

The Future of Analog IC Technology ${ }^{\bullet}$

DESCRIPTION

The MP24830 is a 90V white LED driver suitable for either step-down or inverting step-up/down applications. It supports a wide input range with excellent load and line regulation. Its programmable current limit provides customized applications with a wide power range. Current mode operation provides a fast transient response and eases loop stabilization. Fault condition protection includes thermal shutdown, cycle-by-cycle peak-current limiting, open-string protection, and output short-circuit protection.

The MP24830 incorporates both DC and PWM dimming onto a single control pin. The separate input reference ground pin allows for direct enable and/or dimming control for a positive-tonegative power conversion.

The MP24830 requires a minimal number of readily-available external components. It is available in 14-pin SOIC and QFN packages.

FEATURES

- Programmable Maximum Output Current
- Unique Step-Up/Down Operation (BuckBoost Mode)
- Wide 4.5V-to-90V Operating Input Range for Step-Down Applications (Buck Mode)
- Adjustable Switching Frequency
- Analog and PWM Dimming
- 0.2V Reference Voltage
- $10 \mu \mathrm{~A}$ Shutdown Mode
- No Minimum LED Quantity Required
- Stable with Low ESR Output Ceramic Capacitors
- Cycle-by-Cycle Over-Current Protection
- Thermal Shutdown Protection
- Open-String Protection
- Output Short-Circuit Protection
- Available in 14-Pin SOIC and QFN Packages

APPLICATIONS

- General LED Illumination
- Automotive LED Lighting
- LCD Backlight

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.
"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number	Package	Top Marking
MP24830HS*	SOIC-14	MP24830
MP24830HL** 2	QFN-14	24830

> * For Tape \& Reel, add suffix -Z (e.g. MP24830HS-Z);
> For RoHS Compliant Packaging, add suffix -LF (e.g. MP24830HS-LF-Z)
> ** For Tape \& Reel, add suffix -Z (e.g. MP24830HL-Z);
> For RoHS Compliant Packaging, add suffix -LF (e.g. MP24830HL-LF-Z)

