MP1925

DESCRIPTION

The MP1925 is a high-frequency, half-bridge, N -channel power MOSFET driver. Its low-side and high-side driver channels are controlled independently and matched with less than 5ns of time delay. Under-voltage lockout (UVLO) on both the high-side and low-side supplies forces the outputs low in the event that the supply is insufficient. The integrated bootstrap diode reduces the external component count.

The MP1925 is available in a QFN-8 (4mmx4mm) package.

FEATURES

- Drives an N-Channel MOSFET Half-Bridge
- 115V Bootstrap Voltage Range
- On-Chip Bootstrap Diode
- Typical Propagation Delay of 20ns
- Gate Driver Matching of Less than 5ns
- Drives a $2.2 n F$ Load with $15 n s$ of Rise Time and 10ns of Fall Time at 12V VDD
- TTL-Compatible Input
- Quiescent Current of Less than $150 \mu \mathrm{~A}$
- UVLO for Both High-Side and Low-Side Gate Drivers
- Available in a QFN-8 (4mmx4mm) Package

APPLICATIONS

- Motor Drivers
- Telecom Half-Bridge Power Supplies
- Avionics DC/DC Converters
- Two-Switch Forward Converters
- Active Clamp Forward Converters

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP1925HR	QFN-8 (4mmx4mm)	See Below

* For Tape \& Reel, add suffix -Z (e.g. MP1925HR-Z)

For RoHS compliant packaging, add suffix -LF (e.g. MP1925HR-LF-Z)
TOP MARKING

MPSYWW

MP1925
LLLLLL

MPS: MPS prefix
Y: Year code
WW: Week code
MP1925: Part number
LLLLLL: Lot number

PACKAGE REFERENCE

PIN FUNCTIONS

Pin \#	Name	Description
1	VDD	Supply input. VDD supplies power to the internal circuitry. Place a decoupling capacitor to ground close to VDD to ensure a stable and clean supply.
2	BST	Bootstrap. BST is the positive power supply for the internal floating high-side MOSFET driver. Connect a bypass capacitor between BST and SW.
3	DRVH	Floating driver output.
4	SW	Switching node.
5	INH	Control signal input for the floating driver.
6	INL	Control signal input for the low-side driver.
7	VSS, exposed pad	Chip ground. Connect the exposed pad to VSS for proper thermal operation.
8	DRVL	Low-side driver output.

ABSOLUTE MAXIMUM RATINGS (1)Supply voltage (V_{DD}) -0.3 V to +18 VSW voltage (V_{sw})-5.0V to +105 VSW voltage (V_{sw})...........-25V(<100ns) to +105 VBST voltage ($\mathrm{V}_{\text {BST }}$)..................... -0.3 V to +115 VBST voltage ($\mathrm{V}_{\text {BST }}$)......... -15 V (<100ns) to +115 V
BST to SW -0.3 V to +18 V
DRVH to SW ${ }^{(2)}$ -0.3 V to 18.3 V
DRVH to SW ${ }^{(2)}$ $-5 \mathrm{~V}(<100 \mathrm{~ns})$ to 18.3 V
DRVH to VSS
-0.3 V to $(\mathrm{BST}-\mathrm{SW})+0.3 \mathrm{~V}$
DRVH to VSS
.................-15V (<100ns) to (BST-VSS)+0.3V
DRVL to VSS ${ }^{(2)}$ -0.3 V to 18.3 V
DRVL to VSS ${ }^{(2)}$ $-5 \mathrm{~V}(<100 \mathrm{~ns})$ to 18.3 V
INH/NL to VSS -0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
INH/INL to VSS
........................-5V(<100ns) to (VDD + 0.3V)
All other pins -0.3 V to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Continuous power dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{(3)}$QFN-8 ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)2.66W
Junction temperature $150^{\circ} \mathrm{C}$
Lead temperature $260^{\circ} \mathrm{C}$
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Recommended Operating Conditions ${ }^{(4)}$
Supply voltage (VDD) 8.0 V to 15.0 V
SW voltage (Vsw) -1.0 V to +100 VSW slew rate$<50 \mathrm{~V} / \mathrm{ns}$
Operating junction temp $\left(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}\right)$$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Thermal Resistance ${ }^{(5)} \quad \boldsymbol{\theta}_{J A} \quad \boldsymbol{\theta}_{J C}$
QFN-8 (4mmx4mm)................ 47 7 ... ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1) Exceeding these ratings may damage the device. The repetitive pulse rating is guaranteed for period of 100 ns or less with a maximum repetition rate of 1000 kHz when VDD is 15 V or less.
2) DRVH and DRVL are outputs pins, cannot be connected to external supply voltage.
3) The maximum allowable power dissipation is a function of the maximum junction temperature $T_{J}(M A X)$, the junction-toambient thermal resistance θ_{JA}, and the ambient temperature T_{A}. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $\mathrm{PD}_{\mathrm{D}}(\mathrm{MAX})=\left(\mathrm{T}_{J}\right.$ $\left.(\mathrm{MAX})-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
4) The device is not guaranteed to function outside of its operating conditions.
5) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

