

MP5095
Low I_{Q}, Dual-Channel, 2.3A Load Switch

FEATURES

- Integrated $30 \mathrm{~m} \Omega$ Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ MOSFETs
- Low Quiescent Current: $40 \mu \mathrm{~A}$
- Wide $\mathrm{V}_{\mathbb{I N}}$ Range from 0.5 V to 5.5 V
- $\quad<1 \mu \mathrm{~A}$ Shutdown Current
- Output Discharge Function

Continuous Current Capability: 2.3A

- Enable Pin (EN1, EN2)
- Short-Circuitry Response Protection
- Easily Parallel-Connect Dual Channel
- Supports Reverse Block Connection
- Thermal Protection
- Available in a TSOT23-8 Package

APPLICATIONS

- Notebook and Tablet Computers
- Portable Devices
- Solid State Drivers
- Handheld Devices

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP5095GJ	TSOT23-8	See Below

* For Tape \& Reel, add suffix -Z (e.g. MP5095GJ-Z).

TOP MARKING

| AUJY

AUJ: Product code of MP5095GJ
Y: Year code

PACKAGE REFERENCE

TOP VIEW	
VCC	8 IN1
GND 2	7 OUT1
EN1 3	6 OUT2
EN2 4	5 IN2

MP5095 - LOW I_{Q}, DUAL-CHANNEL, 2.3A LOAD SWITCH

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$
$\mathrm{V}_{\mathrm{IN} 1 / 2^{2} . ~}^{0.3 \mathrm{~V}}$ to +6 V
VCC -0.3 V to +6 V
$\mathrm{V}_{\text {OUT1/2 }}$ -0.3 V to +6 V
All other pins................................. -0.3 V to +6 V
Junction temperature $150^{\circ} \mathrm{C}$
Lead temperature $260^{\circ} \mathrm{C}$
Continuous power dissipation ${ }^{(2)}{ }^{(4)}$.............2.2W
Recommended Operating Conditions ${ }^{(3)}$
Supply voltage ($\mathrm{V}_{\mathrm{IN} 1 / 2}$) 0.5 V to 5.5 V
Supply voltage (VCC) 1.85V to 5.5 V
Output voltage ($\mathrm{V}_{\text {OUT } 1 / 2}$).................. 0.5 V to 5.5 V
Operating junction temp. $\left(\mathrm{T}_{\mathrm{J}}\right) \ldots-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTES:

1) Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature $\mathrm{T}_{\mathrm{J}}(\mathrm{MAX})$, the junction-toambient thermal resistance θ_{JA}, and the ambient temperature T_{A}. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D}(M A X)=\left(T_{J}\right.$ $\left.(\mathrm{MAX})-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) The device is not guaranteed to function outside of its operating conditions.
4) Measured on MPS EV5095-J-00A, 2-layer PCB
5) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Typical value is tested at $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. The limit over temperature is guaranteed by characterization, unless otherwise noted.

Parameters	Symbol	Condition	Min	Typ	Max	Units
Input and Supply Voltage Range						
Input voltage	$\mathrm{V}_{\text {IN } 1 / 2}$		0.5		5.5	V
Supply voltage	V_{CC}		1.85		5.5	V
Supply Current (Single Channel)						
Off state leakage current	$\mathrm{I}_{\text {OFF }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{EN}=0, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
VCC standby current	$\mathrm{I}_{\text {Stby }}$	$\begin{aligned} & \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{EN}=0, \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		0.1	1	$\mu \mathrm{A}$
		VCC $=3.6 \mathrm{~V}$, enable, no load		40		
Power MOSFET						
On resistance	$\mathrm{R}_{\text {DSON } 1 / 2}$	VCC $=5.0 \mathrm{~V}$, single channel		30		$\mathrm{m} \Omega$
		$\mathrm{VCC}=3.3 \mathrm{~V}$, single channel		35		
Thermal Shutdown and Recovery						
Shutdown temperature ${ }^{(5)}$	$\mathrm{T}_{\text {STD }}$			155		${ }^{\circ} \mathrm{C}$
Hysteresis ${ }^{(5)}$	$\mathrm{T}_{\mathrm{HYS}}$			30		${ }^{\circ} \mathrm{C}$
Under-Voltage Lockout (UVLO) Protection						
VCC under-voltage lockout threshold	$\mathrm{V}_{\text {CC UVLO }}$	UVLO rising threshold		1.7	1.85	V
UVLO hysteresis	$\mathrm{V}_{\text {UVLOHYs }}$			100		mV
Soft Start (SS)						
Vo rise time	$\mathrm{T}_{\text {ss }}$	$\mathrm{Vo}=3.6 \mathrm{~V}, 10 \%$ to 90%		30		$\mu \mathrm{s}$
EN turn on time	$\mathrm{T}_{\text {deLay }}$			30		$\mu \mathrm{s}$
Enable (ENx)						
EN rising threshold	$\mathrm{V}_{\text {ENH }}$			1	1.2	V
EN hysteresis	$\mathrm{V}_{\text {ENHYS }}$			200		mV
EN resistance		Between EN and GND		1		$\mathrm{M} \Omega$
ILIM						
Current limit ${ }^{(5)}$	ILIM	$V C C=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2.3	2.75	3.2	A
Hiccup on time	Ton			2		ms
Hiccup off time	$\mathrm{T}_{\text {OfF }}$			90		ms
Discharge Resistance (Single Channel)						
Resistance	$\mathrm{R}_{\text {DIS }}$			50		Ω