PACKAGE REFERENCE

ELECTRICAL CHARACTERISTICES

Parameters	Symbol	Condition	Min	Typ	Max	Units
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 90 \mathrm{~V}$	0.192	0.2	0.208	V
Feedback Current	$\mathrm{I}_{\text {fB }}$	$\mathrm{V}_{\mathrm{FB}}=0.22 \mathrm{~V}$	-50		50	nA
Under Voltage Lockout Threshold Rising	$\mathrm{V}_{\text {UlLoth }}$		3.7	4.1	4.4	V
Under Voltage Lockout Threshold Hysteresis	$\mathrm{V}_{\text {UVLOHY }}$			160		mV
Operation Current (Quiescent)	I_{Q}	$\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.25 \mathrm{~V}$		0.8	1.1	mA
Supply Current (Quiescent) at EN Off	$\mathrm{I}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		10	23	$\mu \mathrm{A}$
Gate Driver Pull-Up Impedance	Rpull up			25		Ω
Gate Driver Pull-Down Impedance	$\mathrm{R}_{\text {PULL Down }}$			7		Ω
Gate Driver Output-High to SW	Voh-sw	$\mathrm{I}_{\mathrm{DR}}=10 \mathrm{~mA}$	5.6	5.8		V
Gate Driver Output-Low to SW	Vol-sw	$\mathrm{I}_{\mathrm{DR}}=10 \mathrm{~mA}$		0.1	0.3	V
DIMO Source Current	İIMOSC			0.05		A
DIMO Sink Current	Itimosk			0.05		A
DIMO Output High	$\mathrm{V}_{\text {DIMон }}$	$\mathrm{I}_{\mathrm{DR}}=10 \mathrm{~mA}$	4.6	5		V
DIMO Output Low	$\mathrm{V}_{\text {DIMOL }}$	$\mathrm{I}_{\mathrm{DR}}=10 \mathrm{~mA}$		0.4	0.5	V
Oscillator Frequency	$\mathrm{f}_{\text {sw }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0.15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=100 \mathrm{k} \Omega \end{aligned}$	145	215	265	kHz
Min. Oscillator Frequency	$\mathrm{f}_{\text {swmin }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0.15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=380 \mathrm{k} \Omega \\ & \hline \end{aligned}$	30	50	75	kHz
Max. Oscillator Frequency	$\mathrm{f}_{\text {SwMAX }}$	$\mathrm{V}_{\mathrm{FB}}=0.15 \mathrm{~V}, \mathrm{R}_{\text {SET }}$ open	245	365	465	kHz
Foldback Frequency	$\mathrm{f}_{\text {SWFB }}$	$\begin{aligned} & V_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OVP}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=100 \mathrm{k} \Omega \end{aligned}$		30		kHz
GM of Error Amplifier	GM			80		us
Error Amplifier Output Current	$\mathrm{l}_{\text {Oamp }}$			40		$\mu \mathrm{A}$
Current Sensing Gain	$\mathrm{G}_{\text {cs }}$			20		
High-Side Current Limit Threshold	$\mathrm{V}_{\text {cLth }}$			45		mV
Min. Off-Time	$\mathrm{t}_{\text {OFFmin }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0.19 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=100 \mathrm{k} \Omega \end{aligned}$		280		ns
Min. On-Time ${ }^{(5)}$	t_{ON}			100		ns
EN Input Current	$\mathrm{l}_{\text {ENIN }}$	$\mathrm{V}_{\text {EN }}=3.3 \mathrm{~V}$		3.7		$\mu \mathrm{A}$
EN OFF Threshold (w/Respect to INGND)	$\mathrm{V}_{\text {Enoffth }}$	$\mathrm{V}_{\text {EN }}$ Falling	0.4			V
EN ON Threshold (w/Respect to INGND)	$\mathrm{V}_{\text {ENONTH }}$	$\mathrm{V}_{\text {EN }}$ Rising			1.4	V
Min. DIM Threshold	$V_{\text {dimthl }}$	$\mathrm{V}_{\mathrm{FB}}=0.2 \mathrm{~V}$	0.6	0.7	0.8	V
Max. DIM Threshold	$\mathrm{V}_{\text {DIмтн }}$	$\mathrm{V}_{\mathrm{FB}}=0.2 \mathrm{~V}$	1.55	1.75	1.95	V
LED-Short Threshold for Immediate LatchOff				600		mV
LED Short Delay for Latch-Off				450		$\mu \mathrm{s}$
LED Short Threshold				300		mV
Thermal Shutdown ${ }^{(5)}$	$\mathrm{T}_{\text {TSHD }}$			160		${ }^{\circ} \mathrm{C}$
Open LED OV Threshold	Vovpth		1.1	1.2	1.3	V
Open LED OV Hysteresis	V ${ }_{\text {OVPHY }}$			50		mV

Notes:

5) Guaranteed by design.

PIN FUNCTIONS

SOIC14	Name	Description
1	DR	Driver Output. Connect it to the high-side MOSFET gate.
2	CS	High-Side Current Sense. For over-current protection and current-mode control.
3	VDD	Supply Voltage. Operates from a 4.5 V -to- 85 V unregulated input (with respect to VSS). Needs C1 to prevent large input voltage spikes.
4	INGND	Input Ground Reference. Reference for the EN/DIM signal.
5	DIM	Dimming Command Input. Selects for DC or PWM dimming. When the DIM pin voltage (with respect to INGND) rises from 0.6 V to 1.95 V , the LED current changes from 0% to 100% of the maximum LED current. For PWM dimming, apply a $100 \mathrm{~Hz}-\mathrm{to}-2 \mathrm{kHz}$ square wave with an amplitude greater than 2 V . For combined analog and PWM dimming, apply a $100 \mathrm{~Hz}-\mathrm{to}-2 \mathrm{kHz}$ square wave signal with amplitude from 0.6 V to 1.95 V .
6	EN	Enable.
7	RSET	Frequency Set. Connect a resistor to VSS to set the switching frequency, and a 1 nF capacitor to VSS to bypass the noise. Leaving this pin open for the 350 kHz default operating frequency.
8	OVP	Over-Voltage Protection. Use a voltage divider to program OVP threshold. When the OVP pin voltage reaches the 1.2 V shutdown threshold, the switch turns off and recovers when the OVP voltage decreases sufficiently. When the OVP pin voltage (with respect to VSS) falls below 0.4 V and the FB pin voltage falls below 0.1 V , the chip interprets this as a short circuit and the operating frequency will fold back. Program the OVP pin voltage from 0.4 V to 1.2 V for normal operation.
9	COMP	Error Amplifier Output. Connect a 1 nF or larger capacitor on COMP and an RC network from FB to COMP to improve the stability and to provide soft-start and PWM dimming.
10	FB	LED Current Feedback Input. A current-sensing resistor between FB and VSS provides circuit feedback. The regulation voltage is 0.2 V . Short-circuit protection triggers If the FB voltage exceeds 300 mV for 450μ s or the FB voltage exceeds 600 mV .
11	DIMO	DIM Output. Provides for accurate PWM diming control following DIM logic. Connect to the gate of the external dimming MOSFET. Leave floating if dimming accuracy is not a concern.
12	VSS	Power Return. Connect to the circuit's point of lowest potential, which is typically the anode of the Schottky rectifier. Acts as the voltage reference for the regulated output voltage, and layout requires extra consideration. Place this node outside of the D1-to-C1 ground path to prevent switching current spikes from inducing voltage noise. Connect the exposed pad to this pin.
13	BST	Bootstrap. Connect a capacitor between the SW and BST pins to form a floating supply across the power switch driver. Use a 100 nF or larger ceramic capacitor to provide sufficient energy to drive the power switch's gate above the supply voltage.
14	SW	Switch. Connect to the source of the external MOSFET

