DESCRIPTION

The MPQ3369 is a step-up converter with six channel current sources. It is designed to drive white LED arrays as backlighting for small- or medium-sized LCD panels.

The device uses peak current mode as its PWM control architecture to regulate the boost converter. Six channel current sources are applied into the LED cathode to adjust the LED brightness. The MPQ3369 regulates the current in each LED string to the value set via an external current-setting resistor, with 2.5% current regulation accuracy between strings.
A low on resistor MOSFET and a low headroom voltage are provided to improve efficiency. The MPQ3669 has a standard $I^{2} \mathrm{C}$ digital interface for easy use. The switching frequency can be configured via a resistor, $I^{2} \mathrm{C}$ interface, or external clock.

The MPQ3369 provides analog, PWM, and mix dimming modes with a PWM input. The dimming mode can be selected with the $\mathrm{I}^{2} \mathrm{C}$ interface or the MIX/AD pin. The device also has a phase shift function to eliminate noise during PWM dimming.
Robust protections guarantee safe operation of the device, and include over-current protection (OCP), over-voltage protection (OVP), overtemperature protection (OTP), and LED short and open protection. The MPQ3669 can also be configured to automatically decrease the LED current at high temperatures.
The MPQ3369 is available in a QFN-24 ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) package.

FEATURES

- 3.5 V to 36 V Input Voltage Range
- 6 Channels with Max 100 mA per Channel
- Internal $100 \mathrm{~m} \Omega, 50 \mathrm{~V}$ MOSFET
- Configurable Switching Frequency Up to 2.2 MHz
- External Sync SW Function
- Multi-Dimming Operation Mode through PWM Input, Including:
- Direct PWM Dimming
- Analog Dimming
- Mix Dimming with 25% or 12.5%

Transfer Point

- 15000:1 Dimming Ratio in PWM Dimming at $\mathrm{f}_{\text {Pwm }} \leq 200 \mathrm{~Hz}$
- 200:1 Dimming Ratio at Analog Dimming through PWM Dimming Signal Input
- Excellent EMI Performance, Frequency Spread Spectrum
- $I^{2} \mathrm{C}$ Interface
- Phase Shift Function for PWM Dimming
- 2.5% Current Matching
- Cycle-by-Cycle Current Limit
- Disconnect VOUT from VIN
- Optional LED Current Auto-Decrement at High Temperatures
- LED Short/Open, OTP, OCP, Inductor Short Protection
- Configurable LED Short Threshold
- Configurable OVP Threshold
- Fault Indicator Signal Output
- Allow to Connect Multiple LEDx Pins for One LED String
- Available in a QFN-24 ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) Package

APPLICATIONS

- Tablets/Notebooks
- Automotive Displays

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Rating
MPQ3369GR *	QFN-24 (4mmx4mm)	See Below	1

* For Tape \& Reel, add suffix -Z (e.g. MPQ3369GR - Z).

TOP MARKING

MPSYWW
MP3369
LLLLLL
MPS: MPS prefix
Y: Year code
WW: Week code
MP3369: Part number
LLLLLL: Lot number

