3.3V/5V, Dual-Channel, 500mA Current-Limited Power Distribution Switches

With Output Discharge

DESCRIPTION

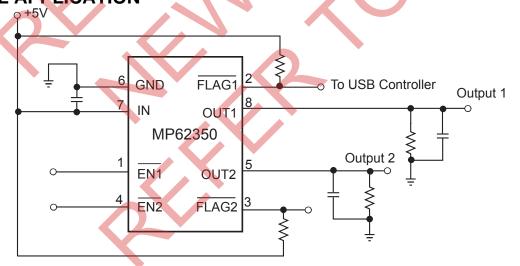
The MP62350/MP62351 Power Distribution Switch features internal current limiting to prevent damage to host devices due to faulty conditions. The MP62350/MP62351 analog switch has $85m\Omega$ on-resistance and operates from 2.7V to 5.5V input. It is available with guaranteed current limits, making it ideal switching applications. for load MP62350/MP62351 has built-in protection for both over current and increased thermal stress. For over current, the device will limit the current by changing to a constant current mode.

As the temperature increases as a result of short circuit, then the device will shut off. The device will recover once the device temperature reduces to approx 120°C.

The MP62350/MP62351 included a discharge function that provides a resistive discharge path for the external output capacitor when the part is disabled.

The MP62350/MP62351 is available in 8-pin MSOP and SOIC packages.

FEATURES


- 500mA Continuous Current
- Accurate Current Limit
- Output Discharge Function
- 2.7V to 5.5V Supply Range
- 140uA Quiescent Current
- 85mΩ MOSFET
- Thermal-Shutdown Protection
- Under-Voltage Lockout
- 8ms FLAG Deglitch Time
- No FLAG Glitch During Power Up
- Reverse Current Blocking
- Active High & Active Low Options
- UL Recognized: Pending

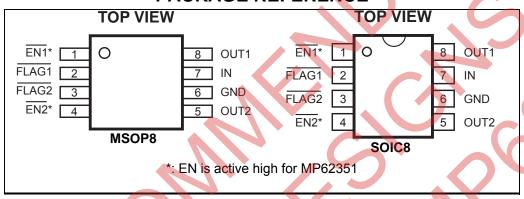
APPLICATIONS

- Smartphone and PDA
- Portable GPS Device
- Notebook PC
- Set-top-box
- Telecom and Network Systems
- PC Card Hot Swap
- USB Power Distribution

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

DUAL-CHANNEL



ORDERING INFORMATION

Part Number	Enable	Switch	Maximum Continuous Load Current	Typical Short- Circuit Current @ T _A =25C	Package	Temperature
MP62351ES	Active High	Dual	0.5A	750mA	SOIC8	
MP62351EK	Active High	Dual	0.5A	750mA	MSOP8	-20°C to +85°C
MP62350ES	Active Low	Dual	0.5A	750mA	SOIC8	20 0 10 103 0
MP62350EK	Active Low	Dual	0.5A	750mA	MSOP8	

^{*} For Tape & Reel, add suffix –Z (eg. MP62350/MP62351ES–Z). For RoHS Compliant Packaging, add suffix –LF (eg. MP62350/MP62351ES–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

IN	0.3V to +6.0V
EN, FLAG, OUT to GND	
Continuous Power Dissipation	$(T_A = +25^{\circ}C)^{(2)}$
SOIC8	1.4W
MSOP8	W8.0
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	-65°C to +150°C
Operating Temperature	20°C to +85°C

Thermal	Resis	stance (3)	$oldsymbol{ heta}_{JA}$	$\boldsymbol{ heta}_{JC}$	
SOIC8			90	42	. °C/W
MSOP8			150	65	. °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature $T_J(MAX)$, the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_D(MAX)=(T_J(MAX)-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS (4)

V_{IN}=5V, T_A=+25°C, unless otherwise noted.

