

The MP62130/MP62131 Power Distribution

Switch features internal current limiting to

prevent damage to host devices due to faulty

The Analog switch features $90m\Omega$ on-resistance

and operates from 2.7V to 5.5V input. It is

available with a guaranteed current limit,

making it ideal for load switching applications.

The MP62130/MP62131 has built-in protection

for both over current and increased thermal

stress. For over current, the device will limit the

current by changing to a constant current mode.

As the temperature increases as a result of

short circuit, the device will shut off. The device

The MP62130/MP62131 is available in MSOP8

will recover once the device temperature

MP62130/MP62131

DESCRIPTION

conditions.

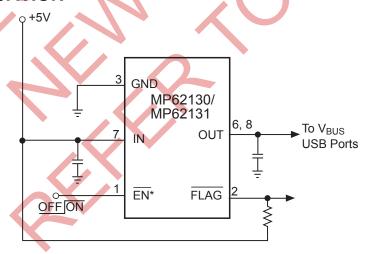
reduces to approx 120°C.

and SOIC8 packages.

MP62130/MP62131

3.3V/5V, Single-Channel 500mA **Current-Limited Power Distribution Switch** with Output Discharge

FEATURES


- 500mA Continuous Current
- Accurate Current Limit
- Output Discharge Function
- 2.7V to 5.5V Supply Range
- 95µA Quiescent Current
- 90mQ MOSFET
- Thermal-Shutdown Protection
- Under-Voltage Lockout
- 8ms FLAG Deglitch Time
- No FLAG Glitch During Power Up
- Reverse Current Blocking
- MSOP8 and SOIC8 Packages

APPLICATIONS

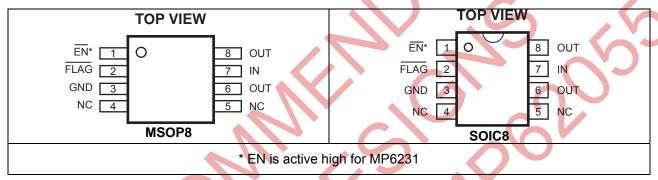
- Smartphone and PDA
- Portable GPS Device
- Set-top-box
- **USB** Power Distribution

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

*EN is active high for 62131 SINGLE-CHANNEL

© 2010 MPS. All Rights Reserved.


ORDERING INFORMATION

Part Number	Enable	Switch	Maximum Continuous Load Current	Typical Short- Circuit Current @ T _A =25℃	Package	Top Marking	Free Air Temperature (T _A)
MP62130ES	Active				SOIC8	MP62130	
MP62130EK*	Low	Single	500mA	650mA	MSOP8	62130	-20°C to +85°C
MP62131ES	Active				SOIC8	MP62131	-20 C to +65 C
MP62131EK*	High				MSOP8	62131	

^{*} For Tape & Reel, add suffix –Z (e.g. MP62130/MP62131EK–Z).

For RoHS Compliant packaging, add suffix -LF (e.g. MP62130/MP62131EK-LF-Z);

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

IN	-0.3V to +6.5V
EN, FLAG, OUT to GND	
Continuous Power Dissipation	
MSOP8	
SOIC8	1.4W
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
Operating Junct. Temp (T _J)	20°C to +125°C

Thermal R	esistance ⁽³⁾	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
MSOP8		150	65	°C/W
SOIC8		90	42	°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature $T_{\rm J}$ (MAX), the junction-to-ambient thermal resistance $\theta_{\rm JA}$, and the ambient temperature $T_{\rm A}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{\rm D}$ (MAX) = $(T_{\rm J}$ (MAX)- $T_{\rm A}$)/ $\theta_{\rm JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage
- 3) Measured on JESD51-7 4-layer PCB.

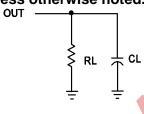
ELECTRICAL CHARACTERISTICS (4)

V_{IN}=5V, T_A=+25°C, unless otherwise noted.