TYPICAL PERFORMANCE CHARACTERISTICS

$V_{E N}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 85 V , $\mathrm{I}_{\mathrm{OUT}}=0.5 \mathrm{~A}, \mathrm{~L}=47 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Efficiency vs.
Input Voltage

Buck ILED vs.
PWM Dimming

Efficiency vs. String Voltage

LED STRING VOLTAGE (V)

Buck Efficiency vs.
String Voltage

ILED Line Regulation vs.

Buck Ited Line Regulation vs. V_{IN}

Buck-Boost lled vs.
Analog Dimming

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 85 V , $\mathrm{I}_{\mathrm{OUT}}=0.5 \mathrm{~A}, \mathrm{~L}=47 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
$\mathrm{V}_{\text {Cs }}$ vs. Temperature

VBSt vs. Temperature

Buck ILED vs.
Analog Dimming

Fsw vs. Temperature
V_{FB} vs. Temperature

I_{Q} Current vs. Temperature

Buck-Boost Steady State
$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}, 3 \mathrm{LED}$, $\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A}$

Input Voltage vs. Temperature

Buck Steady State
$\mathrm{V}_{\text {IN }}=14 \mathrm{~V}, 1 \mathrm{LED}$, IOUT $=1 \mathrm{~A}$

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{\text {EN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$ to 85 V , $\mathrm{I}_{\mathrm{OUT}}=0.5 \mathrm{~A}, \mathrm{~L}=47 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Buck-Boost
PWM Dimming

Buck-Boost
Power Ramp Up

Buck-Boost
Open LED Protection

Buck-Boost
Analog Dimming
$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, 3$ LED, $\mathrm{V}_{\text {DIM }}=0.9 \mathrm{~A}$

Buck-Boost

Enable Power Up
$\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$, 3LED

$40 \mu \mathrm{~s} / \mathrm{div}$.

Buck-Boost
Short LED Protection

Buck PWM Dimming
$V_{\text {IN }}=25 \mathrm{~V}, 3 \mathrm{LED}, \mathrm{F}_{\text {DIM }}=200 \mathrm{~Hz} / 50 \%$

Buck-Boost
Enable Power Down

$20 \mu \mathrm{~s} / \mathrm{div}$.

FUNCTIONAL BLOCK DIAGRAM

Figure 1: Functional Block Diagram

OPERATION

The MP24830 is a current-mode regulator. The error amplifier (EA) output voltage is proportional to the peak inductor current.
At the beginning of a cycle, M1 is off. The EA output voltage exceeds the current sense amplifier output, and the current comparator's output is low. The rising edge of the CLK signal (its frequency equals the switching frequency) triggers the RS flip-flop. The driver turns on the external MOSFET, thus connecting the SW pin and inductor to the input supply.
The current-sense amplifier (CSA) senses the increasing inductor current. The PWM comparator compares the sum of the ramp generator and the CSA output against the output of the error amplifier. When the sum of the CSA output and the ramp generator signal exceeds the EA output voltage, the RS flip-flop resets and driver turns off the external MOSFET. The external Schottky rectifier diode (D1) conducts the inductor current.