NOTE:

6) Guarantee by characterization -Not production tested.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

EN Rising Threshold

VCC Falling Threshold

TYPICAL PERFORMANCE CHARACTERISTICS (continued)
$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

5ms/div.

EN Start-Up

with 2.3A Load

$2 \mathrm{~ms} / \mathrm{div}$.

VIN Shutdown
with No Load

5ms/div.

EN Start-Up
with No Load

EN Shutdown

with 2.3A Load

1A/div._ $2 \mathrm{~ms} / \mathrm{div}$.
$\mathbf{V}_{\text {IN }}$ Start-Up
with 2.3A Load

$20 \mathrm{~ms} / \mathrm{div}$.

EN Shutdown
with No Load

Short Enter

5ms/div.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)
$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Short Steady State

VIN Shutdown with Short

Short Enter (Parallel)

$20 \mathrm{~ms} / \mathrm{div}$.

Short Recovery

EN Start-Up with Short

Short Steady (Parallel)

V_{IN} Start-Up with Short

50ms/div.

EN Shutdown with Short

Short Recovery (Parallel)

PIN FUNCTIONS

Pin \#	Name	Description
1	VCC	Load switch supply voltage to the control circuitry.
2	GND	Ground.
3	EN1	Enable input of switch 1. Pull EN1 below the specified threshold to shut the chip down.
4	EN2	Enable input of switch 2. Pull EN2 below the specified threshold to shut the chip down.
5	IN2	Input power supply of switch 2.
6	OUT2	Output to the load of switch 2.
7	OUT1	Output to the load of switch 1.
8	IN1	Input power supply of switch 1.

BLOCK DIAGRAM

Figure 1: Functional Block Diagram

MP5095 - LOW I ${ }_{Q}$, DUAL-CHANNEL, 2.3A LOAD SWITCH

OPERATION

The MP5095 is designed to limit the inrush current to the load when a circuit card is inserted into a live backplane power source, thereby limiting the backplane's voltage drop and the slew rate of the voltage to the load. MP5095 integrates dual load switches. Each channel can provide 2.3 A of current load capability. The MP5095 can also easily parallel both channels connected together to achieve a maximum 5A load.

Enable (EN1, EN2)

When the input voltage is greater than the under-voltage lockout (UVLO) threshold (typically 0.5 V), and VCC is higher than 1.85 V , the MP5095 can be enabled by pulling EN above 1.2 V . Pull EN to ground to disable the MP5095. The recommended start-up sequence is to power up VCC and $\mathrm{V}_{\mathbb{1}}$ first. After they are ready, pull the EN voltage to high.

Short-Circuit Protection (SCP)

If the load current increases rapidly due to a short circuit, the current may exceed the current limit threshold greatly before the control loop can respond. If the current reaches an internal secondary current limit level (about 5A), a fast turn-off circuit activates to turn off the power MOSFET. This limits the peak current through the switch to limit the input voltage drop. The total short-circuit response time is about 200ns. Fast off keeps the power MOSFET off for $80 \mu \mathrm{~s}$ before turning it back on.