PACKAGE REFERENCE

PIN FUNCTIONS

Pin \#	Name	Description
1	DIM	PWM signal input pin. Apply a PWM signal on DIM for brightness control. This pin is pulled low internally. It is recommended to set the PWM signal between 100 Hz and 20 kHz .
2	MIX/AD	Dimming mode set pin. MIX/AD is a current-source output ($18 \mu \mathrm{~A}$). Connect a resistor to MIX/AD to program its voltage. When MIX/AD is at a low level ($<0.3 \mathrm{~V}$), the device uses mix dimming. When MIX/AD is at a middle level (0.5 V to 0.8 V), the device uses PWM dimming. When MIX/AD is at a high level (1.0 V to 1.3 V), the device uses analog dimming. When MIX/AD is floating, the dimming mode is set by the internal MODE register.
3	FREQ/ SYNC	Switching frequency setting and SYNC pin. The switching frequency is determined by the voltage and current on this pin. Connect a resistor between FREQ/SYNC and GND to set the converter's switching frequency, or connect an external clock to the sync boost switching frequency. Leave FREQ/SYNC floating if the internal switching frequency is set by register FSW1:0.
4	EN	IC enable pin. Pull EN high to enable the IC. When EN is pulled low, the IC shuts down.
5	SCL/PSE	$I^{2} C$ interface clock input pin. To enable the phase shift PWM dimming function, tie SDA/PSE to SCL/PSE and pull up both pins between 0.75 V and 1 V .
6	SDA/PSE	$I^{2} C$ interface data input pin. To enable the phase shift PWM dimming function, tie SCL/PSE to SDA/PSE and pull up both pins between 0.75 V and 1 V .
7	COMP	Compensation pin.
8	FF	Fault flag pin. Open drain during normal operation. FF pulls low when any fault is triggered.
9	ISET	LED current setting. Tie a current-setting resistor from ISET to GND to program the current in each LED string.
10	AGND	Analog ground.
11	LED6	LED string 6 current input. Connect the LED string 6 cathode to this pin.
12	LED5	LED string 5 current input. Connect the LED string 5 cathode to this pin.
13	LED4	LED string 4 current input. Connect the LED string 4 cathode to this pin.
14	LED3	LED string 3 current input. Connect the LED string 3 cathode to this pin.
15	LED2	LED string 2 current input. Connect the LED string 2 cathode to this pin.
16	LED1	LED string 1 current input. Connect the LED string 1 cathode to this pin.
17	PGND	Power ground.
18	SW	Drain for the internal low-side MOSFET switch. Connect the power inductor to SW.
19	OVP	Over-voltage protection pin. Connect a resistor divider from OVP to GND to program the over-voltage protection (OVP) threshold.
20	STH	Short LED protection threshold set pin. STH is a current-source output ($18 \mu \mathrm{~A}$). Connect a resistor to STH to program its voltage. Float this pin if the internal short LED protection threshold is set by register TH_S 1:0.
21	FSP	Switching frequency spread spectrum pin. FSP is a current-source output $(18 \mu \mathrm{~A})$. Connect a resistor to program its voltage. Float this pin if using the internal register setting.
22	VCC	5V LDO output pin. VCC provides power for the internal logic and gate driver. Place a ceramic capacitor as close to this pin as possible to reduce noise.
23	SD	External disconnect PMOS gate drive pin. This pin turns off the external PMOS if a fault occurs. Float this pin if not used.
24	VIN	Power supply input. VIN supplies power to the IC.
$\begin{gathered} \text { Exposed } \\ \text { pad } \end{gathered}$	AGND	Chip ground. Connect exposed pad to AGND.

ABSOLUTE MAXIMUM RATINGS
Vin. -0.3 V to +42 V
$V_{\text {SW }}$, $\mathrm{V}_{\text {Led } 1}$ to $\mathrm{V}_{\text {Led }}$. -0.5 V to +50 V
Vsw.

