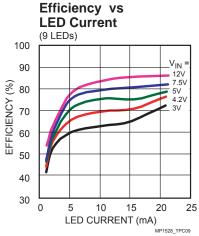



TYPICAL PERFORMANCE CHARACTERISTICS


Circuit on front page, $V_{IN} = 3.6V$, 9 LEDs, $I_{LED} = 20mA$, $V_{BRT} = 1.2V$, $T_A = +25$ °C, unless otherwise noted.






MP1528 TPC05

Startup into an

Efficiency vs **LED Current** (6 LEDs) 100 V_{IN} = 90 - 12V 7.5V _5V EFFICIENCY (%) 70 60 50 50 40 30 10 15 20 25 LED CURRENT (mA)

PIN FUNCTIONS

	Pin #		Name	Description
QFN6	MSOP8	QFN8	Name	Description
1	2	2	FB	Feedback Input. The MP1528 regulates the voltage across the current sense resistor between FB and GND. Connect a current sense resistor from the bottom of the LED string to GND and connect the bottom of the LED string to FB. The regulation threshold is set at 0.4V for $V_{\text{BRT}} \geq 1.2V$.
2	3	3	GND	Ground.
3	4	4	SW	Power Switch Output. SW is the drain of the internal MOSFET switch. Connect the power inductor and output rectifier to SW, which can swing between GND and 42V.
4	5	5	BIAS	Internal Power Input. BIAS powers the internal circuitry and measures the output voltage for open circuit protection. Connect BIAS to the output at the top of the LED string. If open circuit protection is not required, BIAS may be connected to the input source to reduce power consumption of the MP1528.
5	6	6	EN	Regulator On/Off Control Input. A high voltage applied to EN turns on the converter; a low voltage turns it off. When not used, connect EN to the input source for automatic startup. If EN is driven over $6V$, place a $100k\Omega$ resistor in series with EN. Never leave EN floating.
6	7	7	BRT	Analog or PWM Input for Controlling LED Brightness. When used in analog mode, apply a DC voltage of 0.27V to 1.2V. This input voltage is attenuated by 1/3 to set the voltage across the sense resistor at FB. Maximum brightness (20mA) occurs with an application of 1.2V. To control the brightness in PWM mode, apply a PWM signal with a minimum voltage less than 0.18V and a maximum voltage greater than 1.2V (when a voltage less than 0.18V is applied to this pin, the output switch is turned off). The regulator operates at maximum brightness when more than 1.2V is applied. The frequency of the PWM signal must be between 100Hz to 400Hz.
	1, 8	1, 8	NC	No Connect

OPERATION

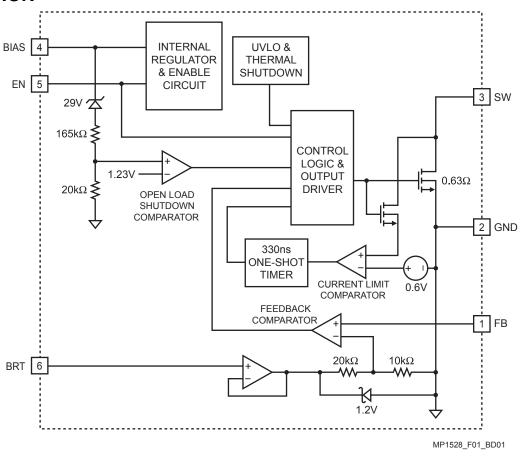


Figure 1—Functional Block Diagram

The MP1528 utilizes a constant off-time control scheme. For maximum brightness, the BRT pin is biased at or above 1.2V. Its voltage is routed through the unity gain buffer whose output is clamped at 1.2V. A resistor divider from the buffer to the inverting input of the feedback comparator divides the BRT voltage by three to set the current sense threshold. If the FB pin voltage is lower than this threshold the power MOSFET is turned on. The MOSFET and inductor currents increase until the current limit comparator trips at 950mA, turning off the MOSFET for at least 330ns. At the end of the 330ns, if the FB pin is still lower than the current sense threshold, the MOSFET is turned on again.

Analog Brightness Adjust

Analog brightness adjustments are accomplished by applying a voltage between 0.27V to 1.2V on the BRT pin.

PWM Brightness Adjust

PWM brightness adjustments are accomplished by driving the BRT pin with a digital signal whose low voltage is below 0.18V and high voltage is greater than 1.2V. A voltage below 0.18V forces the power MOSFET to turn off. A voltage greater than 1.2V will cause the FB pin to regulate at 0.4V.

