

Precision High-Side Current-Sense Amplifier

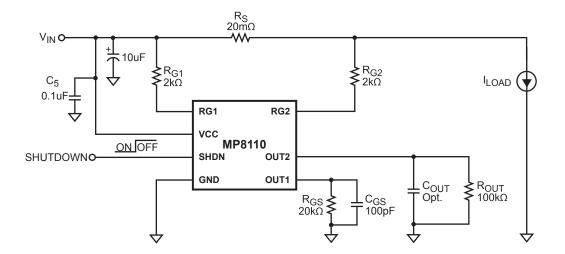
DESCRIPTION

The MP8110 is a low-cost, precision, high-side current-sense amplifier. This device operates from a single 2.5V to 40V supply and typically consumes $12\mu A$. It is ideal for today's notebook computers, cell phones and other systems where battery/DC current monitoring is critical.

High-side current monitoring is especially useful in battery-powered systems since it does not interfere with the ground path of the battery charger. The input common-mode range of 1.4V to 40V is independent of the supply voltage and ensures that the current-sense feedback remains viable even when connected to a 2-cell battery pack in deep discharge.

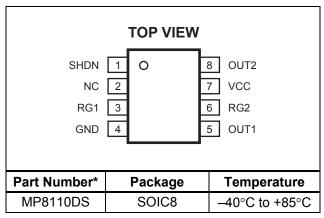
This device is available in 8-pin SOIC and MSOP packages.

FEATURES


- Low-Cost, Compact Current-Sense Solution
- 12μA Typical Supply Current
- 2.5V to 40V Operating Supply Voltage
- 1.4V to 40V Input Common Mode Range
- 3µA Typical Shutdown Current
- 400µV Input Offset Voltage
- High Current Sensing Capability
- Integrated Buffer Amplifier
- Available in 8-Pin SOIC and MSOP packages,

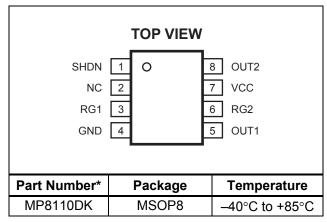
APPLICATIONS

- Portable PCs
- PDA's
- Smart Battery Packs
- Cell Phones
- Portable Test/Measurement Systems
- Battery-Operated Systems
- Energy Management Systems


"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

PACKAGE REFERENCE


For Tape & Reel, add suffix –Z (eg. MP8110DS–Z)
 For RoHS Compliant Packaging, add suffix –LF (eg. MP8110DS–LF–Z)

ABSOLUTE MAXIMUM RATINGS (1)

VCC, RG1, RG2 to GND......-0.3V to +42V Max Differential Input Voltage, RG1 to RG2.....5V Max Junction Temperature (T_j)150°C Storage Temperature-65°C to +150°C

Recommended Operating Conditions (2)

V_{CC}, RG1, RG2 to GND2.5V to 40V Operating Ambient Temperature—40°C to +85°C

For Tape & Reel, add suffix –Z (eg. MP8110DK–Z)
 For RoHS Compliant Packaging, add suffix –LF
 (eg. MP8110DK–LF–Z)

Thermal Resistance ⁽³⁾	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$
SOIC8	90	42 °C/W
MSOP8	150	65 °C/W
Continuous Power Dissipation	on	
(T _A =70°C)		800mW

Notes:

- 1) Exceeding these ratings may damage the device.
- The device is not guaranteed to function outside of its operating conditions.
- 3) Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 24V, V_{SHDN} = 0V, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage	V_{CC}		2.5		40	V
Supply Current	I _{cc}	$I_{LOAD} = 0A$, $V_{CC} = 40V$		12	30	μΑ
Common Mode Input Voltage	V _{IN_CM}	V _{CC} > V _{IN} Low		1.4		V
		V _{CC} > V _{IN} High		40		
OUT1 Input Offset Voltage	V _{OS1}			0.4	2	mV
OUT2 Input Offset Voltage	V _{OS2}			1	5	mV
Input Bias Current (4)	I _{RG1} , I _{RG2}			4	20	nA
OUT1 Current Accuracy	I _{RG1} /I _{GS}	V _{SENSE} = 100mV		±2	±5	%
No-Load OUT1 Error		V _{SENSE} = 0V		0.1	1	μΑ
Low-Level OUT1 Error		$V_{SENSE} = 5mV$		0.3	2	μΑ
No-Load OUT2 Error		V _{SENSE} = 0V		0.01	1	μΑ
Low-Level OUT2 Error		V _{SENSE} = 5mV		0.05	2	μΑ
Power Supply Rejection Ratio	PSRR	2.5V < V _{CC} < 40V, V _{SENSE} = 100mV	70	97		dB
Shutdown Supply Current	I _{CC(SHDN)}	V _{SHDN} = 3V		3	6	μA