\qquad
1.0V for <100ns
$V_{S D}$ $\mathrm{V}_{\text {IN }}-6 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}$
All other pins -0.3 V to +6 V
Junction temperature $150^{\circ} \mathrm{C}$
Lead temperature $260^{\circ} \mathrm{C}$
Continuous power dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{(2)}$
QFN-24 (4mmx4mm) 2.97W
ESD Rating
Human body model (HBM)
LED1-6 ESD 8kV
All other pins 2kV
Charged device model (CDM) 2kV
Recommended Operating Conditions ${ }^{(3)}$
Supply voltage (V_{IN}) 3.5 V to 36 V
Operating junction temp $\left(\mathrm{T}_{\mathrm{J}}\right) \ldots . .40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Thermal Resistance ${ }^{(4)} \quad \theta_{J A} \quad \theta_{J}$
 QFN-24 (4mmx4mm)..............42........... ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1) Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature, $\mathrm{T}_{\mathrm{J}}(\mathrm{MAX})$, the junction-toambient thermal resistance, θ_{JA}, and the ambient temperature, T_{A}. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D}(M A X)=\left(T_{J}\right.$ $\left.(\mathrm{MAX})-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) The device is not guaranteed to function outside of its operating conditions.
4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical value is at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Operating input voltage	VIN		3.5		36	V
Supply current (quiescent)	10	No switching		5		mA
Supply current (shutdown)	Ist	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}$ IN $=12 \mathrm{~V}$			1	$\mu \mathrm{A}$
Input UVLO threshold	Vin_uvlo	Rising edge		3.1		V
Input UVLO hysteresis				100		mV
LDO output voltage	Vcc	$\begin{aligned} & \mathrm{V}_{\text {EN }}=2 \mathrm{~V}, 6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<24 \mathrm{~V}, \\ & 0<\mathrm{IVCC}_{2}<10 \mathrm{~mA} \end{aligned}$		5		V
EN on threshold	Ven_on	$\mathrm{V}_{\text {En }}$ rising	1.2			V
EN off threshold	Ven_off	$V_{\text {EN }}$ falling			0.4	V
EN pull-down resistance	Ren			1		M ת
Step-Up Converter						
Low-side MOSFET on resistance	Ros_Ls	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		100		$\mathrm{m} \Omega$
SW leakage current	Isw_Lk	$\mathrm{V}_{\text {sw }}=45 \mathrm{~V}$			1	$\mu \mathrm{A}$
Switching frequency	fsw	RFREQ $=10 \mathrm{k} \Omega$	1.98	2.2	2.42	MHz
		RFREQ $=40 \mathrm{k} \Omega$	495	550	605	kHz
		FSW1:0 = 01, FREQ float	340	400	460	kHz
FREQ voltage	$V_{\text {frea }}$		0.57	0.6	0.63	V
FSP pull-up current	Ifsp			18		$\mu \mathrm{A}$
Maximum duty cycle	Dmax	$\mathrm{fsw}=1 \mathrm{MHz}$	90			\%
Cycle-by-cycle current limit	Isw_LIMit	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 90 \%$ duty cycle	2.6			A
		90\% duty cycle	2.3			A
Current limit protection	IcL	To trigger current limit protection		7.5		A
SYNC input low threshold	Vsync_Lo	$\mathrm{V}_{\text {sync }}$ falling			0.4	V
SYNC input high threshold	VSYNC_H	$V_{\text {SYNC }}$ rising	1.2			V
PSE active threshold	VPSE	Phase shift enabled	0.75	0.9	1.0	V
COMP transconductance	Gcomp	$\Delta \mathrm{lcomp} \leq 10 \mu \mathrm{~A}$		100		$\mu \mathrm{A} / \mathrm{V}$
COMP source current limit	Icomp_so			90		$\mu \mathrm{A}$
COMP sink current limit	Icomp_s			30		$\mu \mathrm{A}$
Current Dimming						
DIM input low threshold	Voim_LO	V DIM falling			0.4	V
DIM input high threshold	Voim_hi	VoIM rising	1.2			V
MIX/AD input low threshold	Vmix_Lo	Mix dimming threshold			0.3	V
MIX/AD input middle threshold	$\mathrm{V}_{\text {MIX_MID }}$	PWM dimming threshold	0.5		0.8	V
MIX/AD input high threshold	VMIX_HI	Analog dimming threshold	1.0		1.3	V