If the sum of the CSA output and the ramp compensation signal does not exceed the EA output for a whole cycle, then the falling edge of the CLK resets the flip-flop.

The output of the EA integrates the voltage difference between the feedback and the 0.2 V reference: A value of $0.2 \mathrm{~V}-\mathrm{V}_{\mathrm{FB}}$ increases the EA output voltage. Since the EA output voltage is proportional to the peak inductor current, increasing its voltage also increases the current delivered to the output.

LED Open Protection

If the LED is open, there is no voltage on the FB pin. The duty cycle increases until OVPVSS reaches the shutdown threshold set by the external resistor divider. The top switch remains off until the voltage OVP-VSS drops below 1.2 V .

LED Short Protection

If the FB voltage exceeds 600 mV , the latches off immediately and DIMO goes low. If the FB voltage exceeds 300 mV for $450 \mu \mathrm{~s}$, the IC latches off and DIMO is pulled low. The EN needs to reset to restart the IC.

Dimming Control

The MP24830 allows both DC and PWM dimming on the DIM pin. For analog dimming, a voltage range from 0.6 V to 1.95 V linearly sets the LED current from 0% to 100% of the maximum LED current. DIM voltages exceeding 2 V results in the maximum LED current. For PWM dimming, use a square signal with an amplitude ($\mathrm{V}_{\text {DIM }}-\mathrm{V}_{\text {INGND }}$) that exceeds 1.95 V . For good dimming linearity, select a PWM frequency in range of 100 Hz to 2 kHz . For a higher dimming frequency or dimming ratio, use the DIMO pin to control an external dimming MOSFET. For combined analog and PWM dimming, apply a PWM signal with amplitude of 0.6 V to 1.95 V on the DIM pin.

Output Short-Circuit Protection

The MP24830 integrates output short-circuit protection (SCP) to foldback the operating frequency and decrease power consumption when the output is shorted to VSS. Such shorts cause the voltage on the OVP pin to drop below 0.4 V , and the FB pin senses no voltage ($<0.1 \mathrm{~V}$) as no current goes through the WLED.

In buck-boost applications, when there is a possibility that LED+ short-circuits to VSS, add a diode from VSS to INGND to protect the IC, as shown in below in Figure 2.

Step-up/down White LED Driver Applicatoin
Figure 2: Buck-Boost Application with Possible LED+ Short to VSS

APPLICATION INFORMATION

The MP24830 can be used in buck mode and buck-boost mode applications.

Setting the LED Current

An external resistor $R_{F B}$ sets the maximum LED current as per the equation:

$$
R_{\mathrm{FB}}=\frac{0.2 \mathrm{~V}}{\mathrm{I}_{\mathrm{LED}}}
$$

Setting the Switching Frequency

The switching frequency is set by an external resistor, $\mathrm{R}_{\text {SET }}$, connected from the RSET pin to VSS The relationship between the switching frequency and the programming resister is as per the following table and shown in Figure 3.

Table $1 R_{\text {SET }}$ and $f_{\text {Sw }}$ Relationship

$\mathbf{f}_{\mathbf{S w}}(\mathbf{k H z})$	$\mathbf{R}_{\text {SET }}(\mathbf{k} \boldsymbol{\Omega})$
100	200
125	165
210	100
400	50.4
600	30.3
800	19.9
1000	13.2
350	Open

Switching Frequency vs. RSET

Figure 3: Switching Frequency vs. $\mathbf{R}_{\text {SET }}$ The MP24380 implements current mode control by sensing the inductor current through a current sensing resistor R_{Cs}, as calculated by:

$$
R_{\mathrm{CS}}=\frac{0.9 \times \mathrm{V}_{\mathrm{CL}}}{\mathrm{I}_{\mathrm{L}_{-} \mathrm{PK} \text { Max }}}
$$

Where the V_{CL} is the current limit, $\mathrm{V}_{\mathrm{CL}}=50 \mathrm{mV}$, and $I_{\text {L_PK_Max }}$ is the maximum peak current in the inductor.

Calculate R_{CS} using the minimum input voltage, the maximum output voltage and the maximum output current.