Open Load Shutdown

Open Load Shutdown is implemented by connecting the BIAS pin to the top of the LED string. In the fault condition where the connection to the LED is open, V_{OUT} will rise up, as the FB pin has no voltage. Once V_{OUT} exceeds 40V, the MP1528 will cease operation until the EN pin is cycled off and on. Connecting the BIAS pin to the input will disable Open Load Shutdown.

APPLICATION INFORMATION

Setting the LED Current

The LED current is set by the voltage at BRT (V_{BRT}) and the sense resistor (R1) at FB. The V_{BRT} range for adjusting the LED current is 0.27V to 1.2V. Over this range, the LED current can be calculated as:

$$I_{LED} = \frac{V_{BRT}}{3 \times R1}$$

Voltages greater than 1.2V can be applied to BRT. Use 1.2V in the equation if $V_{BRT} \ge 1.2V$ or the BRT pin is left open.

For example, the LED current is set to 20mA if $V_{BRT} \ge 1.2V$ (or left open) and R1 = 20 Ω .

Capacitor Selection

A $4.7\mu F$ to $10\mu F$ ceramic input capacitor (C1) and a $0.47\mu F$ to $1\mu F$ ceramic output capacitor (C2) are recommended for most applications. A capacitor (C3, typically 1nF to 10nF) in parallel with the LED string improves stability, input ripple and output ripple, especially when large inductance values (10 μH or above) are used. For the best stability over a wide temperature range, use capacitors with a X5R or X7R dielectric.

Inductor Selection

The MP1528 has a 950mA inductor current limit and can drive up to 9 LEDs at 20mA. Inductance values (for L1) from 4.7µH to 22µH

will work as well. 6.2µH or 6.8µH is a good

choice for high efficiency and small size. To prevent saturation, use an inductor with a saturation current rating that is higher than the device current limit.

Diode Selection

The MP1528's high switching frequency demands a high speed rectifier (D1) for optimum efficiency. A Schottky diode is recommended due to its fast recovery time and low forward voltage drop. Ensure the diode's average and peak current ratings exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed the output voltage.

Layout

Careful PC board layout is required due to fast switching. All components must be placed as close to the IC as possible. Keep the path between the inductor L1, diode D1, and output capacitor C2 extremely short for minimal noise and ringing. The feedback components such as the sense resistor R1 must be kept close to the FB pin to prevent noise injection on the FB pin trace. The ground return of C1 and C2 should be tied close to the GND pin. See the MP1528 demo board layout for reference.

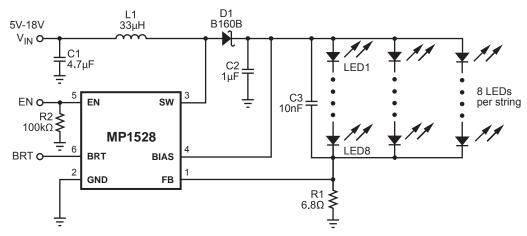
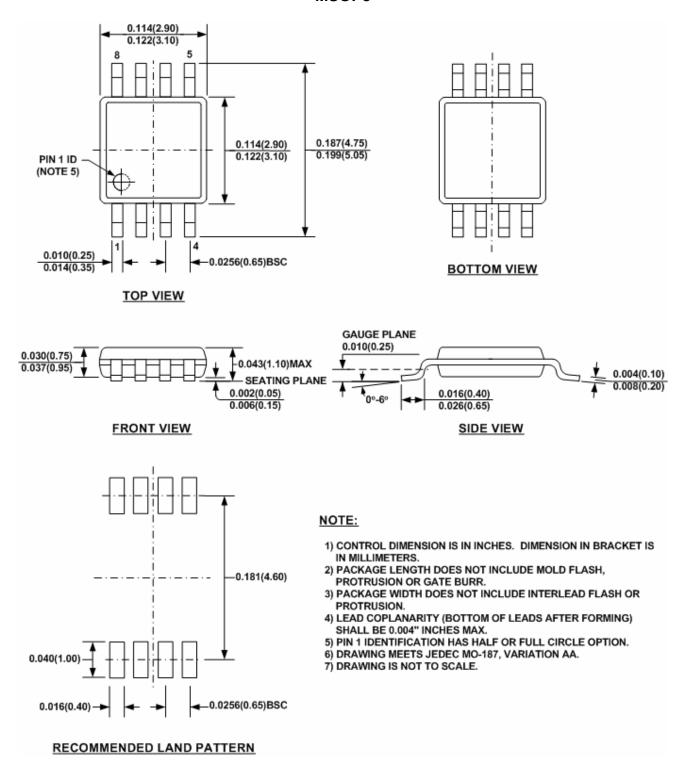
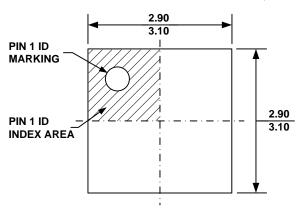
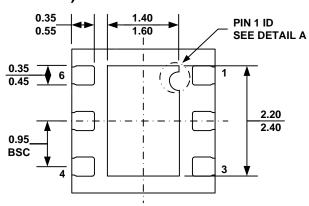
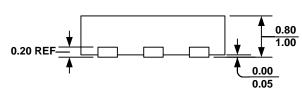
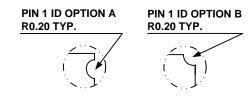