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical value is at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
MIX/AD pull-up current	Imix	MIX/AD pull-up current		18		$\mu \mathrm{A}$
Mix dimming transfer point		MIXTP bit $=0$		25		\%
Transfer point hysteresis				0.5		\%
Mix dimming output dimming frequency	$\mathrm{f}_{\text {MIX }}$	MIXFR bit $=0$		200		Hz
LED Current Regulator						
LEDx regulation voltage	$V_{\text {HD }}$	LLed $=20 \mathrm{~mA}$		350		mV
		$\mathrm{I}_{\text {LED }}=100 \mathrm{~mA}$		850	1000	mV
Current matching ${ }^{(5)}$		LLed $=20 \mathrm{~mA}$	-2.5		+2.5	\%
		LEED $=100 \mathrm{~mA}$	-2.5		+2.5	\%
ISET voltage	$\mathrm{V}_{\text {ISET }}$			1.2		V
LED current	ILed	$\mathrm{R}_{\text {ISEt }}=24.9 \mathrm{k} \Omega$	48.75	50	51.25	mA
		ILED $=1 / 50 \times 50 \mathrm{~mA}=1 \mathrm{~mA}$	0.9	1.05	1.2	mA
Phase shift degree		LED1 to 6 enable		60		。
		LED1 to 4 enable		90		。
Protection						
Over-voltage protection threshold	Vovp		1.9	2	2.1	V
OVP hysteresis				200		mV
OVP UVLO threshold	Vovp_uv	Step-up converter fails		100		mV
LEDx over-voltage threshold	VLedx_ov	LEDS bits = 01		5		V
LEDx over-voltage fault timer				7.7		ms
LEDx UVLO threshold	VLEDX_UV			100		mV
Thermal shutdown threshold (6)	Tst	Rising edge		170		${ }^{\circ} \mathrm{C}$
		Hysteresis		20		${ }^{\circ} \mathrm{C}$
SD pull-down current	IsD			60		$\mu \mathrm{A}$
SD voltage (respective to V_{IN})	VsD-IN	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {SD }}$		6		V
STH pull-up current	Isth	STH pull-up current		18		$\mu \mathrm{A}$
$1^{2} \mathrm{C}$ Interface						
Input logic low	VIL				0.4	V
Input logic high	V_{IH}		1.2			V
Output logic low	VoL	L LOAD $=3 \mathrm{~mA}$			0.4	V
SCL clock frequency	fscl				400	kHz
SCL high time	thigh		0.6			$\mu \mathrm{s}$
SCL low time	tıow		1.3			$\mu \mathrm{s}$
Data set-up time	tsu,DAT		100			ns
Data hold time	thd, dat		0		0.9	$\mu \mathrm{s}$
Set-up time for repeated start	tsu,STA		0.6			$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical value is at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Hold time for start	$\mathrm{t}_{\mathrm{HD}, \mathrm{STA}}$		0.6			$\mu \mathrm{~s}$
Bus free time between start and stop condition	$\mathrm{t}_{\mathrm{BuF}}$		1.3			ms
Set-up time for stop condition	tsu, sto		0.6			$\mu \mathrm{~s}$
Rise time of SCL and SDA	t_{R}		$20+0.1 \times \mathrm{C}_{\mathrm{B}}$		300	ns
Fall time of SCL and SDA	t_{F}		$20+0.1 \times \mathrm{C}_{\mathrm{B}}$		300	ns
Pulse width of suppressed spike	tsp		0		50	ns
Capacitance bus for each bus line	C_{B}				400	pF

Notes:
5) Matching is defined as the difference of the maximum to minimum current divided by 2 times the average current.
6) Guarantee by design.

I^{2} C-COMPATIBLE INTERFACE TIMING DIAGRAM

S = START CONDITION
$\mathrm{Sr}=$ REPEATED START CONDITION
$\mathrm{P}=\mathrm{STOP}$ CONDITION

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~L}=22 \mu \mathrm{H}, \mathrm{LED}=6 \mathrm{P} 12 \mathrm{~S}, \mathrm{f}_{\mathrm{SW}}=400 \mathrm{kHz}, \mathrm{I}_{\mathrm{SET}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Steady State
fsw $=400 \mathrm{kHz}$

VIN Power On

$10 \mathrm{~ms} /$ div.

PWM Dimming
$f_{\text {fwı }}=200 \mathrm{~Hz}, 50 \%$ duty cycle

CH1: Vsw
20V/div.

CH2: VPWM
5V/div.
CH3: IL
1A/div.
CH4: Iled 200mA/div.

Steady State
$\mathrm{f}_{\mathrm{sw}}=2.2 \mathrm{MHz}$

EN Power On

$10 \mathrm{~ms} / \mathrm{div}$.

PWM Dimming
$f_{P W M}=20 \mathrm{kHz}, 50 \%$ duty cycle

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~L}=22 \mu \mathrm{H}, \mathrm{LED}=6 \mathrm{P} 12 \mathrm{~S}, \mathrm{f}_{\mathrm{SW}}=400 \mathrm{kHz}, \mathrm{I}_{\mathrm{SET}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PWM Dimming
$f_{\text {Pwm }}=200 \mathrm{~Hz}, 0.01 \%$ duty cycle

Mix Dimming

$\mathrm{ffwm}=\mathrm{f}_{(\text {(LED })}=200 \mathrm{~Hz}, 10 \%$ duty cycle

Phase Shift Function
$f_{\text {fwi }}=200 \mathrm{~Hz}$, PWM dimming, 6-channel enable

CH1: Vsw 20V/div.

CH2: VPWm
5V/div.
CH3: ILED1
50mA/div.
CH4: ILED2 $50 \mathrm{~mA} / \mathrm{div}$.