$V_{D D}=V_{B S T}-V_{S W}=12 \mathrm{~V}, V_{S S}=V_{S W}=0 \mathrm{~V}$, no load at DRVH and DRVL, $T_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical value is tested at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Supply Currents						
VDD quiescent current	IdDQ	$\mathrm{INL}=\mathrm{INH}=0$		110	150	$\mu \mathrm{A}$
VDD operating current	IdDo	$\mathrm{fsw}=500 \mathrm{kHz}$		9		mA
Floating driver quiescent current	IBSTQ	$\mathrm{INL}=\mathrm{INH}=0$		60	90	$\mu \mathrm{A}$
Floating driver operating current	IBSto	$\mathrm{fsw}=500 \mathrm{kHz}$		8		mA
Leakage current	ILk	BST $=$ SW $=100 \mathrm{~V}$		0.05	1	$\mu \mathrm{A}$
Inputs						
INL/INH high				2	2.4	V
INL/INH low			1	1.4		V
INL/INH internal pull-down resistance	Rin			185		k Ω
Under-Voltage Protection						
VDD rising threshold	VdDR		6	6.8	7.2	V
VDD hysteresis	VDDH			0.4		V
BST-SW rising threshold	$V_{\text {BSTR }}$		5.8	6.5	6.9	V
BST-SW hysteresis	Vbsth			0.4		V
Bootstrap Diode						
Bootstrap diode VF at 100 $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{F} 1}$			0.5		V
Bootstrap diode VF at 100mA	$\mathrm{V}_{\mathrm{F} 2}$			0.95		V
Bootstrap diode dynamic R	R ${ }_{\text {d }}$	At 100mA		2.5		Ω
Low-Side Gate Driver						
Low-level output voltage	Voll	$\mathrm{lo}=100 \mathrm{~mA}$		0.1		V
High-level output voltage to rail	VонL	$\mathrm{lo}=-100 \mathrm{~mA}$		0.19		V
Source current ${ }^{(6)}$	Іонь	$V_{\text {DRVL }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$		3		A
		$V_{\text {DRVL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=16 \mathrm{~V}$		4.7		A
Sink current ${ }^{(6)}$	loll	$\mathrm{V}_{\text {DRVL }}=\mathrm{V}_{\text {DD }}=12 \mathrm{~V}$		4.5		A
		$\mathrm{V}_{\mathrm{DRVL}}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}$		6		A
Floating Gate Driver						
Low-level output voltage	Volh	$\mathrm{lo}=100 \mathrm{~mA}$		0.1		V
High-level output voltage to rail	Vонн	$\mathrm{I}_{0}=-100 \mathrm{~mA}$		0.19		V
Source current ${ }^{(6)}$	Іонн	$\mathrm{V}_{\mathrm{DRVH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$		2.6		A
		$V_{\text {DRVH }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=16 \mathrm{~V}$		4		A
Sink current ${ }^{(6)}$	loth	$\mathrm{V}_{\text {DRVH }}=\mathrm{V}_{\text {DD }}=12 \mathrm{~V}$		4.5		A
		$\mathrm{V}_{\text {DRVH }}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}$		5.9		A

ELECTRICAL CHARACTERISTICS (continued)