Parameter	Condition	Min	Тур	Max	Units
IN Voltage Range		2.7		5.5	V
Supply Current	One Channel Enabled, I _{OUT} =0, One Switch ON		90	120	μΑ
Supply Current	Both Channels Enabled, I _{OUT} =0, Both Switches ON		140	160	μA
Shutdown Current	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μΑ
Off Switch Leakage	Device Disable, V _{IN} =5.5V		1		μΑ
Current Limit		550		1100	mA
Trip Current	Current Ramp (slew rate≤100A/s) on Output		1	1.4	А
Under-voltage Lockout	Rising Edge	1.95		2.65	V
Under-voltage Hysteresis			250		mV
FET On Resistance	I _{OUT} =100mA (-20°C≤T₄≤85°C)		85	130	mΩ
EN Input Logic High Voltage		2			V
EN Input Logic Low Voltage				0.8	V
FLAG Output Logic Low Voltage	I _{SINK} =5mA			0.4	V
FLAG Output High Leakage Current	V _{IN} =V _{FLAG} =5.5V			1	μÀ
Thermal Shutdown			140	V	°C
Thermal Shutdown Hysteresis		•	20		°C
V _{OUT} Rising Time, Tr ⁽⁵⁾	V_{IN} =5.5V, CL=1uF, RL=11 Ω		0.9		ms
3 -7	V_{IN} =2.7V, CL=1uF, RL=11 Ω		1.7	0.5	ms
V _{OUT} Falling Time, Tf ⁽⁶⁾	V_{IN} =5.5V, CL=1uF, RL=11 Ω			0.5	ms
Turn On Time, Ton (7)	V_{IN} =2.7V, CL=1uF, RL=11 Ω C _L =100 μ F, RL=11 Ω			0.5	ms ms
Turn Off Time, Toff (8)	$C_L=100\mu F$, $RL=11\Omega$	Ť		10	ms
Discharge Resistance	O _L -100μr, 1\C-1122		100	10	Ω
FLAG Deglitch Time		4	8	15	ms
ENx Input Leakage		4	1	10	_
Reverse Leakage Current	OLITY-5 SV INI-CND		0.2		μΑ
Neverse Leakage Current	OUTX=5.5V, IN=GND		0.2		μΑ

- 4) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.
 5) Measured from 10% to 90%.
- Measured from 90% to 10%.
- 7) Measured from (50%) EN signal to (90%) output signal. 8) Measured from (50%) EN signal to (10%) output signal.

PIN FUNCTIONS

MP62350/MP62351

Pin#	Name	Description
1	EN1	Active Low: (MP62350), Active High: (MP62351)
2	FLAG1	IN-to-OUT1 Over-current, active-low output flag. Open-Drain.
3	FLAG2	IN-to-OUT2 Over-current, active-low output flag. Open-Drain.
4	EN2	Active Low: (MP62350), Active High: (MP62351)
5	OUT2	IN-to-OUT2 Power-Distribution Switch Output.
6	GND	Ground.
7	IN	Input Voltage. Accepts 2.7V to 5.5V input.
8	OUT1	IN-to-OUT1 Power-Distribution Switch Output

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = +25$ °C, unless otherwise noted.