PWM Dimming
$f_{\text {PWм }}=100 \mathrm{~Hz}, 0.005 \%$ duty cycle

Mix Dimming
$f_{P W M}=200 \mathrm{~Hz}, f_{(\text {ILED })}=23 \mathrm{kHz}, 10 \%$ duty cycle

$40 \mu \mathrm{~s} / \mathrm{div}$.

Frequency Spread Spectrum
$f_{\text {pwм }}=400 \mathrm{~Hz}, 1 / 100$ of center frequency

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~L}=22 \mu \mathrm{H}, \mathrm{LED}=6 \mathrm{P} 12 \mathrm{~S}, \mathrm{f}_{\mathrm{SW}}=400 \mathrm{kHz}, \mathrm{I}_{\mathrm{SET}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Open LED Protection
Open 1 string when working

$2 \mathrm{~ms} /$ div.

Short Inductor Protection

$10 \mu \mathrm{~s} / \mathrm{div}$.

Short VOUT to GND Protection

$1 \mathrm{~ms} / \mathrm{div}$.

Short LED Protection
Short 1 string when working

Short Diode Protection

Thermal Protection

FUNCTIONAL BLOCK DIAGRAM

Figure 1: Functional Block Diagram

MPQ3369 - 6-CHANNEL, BOOST WLED DRIVER W/ HIGH DIM RATIO AND I²C

OPERATION

The MPQ3369 is a configurable, constantfrequency, peak current mode, step-up converter with up to six channels of regulated current sources to drive an array of white LEDs.

Internal 5V Regulator

The MPQ3369 has an internal linear regulator (VCC). When V_{in} exceeds 6 V , the regulator outputs a 5 V power supply to the internal MOSFET switch gate driver and internal control circuitry. The VCC voltage drops to 0 V when the chip shuts down. The chip remains disabled until VCC exceeds the under-voltage lockout (UVLO) threshold.

System Start-Up

When enabled, the MPQ3369 checks the topology connection. The IC draws current from SD to enable the input disconnect PMOS to be turned on (if this PMOS is used).
After a 500μ s delay, the IC monitors the OVP pin to see if the output is shorted to GND. If the OVP pin voltage is below 100 mV , the IC is disabled and latches off. The MPQ3369 then continues to check other safety limits (e.g. LED open, overvoltage protection). If all protection tests pass, the IC starts boosting the step-up converter with an internal soft start.
The recommended start-up sequence is:

1. V_{IN}
2. EN
3. $I^{2} \mathrm{C}$ (optional)
4. PWM dimming signal

Step-Up Converter

The MPQ3369 employs peak current mode control to regulate the output energy. At the beginning of each switching cycle, the internal clock turns on the internal N -channel MOSFET. In normal operation, the minimum turn-on time is about 100ns.

To prevent subharmonic oscillations for duty cycles greater than 50%, add a stabilizing ramp to the output of the current-sense amplifier. This result is fed into the PWM comparator. When the summed voltage reaches the output voltage of the error amplifier, the internal MOSFET turns off.

The output voltage of the internal error amplifier is an amplified signal of the difference between the reference voltage ($\mathrm{V}_{\text {REF }}$) and the feedback voltage (V_{FB}). The converter automatically chooses the lowest active LEDx pin voltage to provide a sufficient output voltage to power all the LED arrays.

If V_{FB} drops below $\mathrm{V}_{\mathrm{REF}}$, the output of the error amplifier increases. More current flows through the MOSFET, which increases the power delivered to the output. This forms a closed loop that regulates the output voltage.
During light-load operation (e.g. when $\mathrm{V}_{\text {out }}$ is approximately equal to $\mathrm{V}_{\text {IN }}$), the converter runs in pulse-skip mode. In this mode, the MOSFET turns on for a minimum on time, then the converter discharges the power to the output for the remaining period. The external MOSFET remains off until the output voltage requires a boost.

Dimming Control

The MPQ3369 provides analog, PWM, and mix dimming mode. The dimming mode can be set with the $I^{2} \mathrm{C}$, or by connecting a resistor to MIX/AD. The MIX/AD voltage is calculated with Equation (1):

$$
\begin{equation*}
V_{\text {_MIXAD }}(\mathrm{mV})=18(\mu \mathrm{~A}) \times \mathrm{R}_{\text {_MIX/AD }}(\mathrm{k} \Omega) \tag{1}
\end{equation*}
$$

Where $\mathrm{V}_{\text {_mix/ad }}$ is the voltage on MIX/AD, and $\mathrm{R}_{\text {MII/AD }}$ is the resistor at MIX/AD.