Figure 2—Driving 3 Strings of 8 LEDs in Series (60mA Total Current)

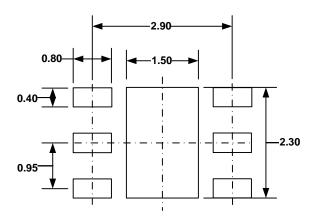

PACKAGE INFORMATION


MSOP8

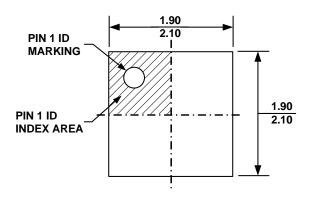

QFN6 (3mm x 3mm)

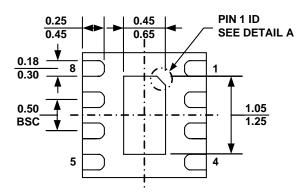


TOP VIEW

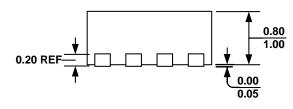

BOTTOM VIEW

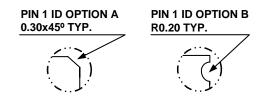
DETAIL A


RECOMMENDED LAND PATTERN

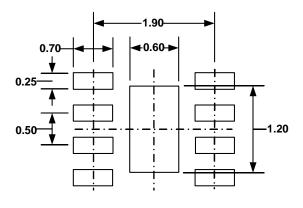

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
- 4) JEDEC REFERENCE IS MO-229, VARIATION VEEA-2.
- 5) DRAWING IS NOT TO SCALE.


QFN8 (2mm x 2mm)



TOP VIEW


BOTTOM VIEW

SIDE VIEW

DETAIL A

RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
- 4) DRAWING CONFORMS TO JEDEC MO-229, VARIATION VCCD-3.
- 5) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Drivers category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below:

LV5235V-MPB-H LV5235VZ-TLM-H AP5726WUG-7 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AP5725FDCG-7

AP5726FDCG-7 SLG7NT4082V SLG7NT4082VTR BD1604MVV-E2 MAX16840ATB+ CAT4004BHU2-GT3 TLE4242EJ

CAV4016HV6-T2 IS31LT3172-GRLS4-TR MP23701GQEU-P IS32LT3174-GRLA3-TR ZXLD1374QESTTC NCV78825DQ0R2G

MP4425AGQB-P MP3367GR-P MPQ3369GR-P MPQ7220GF-AEC1-P MP3362GJ-Z DIO5662ST6 IS31BL3508A-TTLS2-TR

DIO5661TST6 AL8853EV1 AL1666+AL8116+AL5822EV1 AL8116EV1 NJW4617DL3-TE1 BD2802GU-E2 BD6583MUV-E2

LV52207NXA-VH NCL30486B2DR2G NCL30488B4DR2G NCV78763MW4AR2G TLD2132-1EP TLD2331-3EP IS31FL3236-TQLS2-TR TLD700216ESXUMA1 LM36273YFFR TPS922054DRRR TPS92519QDAPRQ1 XDPL8221 TLD5190QV TLD5190QU ICL5102HV TLD5191ESXUMA1 RT8575GQW