ELECTRICAL CHARACTERISTICS (continued)

 V_{CC} = 24V, V_{SHDN} = 0V, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
SHDN Threshold Voltage	V _{TH_SHUTDOWN}	(Low - High)	0.7	0.9	1.2	V
SHDN Hysteresis				30		mV
OUT1 Rise, Fall Time (4)	t _R	V_{SENSE} = 40mV, R_{GS} = 20k Ω , R_{OUT} = 100k Ω ,		17		μs
OUT I Rise, I all Time	t _F	$R_{G1} = R_{G2} = 2k\Omega,$ $C_{GS} = 100pF,$ $C_{OUT} = 100pF, 10\% to 90\%$		29		
OUT2 Rise, Fall Time (4)	t _R	V_{SENSE} = 40mV, R_{GS} = 20k Ω , R_{OUT} = 100k Ω ,		18		μs
	t _F	$R_{G1} = R_{G2} = 2k\Omega,$ $C_{GS} = 100pF,$ $C_{OUT} = 100pF, 10\% to 90\%$		26		
OUT1 Output Voltage Range	V_{GS}			V _{CC} – 0.15	24	V
OUT2 Output Voltage Range	V _{OUT}			V _{CC} – 1	24	V
Maximum OUT1 Current (4)	I_{GS}			500		μΑ
Maximum OUT2 Current (4)	I _{OUT2}			5		mA

Notes:

PIN FUNCTIONS

SOIC8	Name	Description
1	SHDN	Shutdown. Connect to ground for normal operation. When high, supply current is less than $3\mu A. $
2	NC	Not Connected.
3	RG1	Gain Resistor. Connect to battery side of current-sense resistor through the gain resistor.
4	GND	Ground or Battery Negative Terminal.
5	OUT1	Output for Driving Resistor Load.
6	RG2	Gain Resistor. Connect to load side of current-sense resistor through the gain resistor.
7	VCC	Power Input. Connect to Battery Input.
8	OUT2	Output For Driving Capacitive Loads.

⁴⁾ Guaranteed by design.

⁵⁾ Input common mode range cannot exceed the supply voltage.

OPERATION

The MP8110 is a current-sense amplifier with a wide operating input voltage range of 2.5V to 40V. It has 1.4V to 40V Common-Mode range. This feature allows the monitoring of current flow out of a battery in deep discharge, and also enables high-side current sensing up to the supply voltage, $V_{\rm CC}$. Current flows through the sense resistor, $R_{\rm S}$, which generates a sense voltage $V_{\rm RS}$. The high precision sense amplifier built into the MP8110 monitors the differential voltage across $R_{\rm S}$ and dynamically adjusts the gate voltage of the internal P-channel MOSFET to maintain a equal passing current as $I_{\rm RG1}$. The current amplifier gain is therefore set as: $R_{\rm GS}$ / $R_{\rm G1}$.

Choosing Sensing Resistor

Given the gain and maximum load current, select R_S such that V_{RS} does not exceed +0.25V and V_{OUT1} does not exceed 5V. To measure lower currents more accurately, use a high value for Rs. A higher value develops a higher sense voltage, which overcomes offset voltage errors of the internal current amplifier.

In applications of monitoring very high current, ensure R_S is able to dissipate its own I^2R losses. If the resistor rating power is exceeded, its value may drift or it may fail altogether, causing a differential voltage across the terminals in excess of the absolute maximum range (0.25V).