Mix Dimming Mode

The MPQ3369 works in mix dimming mode with 12.5% or 25% as its transfer points (selected through the internal register). The are two methods to force the MPQ3367 into mix dimming mode:

1. The first method is to connect a resistor to the MIX/AD pin and set its voltage below 0.3 V .
2. The second is to float MIX/AD and set the internal mode selection register (MODE1:0) to 00 through the $I^{2} \mathrm{C}$.
A PWM dimming signal is applied to DIM. When the dimming duty exceeds 25%, analog dimming is activated and the LED current amplitude follows the PWM duty.

When the dimming duty drops below 25%, PWM dimming is activated (see Figure 2). The LED current amplitude (lied) remains at $1 / 4$ of the fullscale current, and the output dimming duty is 4 times the duty of the input PWM signal.

Figure 2: Mix Dimming with 25\% Transfer Point
There are two options for the output dimming frequency when the device operates in mix dimming mode: 200 Hz (default) or 23 kHz (no audible noise, but larger minimum dimming duty). This does not change based on the input PWM dimming frequency. The output dimming frequency is selected with the mix dimming output frequency selection bit (MIXFR) via the $I^{2} \mathrm{C}$.
This function eliminates audible noise and improves the dimming performance in small dimming ratio.Direct PWM Dimming
For direct PWM dimming, use a resistor to set MIX/AD to a middle level (0.5 V to 0.8 V), or float MIX/AD and set the internal mode select register (MODE1:0) to 01 through the $I^{2} \mathrm{C}$.
When a PWM signal is applied to DIM, the amplitude of the LED current (l LEDD $^{\text {) remains at the }}$ LED full scale, and $I_{\text {LED }}$ is reduced by the input PWM signal. The LED current duty follows the PWM input duty, and the LED current frequency is equal to the PWM input.

Analog Dimming Mode

For analog dimming mode, use a resistor to set MIX/AD to a high level (1 V to 1.3 V), or float MIX/AD and set the internal mode selection register (MODE) to 10 through the $I^{2} \mathrm{C}$.

The PWM input signal is calculated by an internal counter. The amplitude of the LED current is equal to $I_{\text {SET }} \times D_{\text {DIM }}$, where $I_{\text {SET }}$ is the full-scale LED current, and $D_{\text {DIM }}$ is the duty of the input PWM signal. To improve analog dimming performance, it is recommended to set the PWM signal between 100 Hz and 20 kHz .

To ensure good performance with a small dimming ratio, the minimum LEDx voltage shifts up to 2 V when the dimming duty is below 10%. Analog dimming supports a 200:1 dimming ratio.

Deep Dimming Ratio for PWM Dimming

When the output dimming on time is shorter than $7 \mu \mathrm{~s}$, the output voltage is regulated to 93% of the OVP voltage (see Figure 3).

Figure 3: Deep Dimming Ratio for PWM Dimming Unused LED Channel Setting
If the LEDx pin of an unused channel is connected to GND, the MPQ3367 can automatically detect the unused LED string and remove it from the control loop during start-up. If employing 5 strings, connect the LED6 pin to GND. If using 4 strings, connect LED5 and LED6 to GND, and so on.

The MPQ3369 can also disable the unused string via the internal register ($\mathrm{CH} 2: 0$ bit):

- $\mathrm{CH} 2: 0=000$: All 6 channels are in use
- $\mathrm{CH} 2: 0=001:$ LED1 - 5 are in use
- $\mathrm{CH} 2: 0=010:$ LED1 - 4 are in use
- $\mathrm{CH} 2: 0=011$: LED1 - 3 are in use
- $\mathrm{CH} 2: 0=100$: LED1-2 are in use
- $\mathrm{CH} 2: 0=101$: LED1 is in use

Phase Shift Function

To reduce inrush current and eliminate audible noise during PWM dimming, the MPQ3367 employs a phase shift function.