Setting the Over-Voltage Protection

The MP24380 detects output over-voltage via the OVP pin. The OVP pin monitors the output voltage through a voltage divider ($\mathrm{R}_{\mathrm{ovp} 1}$ and $\mathrm{R}_{\text {ovp2 }}$): When the OVP voltage exceeds 1.24 V , the IC triggers OVP.
Select the resistor value ratio using the following equation:

$$
\frac{R_{\text {ovp } 1}}{R_{\text {ovP } 2}}=\frac{V_{\text {out_ovp }}}{V_{\text {th_ovp }}}-1
$$

The OVP trip-point is set between 0.4 V and 1.24 V .

Setting the Compensation

The MP24830 implements current-mode control to regulate the LED current feedback through the compensation network on the COMP pin. For most applications, use an RCC compensation network to ensure current accuracy and the system stability, as shown in Figure 4.
Its DC gain is:

$$
\text { DCGain_EA }=\frac{g m \times R_{F B}}{C_{z}+C_{p}}
$$

Where gm is error amplifier's transconductance of $80 \mu \mathrm{~A} / \mathrm{V}$.
The zero of the compensation network is:

$$
\mathrm{f}_{\mathrm{z}_{\text {EA }}}=\frac{1}{2 \pi \times \mathrm{R}_{\text {comp }} \times \mathrm{C}_{\mathrm{z}}}
$$

The pole of the compensation network is:
$\mathrm{f}_{\mathrm{p}_{-} \mathrm{EA}}=\frac{1}{2 \pi \times \mathrm{R}_{\text {COMP }} \times \frac{\mathrm{C}_{2} \times \mathrm{C}_{p}}{\mathrm{C}_{\mathrm{z}}+\mathrm{C}_{\mathrm{p}}}}$

Figure 4: RCC Compensation Network on COMP

Pin

(1)Compensation network for Buck-boost
application

The DC modulator gain of the buck-boost power stage (from the output current to the control voltage on COMP pin) is:
DCGain_PS $=\frac{\frac{V_{\text {OUT }} \times V_{\text {IN }}}{V_{\text {OUT }}+V_{\text {IN }}}}{20 \times R_{\text {CS }} \times\left(\frac{V_{\text {OUT }}}{R_{\text {FB }}+R_{\text {LED }}}+\frac{I_{\text {OUT }}{ }^{*} V_{\text {OUT }}}{V_{\text {OUT }}+V_{\text {IN }}}\right) \times\left(R_{\text {FB }}+R_{\text {LED }}\right)}$
Where $R_{C S}$ is the switch current sensing resistor on CS pin, $R_{\text {LED }}$ is the equivalent dynamic resistance of the LED load, as shown in Figure 5.

Figure 5: LED Dynamic Resistance Equivalent The dominant low-frequency pole of the buckboost power stage is:

$$
\mathrm{f}_{\mathrm{P}-\mathrm{PS}}=\frac{\frac{\mathrm{V}_{\text {OUT }}}{R_{\text {FB }}+\mathrm{R}_{\text {LED }}}+\frac{\mathrm{I}_{\text {OUT }} * V_{\text {OUT }}}{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}}}{2 \pi \mathrm{~V}_{\text {OUT }} \times \mathrm{C}_{\text {OUT }}}
$$

The right-half plane (RHP) zero of the buckboost power stage is:

$$
\mathrm{f}_{\mathrm{Z}_{-} \mathrm{RHP}}=\frac{\mathrm{V}_{\text {IN }}{ }^{2}}{2 \pi \times \mathrm{L} \times \mathrm{I}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right)}
$$

Step 1: Select $\mathrm{R}_{\text {comp }}$
Choose a crossing frequency, f_{C}, below $1 / 3 \times f_{Z_{\text {_RHP }}}$ to derive the compensation network as follow (assume $\mathrm{C}_{\mathrm{z}} \gg \mathrm{C}_{\mathrm{p}}$):

$$
R_{\text {COMP }}=\frac{f_{c}}{g m \times R_{\text {FB }} \times D C G a i n _P S * f_{P_{-} P S}}
$$

That is:

$$
\mathrm{R}_{\text {COMP }}=\frac{2 \pi \mathrm{f}_{\mathrm{c}} \times \mathrm{C}_{\text {OUT }} \times 20 \times \mathrm{R}_{\mathrm{CS}} \times\left(\mathrm{R}_{\mathrm{FB}}+\mathrm{R}_{\mathrm{LED}}\right)\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right)}{\mathrm{gm} \times \mathrm{R}_{\text {FB }} \times \mathrm{V}_{\text {IN }}}
$$

Use the maximum input voltage and minimum output voltage to calculate $\mathrm{R}_{\text {comp }}$.