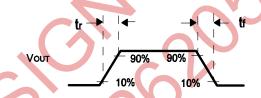
Parameter	Condition	Min	Тур	Max	Units
IN Voltage Range		2.7		5.5	V
Supply Current	Single Channel		95	160	μA
Shutdown Current	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μΑ
Off Switch Leakage	Device Disable, V _{IN} =5.5V		1		μΑ
Current Limit		550	650	1100	mA
Trip Current	Current Ramp (slew rate≤100A/s) on Output		1.2		Α
Under-voltage Lockout	Rising Edge	1.95	2.3	2.65	V
Under-voltage Hysteresis		100	250	400	mV
FET On Resistance	I _{OUT} =100mA (-20°C≤ T _A ≤85°C)		90	130	mΩ
EN Input Logic High Voltage		2			_ V
EN Input Logic Low Voltage				0.8	V
FLAG Output Logic Low Voltage	I _{SINK} =5mA			0.4	V
FLAG Output High Leakage Current	V _{IN} =V _{FLAG} =5.5V)	μA
Thermal Shutdown			140		°C
Thermal Shutdown Hysteresis			20		°C
V _{OUT} Rising Time, Tr ⁽⁵⁾	V_{IN} =5.5V, C_L =1 μ F, R_L =11 Ω		0.9	2	ms
- 500 1 mem ig 1 mine, 11	V_{IN} =2.7V, C_L =1 μ F, R_L =11 Ω		1.7	2.7	ms
V _{OUT} Falling Time, Tf (5)	$V_{IN} = 5.5V$, $C_L = 1\mu F$, $R_L = 11\Omega$		0.1	0.5	ms
Turn On Time, Ton (6)	$V_{IN}=2.7V, C_L=1\mu F, R_L=11\Omega$		0.1 1.8	0.5 3	ms
Turn Off Time, Toff (6)	$C_L = 100 \mu F$, $R_L = 11 \Omega$				ms
	$C_L=100\mu F, R_L=11\Omega$		2	10	ms
Discharge Resistance			100		Ω
FLAG Deglitch Time		4	8	15	ms
EN Input Leakage			1		μΑ
Reverse Leakage Current	V _{OUT} =5.5V, V _{IN} =GND		0.2		μΑ

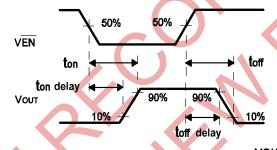
 ⁴⁾ Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.
 5) Measured from 10% to 90% output signal.

⁶⁾ Measured from 50% EN signal to 90% output signal.



PIN FUNCTIONS


Pin#	Name	Description	
1	EN*	Enable Input. Active High(MP62131); Active Low(MP62130)	
2	FLAG	IN-to-OUT Over-current, active-low output flag. Open-Drain.	
3	GND	Ground.	
4, 5	NC		
6, 8	OUT	Power-Distribution Switch Output.	
7	IN	Input Voltage. Accepts 2.7V to 5.5V input.	


TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = +25^{\circ}C$, unless otherwise noted.

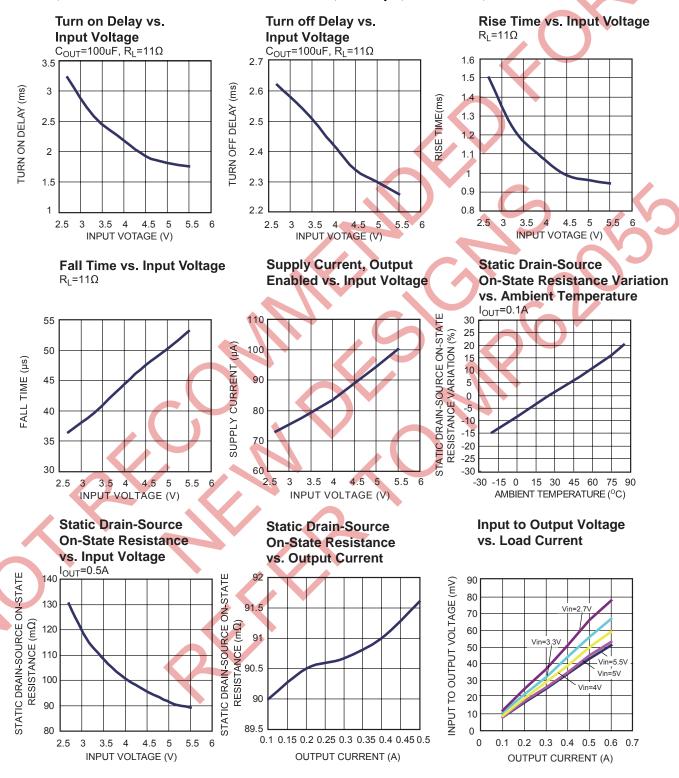
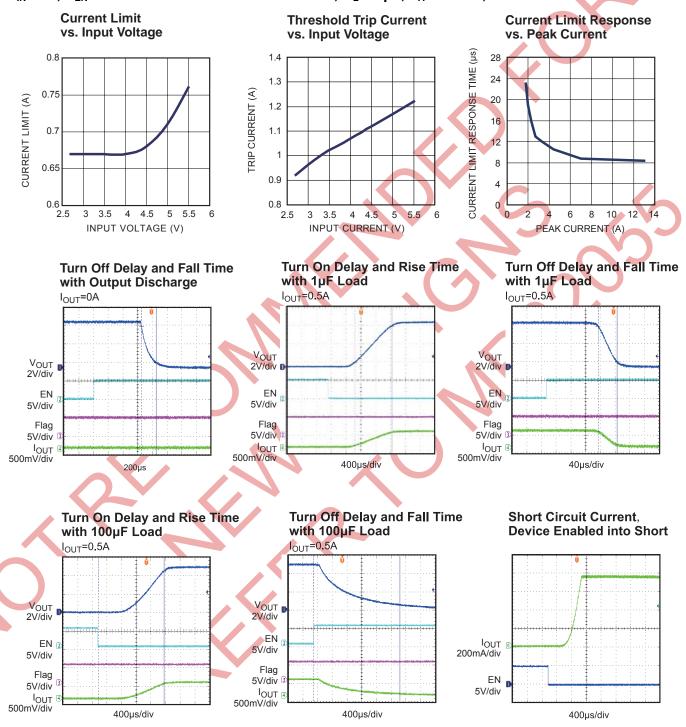
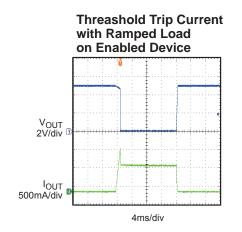