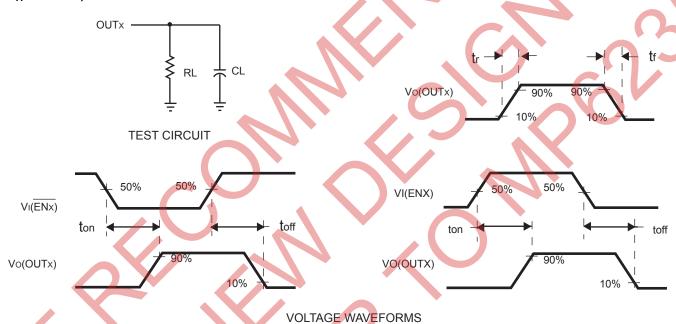


Figure 1—Test Circuit and Voltage Waveforms

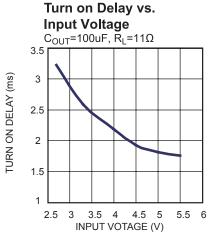
55

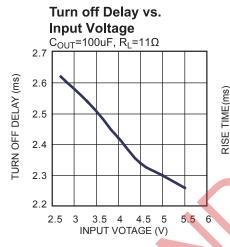
50

45

40

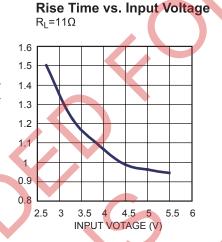
35

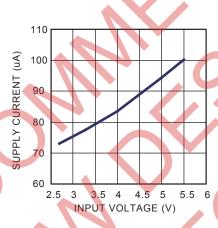

30


3

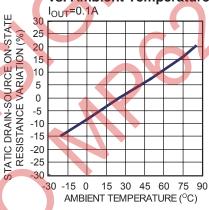
FALL TIME (us)

TYPICAL PERFORMANCE CHARACTERISTICS

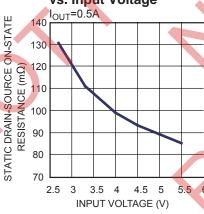

 $V_{IN}=5V$, $V_{EN}=0V$, $C_L=1uF$, $T_A=+25^{\circ}C$, unless otherwise noted.

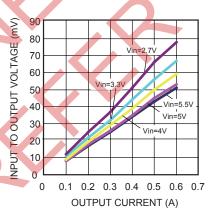


Supply Current, Output

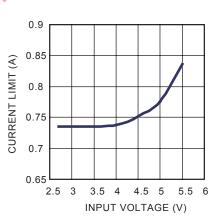

Enabled vs. Input Voltage

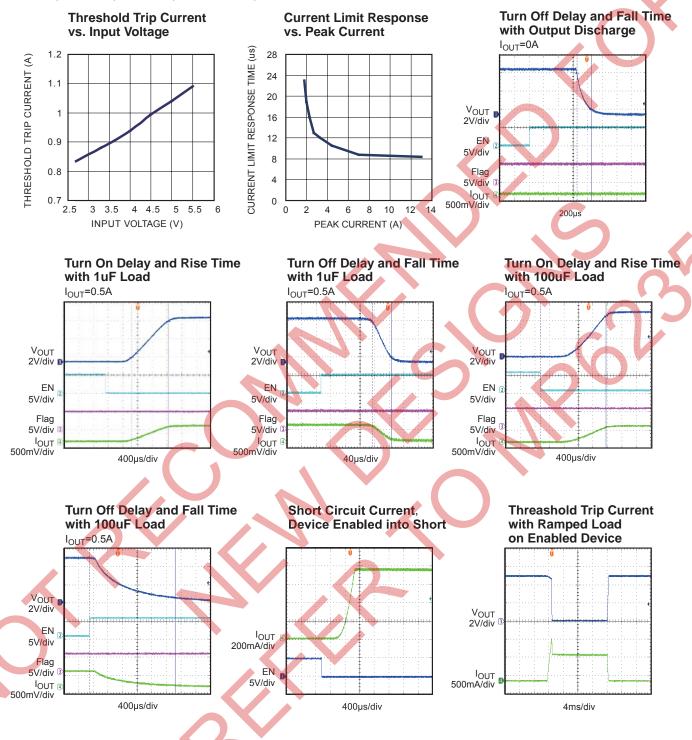
Fall Time vs. Input Voltage R_L =11 Ω


Static Drain-Source
On-State Resistance Variation
vs. Ambient Temperature

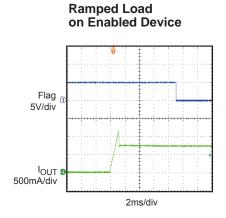

Static Drain-Source
On-State Resistance
vs. Input Voltage

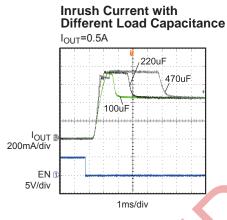
INPUT VOLTAGE (V)

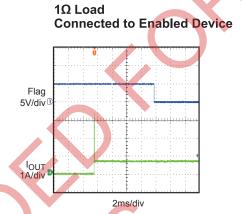

3.5 4 4.5 5 5.5


Current Limit vs. Input Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 $V_{IN}=5V$, $V_{EN}=0V$, $C_L=1uF$, $T_A=+25^{\circ}C$, unless otherwise noted.





TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} =5V, V_{EN} =0V, C_L =1uF, T_A = +25°C, unless otherwise noted.

© 2009 MPS. All Rights Reserved.

FUNCTION BLOCK DIAGRAM

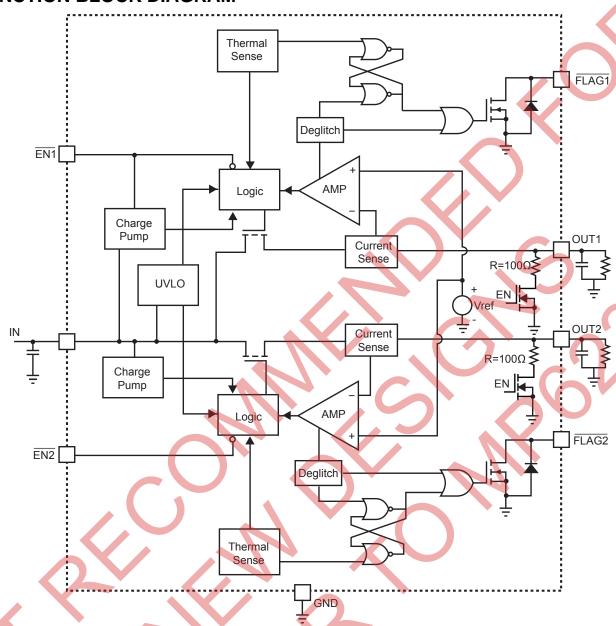


Figure 2—Functional Block Diagram

DETAILED DESCRIPTION

Over Current

When the load exceeds trip current (minimum threshold current triggering constant-current mode) or a short is present, MP62350/MP62351 switches into to a constant-current mode (current limit value). MP62350/MP62351 will be shutdown only if the overcurrent condition stays long enough to trigger thermal protection.

Trigger overcurrent protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the device is enabled or input applied. MP62350/MP62351 detects the short or overload and immediately switches into a constant-current mode.
- 2) A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may flow for a short period of time before the current-limit circuit can react.
- 3) Output current has been gradually increased beyond the recommended operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exceeded. The MP62350/MP62351 is capable of delivering current up to the trip current threshold without damaging the device. Once the trip threshold has been reached, the device switches into its constant-current mode.

Flag Response

The FLAG pin is an open drain configuration. This FAULT will report a fail mode after an 8ms deglitch timeout. This is used to ensure that no false fault signals are reported. This internal deglitch circuit eliminates the need for extend components. The FLAG pin is not deglitched during an over temp. or a voltage lockout.

Thermal Protection

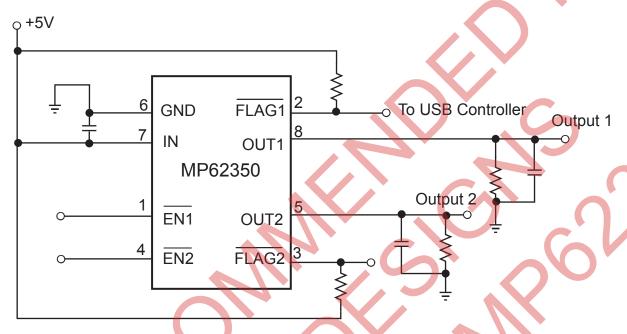
The purpose of thermal protection is to prevent damage in the IC by allowing exceptive current to flow and heating the junction. The die temperature is internally monitored until the thermal limit is reached. Once this temperature is reached, the switch will turn off and allow the chip to cool. The switch has a built-in hysteresis.