Step 2: Select C_{z}

Set the zero of the compensation network to cancel the minimum pole of the power stage to get:

$$
\mathrm{C}_{\mathrm{z}}=\frac{1}{2 \pi \times \mathrm{f}_{\mathrm{P}_{-} \mathrm{PS}} \times \mathrm{R}_{\mathrm{COMP}}}
$$

Choose C_{z} with the maximum input voltage and maximum output voltage.
Step 3: Select C_{P}
Set the pole of the compensation network to cancel the minimum RHP zero to get:

$$
\mathrm{C}_{\mathrm{p}} \approx \frac{1}{2 \pi \times \mathrm{f}_{\mathrm{z}_{-} \mathrm{RHP}} \times \mathrm{R}_{\mathrm{COMP}}}
$$

Choose C_{P} with the minimum input voltage and maximum output voltage.

(2)Compensation network for Buck application

The DC modulator gain of the buck power stage (from the output current to the control voltage) is:

$$
\text { DCGain_Buck }=\frac{1}{20 \times R_{\mathrm{cs}}}
$$

The dominant, low frequency pole of the buck power stage is:

$$
f_{P_{-} \text {Buck }}=\frac{1}{2 \pi \times\left(R_{\text {FB }}+R_{\text {LED }}+R_{E S R}\right) \times C_{\text {OUT }}}
$$

The zero produced by the ESR of the output capacitor is:

$$
\mathrm{f}_{\mathrm{Z}_{-} \mathrm{ESR}}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}} * R_{\mathrm{ESR}}}
$$

Where $R_{\text {ESR }}$ is the ESR of the output capacitor.
Step 1: Select $\mathrm{R}_{\text {сомp }}$
Choose a crossing frequency, f_{C}, below $1 / 5 \times \mathrm{f}_{\mathrm{C}}$ to derive the compensation network as follows (assume $\mathrm{C}_{\mathrm{z}} \gg \mathrm{C}_{\mathrm{P}}$):

$$
R_{\text {comp -Buck }}=\frac{f_{c}}{g m \times R_{\text {FB }} \times D C G \text { Gin_Buck } * f_{p_{_} \text {Buck }}}
$$

That is:

$$
\mathrm{R}_{\text {CoMP_Buck }}=\frac{2 \pi \mathrm{f}_{\mathrm{c}} \times \mathrm{C}_{\text {out }} \times 20 \times \mathrm{R}_{\mathrm{CS}} \times\left(\mathrm{R}_{\mathrm{FB}}+\mathrm{R}_{\mathrm{LED}}+\mathrm{R}_{\text {ESR }}\right)}{\mathrm{gm} \times \mathrm{R}_{\text {FB }}}
$$

Step 2: Select C_{z}
Set the zero of the compensation network to cancel the minimum pole of the Buck power stage to get:

$$
\mathrm{C}_{\mathrm{Z}_{-} \text {Buck }}=\frac{1}{2 \pi \times \mathrm{f}_{\mathrm{P}_{_} \text {Buck }} \times \mathrm{R}_{\text {COMP_Buck }}}
$$

Step 3: Select C_{P}
Set the pole of the compensation network to cancel the ESR zero. If the ESR zero is too high, set this pole at around 3 to 5 times f_{c} :

$$
\mathrm{C}_{\mathrm{p}} \approx \max \left(\frac{1}{2 \pi \times \mathrm{f}_{\mathrm{z}_{-} \text {ESR }} \times \mathrm{R}_{\text {COMP_Buck }}}, \frac{1}{2 \pi \times 5 \mathrm{f}_{\mathrm{c}} \times \mathrm{R}_{\text {COMP_Buck }}}\right)
$$

Selecting the Inductor

Select the inductor based on the input voltage, the output voltage, and the LED current. Select the inductor to make the circuit operate in continuous current mode (CCM). Select the inductor current rating to ensure that the inductor does not saturate and with consideration to power consumption based on the DC resistance.
(1) Selecting the Inductor for Buck-Boost Applications