If the current limit block starts to regulate the output current, the power loss on the power MOSFET causes the IC temperature to rise. Hiccup protection limits the current for 2 ms and turns it off for another 90ms for the thermal sink. If the junction temperature rises high enough during the hiccup on time, thermal shutdown is triggered. After thermal shutdown, the output is disabled until the over-temperature fault is removed. The over-temperature threshold is $155^{\circ} \mathrm{C}$, and the hysteresis is $30^{\circ} \mathrm{C}$.

Output Discharge

The MP5095 has an output discharge function. The output discharge resistor is active when EN or VCC is low. This function can discharge Vo by pulling down the resistance when the IC is disabled and the load is very light.

MP5095 - LOW I ${ }_{Q}$, DUAL-CHANNEL, 2.3A LOAD SWITCH

APPLICATION INFORMATION

Selecting the VCC Capacitor

VCC is an internal load switch supply voltage to the control circuitry. Use low ESR capacitors for the best performance. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For most applications, a $1 \mu \mathrm{~F}$ capacitor is sufficient.

Selecting the Input and Output Capacitor

The input capacitor is very important for protecting the part from input voltage spikes when a dead short or $\mathrm{V}_{\mathbb{I}}$ hot-plug occurs. 0805 ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For most applications, a $10 \mu \mathrm{~F} 0805$ input capacitor and a $1 \mu \mathrm{~F} 0603$ output capacitor are sufficient for each channel. For high input voltage applications, an input capacitor $22 \mu \mathrm{~F}$ or greater for each channel is highly recommended.

Reverse Current Block Usage

The dual-channel load switch can be combined to a single-channel load switch with a reverse current block function (see Figure 2). IN1 is the input port, and IN2 is the output port. When $\mathrm{EN} 1=\mathrm{EN} 2=$ high, the internal MOSFET is on. When EN1 = EN2 = low, the internal MOSFET is off, and the body diode blocks the reverse current.

Figure 2: Reverse Current Block Usage

Parallel Channels Usage

The MP5095 can be parallel-connected to achieve a 4.6A single-load switch (see Figure 3). In this parallel connection, IN1 is connected to IN2 externally, and OUT1 is connected to OUT2 externally.

Figure 3: Parallel Channels Usage

PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. For best results, refer to Figure 4 and follow the guidelines below.

1. Place the caps close to the pins.
2. Place enough vias around the IC to achieve better thermal performance.

Bottom Layer
Figure 4: Recommended Layout

TYPICAL APPLICATION CIRCUIT

Figure 5: Typical Application Schematic

PACKAGE INFORMATION

TSOT23-8

TOP VIEW

FRONT VIEW

RECOMMENDED LAND PATTERN

SEE DETAIL "A"

SIDE VIEW

DETAIL "A"

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
5) JEDEC REFERENCE IS MO-193, VARIATION BA. 6) DRAWING IS NOT TO SCALE.
6) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Monolithic Power Systems manufacturer:
Other Similar products are found below :
NCP45520IMNTWG-L FPF1015 FPF1018 DS1222 NCV380HMUAJAATBG TCK2065G,LF SZNCP3712ASNT3G VND5004ATR-E AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG NCP4545IMNTWG-L FPF2260ATMX SLG5NT1765V SLG5NT1757V NCP45780IMN24RTWG NCP45540IMNTWG-L MC25XS6300EK MC33882PEP TPS2021IDRQ1 TPS2103D TPS2104DBVR TPS22954DQCR TPS22958NDGKR TPS22958NDGNR TPS22959DNYT TPS22994RUKR MIC2005-0.5YML-TR MIC2095-1YMT-TR MIC2098-1YMT-TR MIC2098-2YMT-TR MIC2099-1YMT-TR MIC94062YMT TR MIC94064YMT-TR MIC94065YC6-TR MIC94070YMT-TR MIC94073YMT-TR MP62550DGT-LF-P MP62551DGT-LF-P BTS141TCBUMA1 BTS500151TADATMA2 BTS716GBXUMA1 FDC6331L MIC2015-1.2YM6 TR MIC2026-2YM MIC2039FYMT-TR