VOLTAGE WAVEFORMS

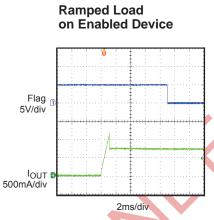
Figure 1—Test Circuit and Voltage Waveforms

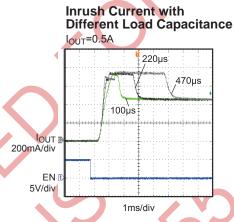
TYPICAL PERFORMANCE CHARACTERISTICS


 V_{IN} =5V, V_{EN} =0V for MP62130 or 5v for MP62131, C_L = 1 μ F, T_A = +25°C, unless otherwise noted.

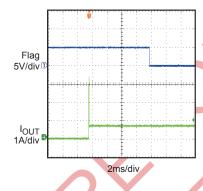
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

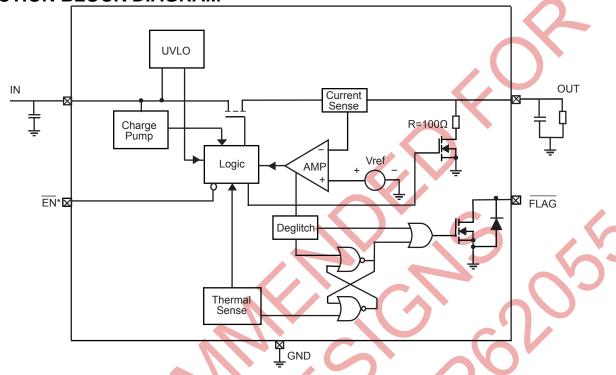

 V_{IN} =5V, V_{EN} =0V for MP62130 or 5v for MP62131, C_L = 1 μ F, T_A = +25 $^{\circ}$ C, unless otherwise noted.





TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 V_{IN} =5V, V_{EN} =0V for MP62130 or 5v for MP62131, C_L = 1 μ F, T_A = +25°C, unless otherwise noted.



FUNCTION BLOCK DIAGRAM

* EN is active high for MP62131

Figure 2—Functional Block Diagram

DETAILED DESCRIPTION

Over Current

When the load exceeds trip current (minimum threshold current triggering constant-current mode) or a short is present, MP62130/MP62131 switches into to a constant-current mode (current limit value). MP62130/MP62131 will be shutdown only if the overcurrent condition stays long enough to trigger thermal protection.

Trigger overcurrent protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the device is enabled or input applied. MP62130/MP62131 detects the short or overload and immediately switches into a constant-current mode.
- 2) A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may flow for a short period of time before the current-limit circuit can react.
- 3) Output current has been gradually increased beyond the recommended operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exceeded. The MP62130/MP62131 is capable of delivering current up to the trip current threshold without damaging the device. Once the trip threshold has been reached, the device switches into its constant-current mode.

Flag Response

The FLAG pin is an open drain configuration. This FAULT will report a fail mode after an 8ms deglitch timeout. This is used to ensure that no false fault signals are reported. This internal deglitch circuit eliminates the need for extend components. The FLAG pin is not deglitched during an over temperature or voltage lockout.

Thermal Protection

The purpose of thermal protection is to prevent damage in the IC by allowing exceptive current to flow and heating the junction. The die temperature is internally monitored until the thermal limit is reached. Once this temperature is reached, the switch will turn off and allow the chip to cool. The switch has a built-in hysteresis.