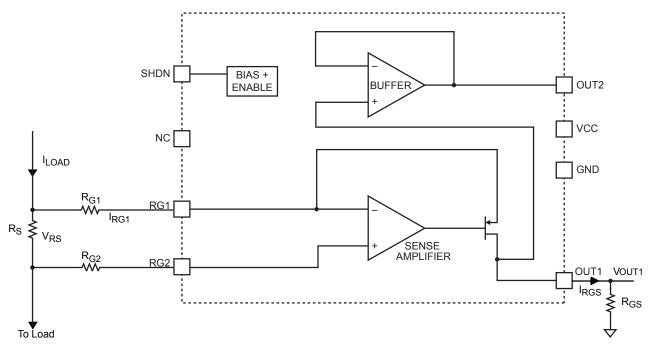


Figure 1—Functional Block Diagram

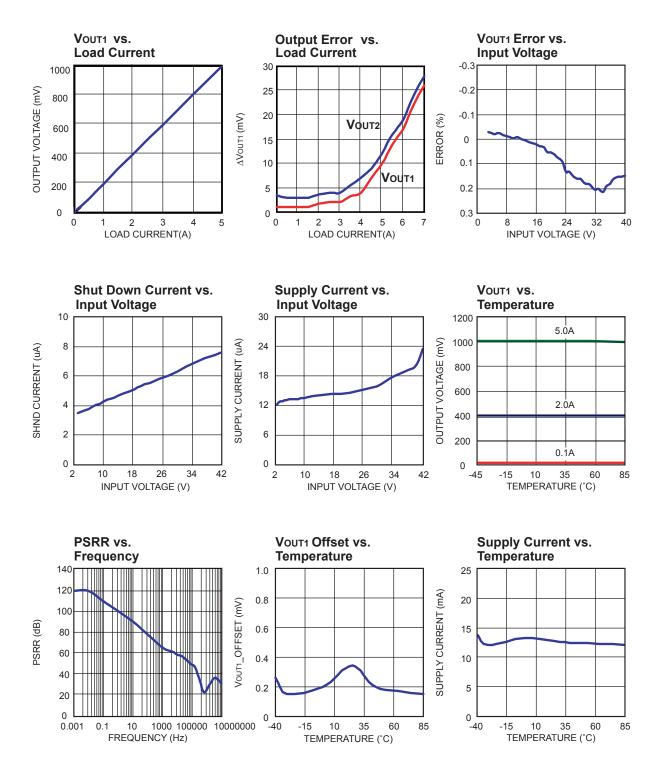
APPLICATION INFORMATION

COMPONENT SELECTION

Table 1—Suggested Component Values (refer to Typical Circuit on page 1)

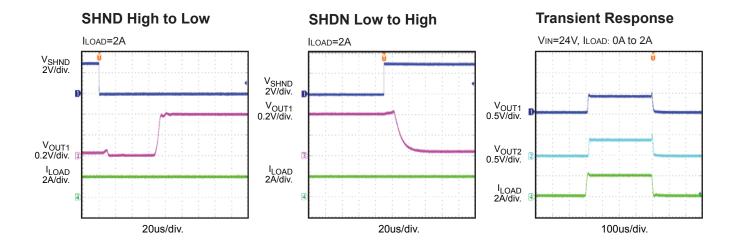
Full-Scale Load Current, I _{SENSE} (A)	Current Sense Resistor (mΩ)	Gain Setting Resistor $(k\Omega)$ (R _{G1} = R _{G2})	R_{GS} (k Ω)	Gain
0.1	500	2	20	10
1	50	2	20	10
5	10	2	20	10
10	5	2	20	10

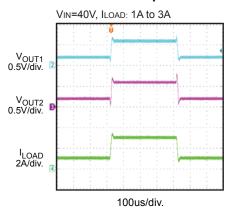
The value of V_{OUT1} can be obtained with the equation:


$$V_{OUT_1} = \frac{I_{LOAD} \times R_S \times R_{GS}}{R_{G1}} = I_{LOAD} \times R_S \times Gain$$

Where R_{G1} is the sense resistor and I_{LOAD} is the load current.

TYPICAL PERFORMANCE CHARACTERISTICS


 V_{IN} =24V, R_{G1} = R_{G2} =2K Ω , R_{G3} =20K Ω , R_S =20m Ω , C_{GS} =100pF, C_5 =0.1 μ F, T_A = +25°C, unless otherwise noted.



TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $V_{\text{IN}}\text{=}24V\text{, }R_{\text{G1}}\text{=}R_{\text{G2}}\text{=}2K\Omega\text{, }R_{\text{G3}}\text{=}20K\Omega\text{, }R_{\text{S}}\text{=}20m\Omega\text{, }C_{\text{GS}}\text{=}100p\text{F, }C_{\text{5}}\text{=}0.1\mu\text{F, }T_{\text{A}}\text{=}+25^{\circ}\text{C, unless otherwise noted.}$

Transient Response

TYPICAL APPLICATION

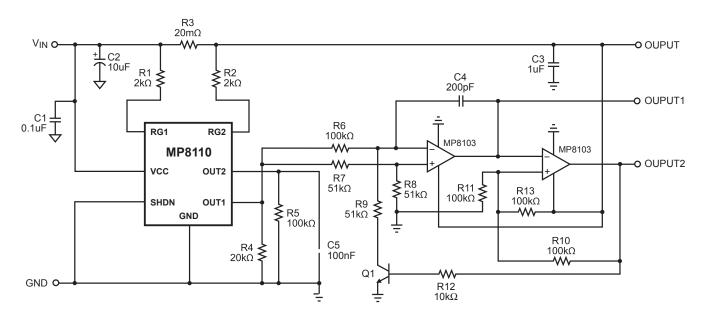
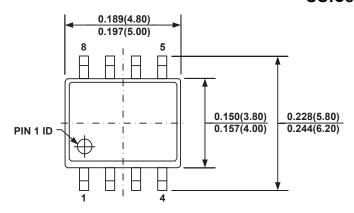
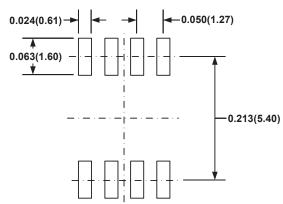
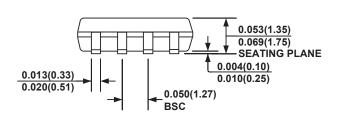
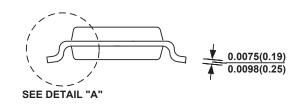



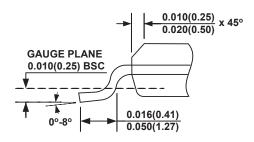
Figure 2—Current Control Oscillator



PACKAGE INFORMATION


SOIC8

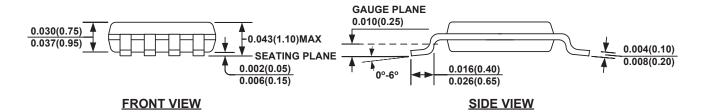


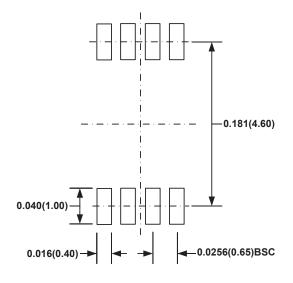

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"


NOTE:


- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

0.114(2.90) 0.122(3.10) 8 0.114(2.90) 0.122(3.10) 0.187(4.75) 0.199(5.05) 0.010(0.25) 0.014(0.35) 0.010(0.25) 0.010(0.25) 0.010(0.25) 0.010(0.25) 0.010(0.25) 0.010(0.25) 0.010(0.25)

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) PIN 1 IDENTIFICATION HAS HALF OR FULL CIRCLE OPTION.
- 6) DRAWING MEETS JEDEC MO-187, VARIATION AA.
- 7) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Amplifiers category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below:

MCP6C02T-050H/Q8B TSC210ICT WS74199Q-10/TR INA212BIDCKR MAX4372HEBT+T NTE955M INA199C3DCKT

FAN4010IL6X-F113 LT6100IDD#PBF LT1217CN8#PBF INA212CIDCKR LMP8480ASQDGKRQ1 INA212CIRSWT

LMP8481AHQDGKRQ1 LT6108HDCB-1#TRMPBF INA211CIRSWT LT6108AHMS8-1#PBF INA214CIRSWR LT1620CMS8#PBF

INA215CIDCKR LTC6101HVBCS5#TRMPBF LT6106HS5#PBF NTE1609 NTE926 NTE955MC NTE955S NTE955SM NTE978

NTE978C NTE978SM AD8211YRJZ-R2 AD8213WHRMZ AD8214ARMZ AD8214ARMZ-R7 AD8290ACPZ-R2 AD8290ACPZ-R7

AD22057RZ AD8215YRZ AD8210YRZ AD22057RZ-RL AD8210YRZ-REEL7 AD8215WYRZ ADM4073FWRJZ-REEL7 LT1999HMS8-50F#WPBF LT1999HMS8-10F#WPBF LTC6102HVIMS8#PBF LTC6101AIMS8#PBF LTC6102CMS8-1#PBF MAX9920ASA/V+

MAX4080TASA+T