$V_{D D}=V_{B S T}-V_{S W}=12 \mathrm{~V}, V_{S S}=V_{S W}=0 \mathrm{~V}$, no load at DRVH and DRVL, $T_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical value is tested at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Switching Specification - Low-Side Gate Driver						
Turn-off propagation delay INL falling to DRVL falling	tblff			20		ns
Turn-on propagation delay INL rising to DRVL rising	tolrr			20		
DRVL rise time		$\mathrm{CLL}^{2}=2.2 \mathrm{nF}$		15		ns
DRVL fall time		$\mathrm{C}_{\mathrm{L}}=2.2 \mathrm{nF}$		10		ns
Switching Specification - Floating Gate Driver						
Turn-off propagation delay INH falling to DRVH falling	tohfF			20		ns
Turn-on propagation delay INH rising to DRVH rising	tohrr			20		ns
DRVH rise time		$\mathrm{CLL}_{\mathrm{L}}=2.2 \mathrm{nF}$		15		ns
DRVH fall time		$\mathrm{C}_{\mathrm{L}}=2.2 \mathrm{nF}$		10		ns
Switching Specification - Matching						
Floating driver turn-off to low-side driver turn-on ${ }^{(6)}$	tmon			1	5	ns
Low-side driver turn-off to floating driver turn-on ${ }^{(6)}$	tmoff			1	5	ns
Minimum input pulse width that changes the output ${ }^{(6)}$	tpw				50	ns
Bootstrap diode turn-on or turnoff time ${ }^{(6)}$	$t_{B S}$			10		ns
Thermal shutdown				150		${ }^{\circ} \mathrm{C}$
Thermal shutdown hysteresis				25		${ }^{\circ} \mathrm{C}$

Note:
6) Guaranteed by design.

TIMING DIAGRAM

Figure 1: Timing Diagram

TYPICAL CHARACTERISTICS

$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Iddo Operation Current vs. Frequency

Low-Level Output Voltage vs. Temperature

Bootstrap Diode I-V Characteristic

$\mathrm{I}_{\mathrm{BSto}}$ Operation Current vs.
Frequency

Under-Voltage Lockout
Threshold vs. Temperature

Quiescent Current vs.
Voltage

High-Level Output
Voltage vs. Temperature

Under-Voltage Lockout Hysteresis vs. Temperature

Propagation Delay vs. Temperature

TYPICAL CHARACTERISTICS (continued)

$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{Sw}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Sink Current vs.
V_{DD} Voltage

Sink Current vs.
Output Voltage
$V_{D D}=12 \mathrm{~V}$

Source Current vs.
$V_{D D}$ Voltage

Source Current vs. Output Voltage
$V_{D D}=12 \mathrm{~V}$

TYPICAL PERFORMANCE CHARACTERISTICS

$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{Sw}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Turn-On Propagation Delay
Turn-Off Propagation Delay
Gate Drive Matching $\mathrm{t}_{\text {MOFF }}$

Drive Rise Time
2.2nF load

Drive Fall Time
2.2nF load

FUNCTIONAL BLOCK DIAGRAM

Figure 2: Functional Block Diagram

APPLICATION INFORMATION

The input signals of INH and INL can be controlled independently. If both INH and INL control the high-side and low-side MOSFETs of the same bridge, set a sufficient dead time

Shoot-Through
 (No Dead Time)

INH \qquad
between INH and INL low (and vice versa) to avoid shoot-through (see Figure 3). Dead time is defined as the time interval between INH low and INL low.

Figure 3: Shoot-Through Timing Diagram

REFERENCE DESIGN CIRCUITS

Half-Bridge Converter

The MP1925 drives the MOSFETS via alternating signals with dead time in half-bridge converter topology. The input voltage can rise up
to 100 V with the alternating signals (INT and INL) coming from the PWM controller (see Figure 4).

Figure 4: Half-Bridge Converter

Two-Switch Forward Converter

In two-switch forward converter topology, both MOSFETs turn on and off simultaneously. The input signals (INH and INL) come from a PWM controller that senses the output voltage and output current during current mode control.

The Schottky diodes clamp the reverse swing of the power transformer, and must be rated for the input voltage. The input voltage can rise up to 100V (see Figure 5).

Figure 5: Two-Switch Forward Converter

Active Clamp Forward Converter

In active clamp forward converter topology, the MP1925 drives the MOSFETs with alternating signals. The high-side MOSFET, in conjunction with $\mathrm{C}_{\text {reset, }}$, is used to reset the power transformer without loss.

This topology is optimal for running at duty cycles exceeding 50%. The device may not be able to run at 100 V in this topology (see Figure 6).

Figure 6: Active Clamp Forward Converter

PACKAGE INFORMATION

QFN-8 (4mmx4mm)

TOP VIEW

SIDE VIEW

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX. 4) JEDEC REFERENCE IS MO-220. 5) DRAWING IS NOT TO SCALE.

Revision History

Revision \#	Revision Date	Description	Pages Updated
1.01	$07 / 24 / 2020$	Update transient negative Absolute Maximum Ratings	Page 3

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Monolithic Power Systems manufacturer:
Other Similar products are found below :

```
89076GBEST 00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP
5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-
UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP
00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000
0207400000 01312 0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P
6131-218-17149P 6131-220-21149P 6131-260-2358P
```