Under-Voltage Lockout (UVLO)

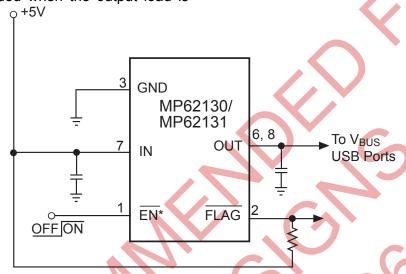
This circuit is used to monitor the input voltage to ensure that the MP62130/MP62131 is operating correctly. This UVLO circuit also ensures that there is no operation until the input voltage reaches the minimum spec.

Enable

The logic pin disables the chip to reduce the supply current. The device will operate once the enable signal reaches the appropriate level. The input is compatible with both COMS and TTL.

Output Discharge

The part involves a discharge function that provides a resistive discharge path for the external output capacitor. The function will be active when the part is disabled (Input voltage is under UVLO or enable is deasserted) and it will be done in a very limited time.



APPLICATION INFORMATION

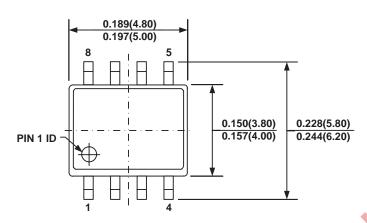
Power-Supply Considerations

A $10\mu F$ bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is

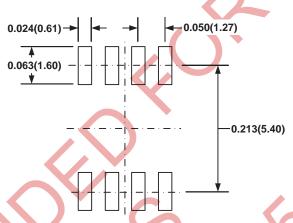
heavy. This precaution reduces power-supply transients that may cause ringing on the input. Optionally, bypassing the output with a $0.01\mu F$ to $0.1\mu F$ ceramic capacitor improves the immunity of the device to short-circuit transients.

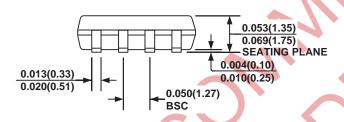
*EN is active high for 62131 SINGLE-CHANNEL

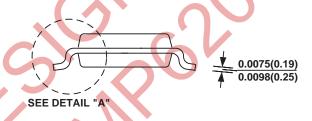
Figure 3—Application Circuit

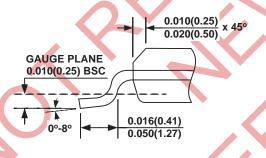

PACKAGE INFORMATION

MSOP8 0.114(2.90) 0.122(3.10) 0.187(4.75) 0.114(2.90) 0.199(5.05) 0.122(3.10) PIN 1 ID (NOTE 5) 0.010(0.25) 0.0256(0.65)BSC 0.014(0.35) **BOTTOM VIEW TOP VIEW GAUGE PLANE** 0.010(0.25) 0.030(0.75) 0.043(1.10)MAX 0.037(0.95) 0.004(0.10) **SEATING PLANE** 0.008(0.20) 0.002(0.05) 0.016(0.40) 0.006(0.15) 0.026(0.65) FRONT VIEW SIDE VIEW **NOTE:** 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS. 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, 0.181(4.60) PROTRUSION OR GATE BURR. 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX. 5) PIN 1 IDENTIFICATION HAS HALF OR FULL CIRCLE OPTION. 6) DRAWING MEETS JEDEC MO-187, VARIATION AA. 7) DRAWING IS NOT TO SCALE. 0.0256(0.65)BSC 0.016(0.40) RECOMMENDED LAND PATTERN


6/15/2010


SOIC8


TOP VIEW


RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

© 2010 MPS. All Rights Reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below:

TLE6232GP VND5E004ATR-E FPF1018 DS1222 SZNCP3712ASNT3G NCP45520IMNTWG-H VND5004ATR-E AP22811BW5-7
SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 TS13011-QFNR VND7012AYTR NCV459MNWTBG NCP4545IMNTWG-L
NCV8412ASTT1G NCV8412ASTT3G FPF2260ATMX SLG5NT1765V SLG5NT1757V NCP45780IMN24RTWG AP2151AMP-13
NCP45540IMNTWG-L XC8111AA01MR-G TPS2022P FPF2495BUCX NCP45650IMNTWG DK5V100R20S BTS7020-2EPA BTT61002ERA BTS71220-4ESA DK5V100R15M WS3220C9-9/TR AW32405CSR BTT6030-2ERA TLE75602-ESH BTS5200-4EKA
DK5V150R25M DK5V45R25 DK5V100R25S AW35206FOR BTS7120-2EPA BTS7040-1EPA BTT6030-1ERA DK5V60R10S
DK5V45R25S DK5V60R10 DK5V100R15S DK5V85R15 WS4632C-4/TR