For buck-boost applications, select the inductor based on the following equation:

$$
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{IN}} \times \mathrm{V}_{\text {OUT }}}{\mathrm{f}_{\mathrm{SW}} \times\left(\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\text {OUT }}\right) \times \Delta \mathrm{I}_{\mathrm{L}}}
$$

Where ΔI_{L} is the peak-to-peak inductor current ripple. Design ΔI_{L} to be between 30% and 60% of the average current of the inductor, which is:

$$
I_{\mathrm{L}_{-} A V G}=I_{\text {LED }} *\left(1+\frac{\mathrm{V}_{\text {OUT }}}{V_{\text {IN }}}\right)
$$

Select the inductor with a DC current rating that ensurew that the inductor does not saturated at the peak current of:

$$
\mathrm{I}_{\mathrm{L}_{-} \mathrm{PK}}=\mathrm{I}_{\mathrm{L}_{-} \mathrm{AVG}}+0.5 \Delta \mathrm{I}_{\mathrm{L}}
$$

(2) Selecting the Inductor for Buck Applications

For buck applications, derive the inductance value from the following equation.

$$
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{\mathrm{V}_{\mathrm{IN}} \times \Delta \mathrm{I}_{\mathrm{L}} \times \mathrm{f}_{\mathrm{SW}}}
$$

Where ΔI_{L} is the peak-to-peak inductor ripple current.

Choose the inductor ripple current to around 30% to 60% of the maximum load current. The maximum inductor peak current is calculated as:

$$
\mathrm{I}_{\mathrm{L}(\operatorname{MAX})}=\mathrm{I}_{\mathrm{LOAD}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}
$$

Selecting the Input Capacitor

The input capacitor reduces the surge current drawn from the input supply and the switching noise from the device. For best results, use
ceramic capacitors with X7R dielectrics with low ESR and small temperature coefficients.
Select a large-enough capacitor to limit input the voltage ripple, $\Delta \mathrm{V}_{\mathbb{N}}$, to less than 5% to 10% of the DC value.

$$
\mathrm{C}_{\text {IN }}>\frac{\mathrm{I}_{\mathrm{L}_{\text {_AVG }}} \times \mathrm{V}_{\text {OUT }}}{\mathrm{f}_{\text {SW }} \times \Delta \mathrm{V}_{\text {IN }} \times\left(\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {OUT }}\right)}
$$

Selecting the Output Capacitor

The output capacitor limits the output voltage ripple, $\Delta \mathrm{V}_{\text {OUT }}$ (normally less than 1% to 5% of the DC value), and ensures feedback loop stability. Use an output capacitor with impedance at the switching frequency. Use ceramic capacitors with low ESR characteristics.

$$
\mathrm{C}_{\text {OUT }}>\frac{\mathrm{I}_{\text {LED }} \times \mathrm{V}_{\text {OUT }}}{\mathrm{f}_{\text {SW }} \times \Delta \mathrm{V}_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {OUT }}\right)}
$$

PC Board Layout

Place the high-current paths (VSS, VDD and SW) very close to the device with short, direct, and wide traces. Place the input capacitor as close as possible to the VDD and VSS pins. Place the external feedback resistors next to the FB pin. Keep the switch node traces short and away from the feedback network.

Pay special attention is required to the switching frequency loop layout, which should be as small as possible.

For buck applications, the switching frequency loop is composed of the input capacitor, the power MOSFET and the Schottky diode. Place the Schottky diode close to the power MOSFET and the input capacitor.

For buck-boost or boost applications, the switching frequency loop is composed of the input capacitor, the power MOSFET, the Schottky diode and the output capacitor. Make this component loop as small as possible. For most applications, place the output capacitor close to the input capacitor and the power MOSFET.

TYPICAL APPLICATION CIRCUIT

Figure 6: Step-up/down White LED Driver Application

Figure 7: Step-down Constant Voltage Converter Application

PACKAGE INFORMATION

SOIC-14

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW
SIDE VIEW

DETAIL "A"

NOTE:

1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AB.
6) DRAWING IS NOT TO SCALE.

QFN-14

TOP VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Monolithic Power Systems manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FSE2 LYT4227E LYT6079C-TL MP3394SGF-P