Under-voltage Lockout (UVLO)

This circuit is used to monitor the input voltage to ensure that the MP62350/MP62351 is operating correctly. This UVLO circuit also ensures that there is no operation until the input voltage reaches the minimum spec.

Enable

The logic pin disables the chip to reduce the supply current. The device will operate once the enable signal reaches the appropriate level. The input is compatible with both COMS and TTL.

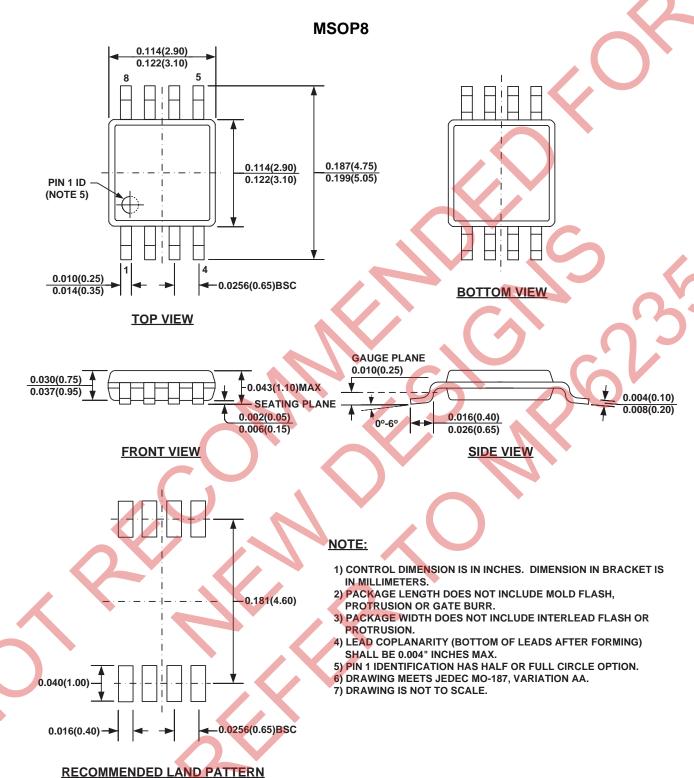


APPLICATION INFORMATION

Power-Supply Considerations

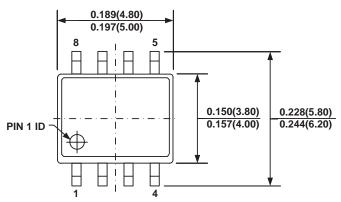
Over $10\mu F$ capacitor between IN and GND is recommended. This precaution reduces power-supply transients that may cause ringing on the input and improves the immunity of the device to short-circuit transients.

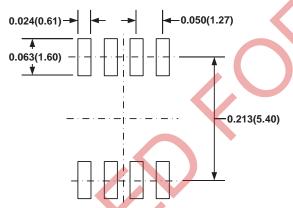
In order to achieve smaller output load transient ripple, placing a high-value electrolytic capacitor on the output pin(s) is recommended when the load is heavy.

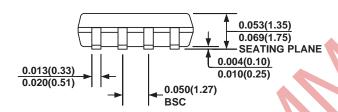


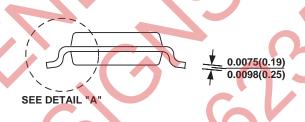
DUAL-CHANNEL

Figure 3—Application Circuit

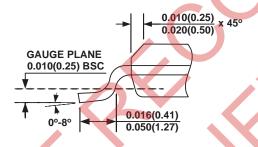



PACKAGE INFORMATION


SOIC8



TOP VIEW


RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING)
 SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below:

TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR FPF2260ATMX U6513A MIC2012YM-TR TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR VNV35N07-E MIC2008YML-TR MIC2040-1YMM