Two methods can be used to enable the phase shift function:

1. The first method is to connect SCL/PSE to SDA/PSE (to about 0.75 V to 1 V).
2. The second method is to set the internal register PSE bit to 1 through the $\mathrm{I}^{2} \mathrm{C}$.

The LED channels' current source is phaseshifted when the IC employs PWM dimming. The phase shift is based on which LED channels are in use, calculated with Equation (2):

$$
\begin{equation*}
\text { Phase }\left({ }^{\circ}\right)=\frac{360}{\mathrm{n}}\left({ }^{\circ}\right) \tag{2}
\end{equation*}
$$

Where n is the LED channel in use. If all six channels are in use, the shifted phase is 60°. LED1 directly follows the input PWM signal, and LED2 lags 60° behind (see Figure 4).

Figure 4: Phase Shift with 6 Channels
Figure 5 shows the phase shift function with four channels enabled. The shifted phase in this case is 90°.

Figure 5: Phase Shift with 4 Channels
In phase shift operation, the channels must be disabled in descending order of channel number. For example, if three strings are employed in application, then channels 6, 5, and 4 are disabled.

It is not recommended to tie two channels for one LED string with the phase shift function.

Frequency Spread Spectrum

The MPQ3369 uses switching frequency jitter to spread the switching frequency spectrum. This reduces the spectrum spike around the switching frequency and its harmonic frequencies.

The modulation frequency is fixed to $1 / 150$ of switching frequency.

The FSP pin can configure the dithering range:

- When FSP is below 0.3V, the jitter frequency is $1 / 20$ of the central frequency
- When FSP is between 0.4 V and 1.4 V , the jitter frequency is $1 / 32$ of the central frequency
Float FSP to follow the internal $I^{2} \mathrm{C}$ setting. The frequency jitter range can be selected via the FSPR bit:
- When FSPR = 0 (default), the jitter frequency is $1 / 20$ of the central frequency
- When FSPR $=1$, the jitter frequency is $1 / 32$ of the central frequency
Float FSP to follow the internal $I^{2} \mathrm{C}$ setting. The modulation frequency is selected via the FSPMF1:0 bits.
- When FSPMF1:0 $=00$, the modulation frequency is $1 / 100$ of the switching frequency
- When FSPMF1:0 $=01$, the modulation frequency is $1 / 150$ of the switching frequency
- When FSPMF1:0 $=10$, the modulation frequency is $1 / 200$ of the central frequency
- When FSPMF1:0 $=11$ (default), the function is disabled

Protection

The MPQ3369 includes open LED protection, short LED protection, short LEDx-to-GND protection, over-current protection, short VOUT-to-GND protection, and thermal protection. Once a protection is triggered, FF pulls to GND and the corresponding fault bit is set to 1 . After the IC recovers from protection, FF releases to high with a 750μ s delay.

Open LED Protection

Open string protection is achieved by detecting the voltage of the OVP and LEDx pins. If one string is open, and the respective LEDx voltage is low to ground, the IC charges the output voltage until it reaches the over-voltage protection (OVP) threshold.

If OVP is triggered, the chip stops switching and marks off the fault string, which has an LEDx pin voltage below 100 mV . Once marked off, the remaining LED strings force the output voltage back into normal regulation. The string with the
largest voltage drop determines the output regulation value.

Open string protection is recoverable. The marked-off string sends a 10μ s pulse current to check whether an open fault is removed after every 500μ s delay.

Short String Protection

The MPQ3369 monitors the LEDx voltages to determine whether a short string fault has occurred. When one or more strings are shorted, the respective LEDx pins tolerate high voltage stress. If an LEDx voltage exceeds the short protection threshold, an internal counter starts. When this fault condition lasts for 7.7 ms (100% duty cycle), the fault string is marked off. Once a string is marked off, it disconnects from the output voltage loop until the short is removed.
Two methods can be used to set the short protection threshold:
The first method is to connect a resistor at STH. STH outputs an $18 \mu \mathrm{~A}$ current source. The short protection threshold is 10 times the voltage on STH. The threshold is calculated using Equation (3):

$$
\begin{equation*}
\mathrm{V}_{\text {STH }}(\mathrm{V})=0.18 \times \mathrm{R}_{\text {_STH }}(\mathrm{k} \Omega) \tag{3}
\end{equation*}
$$

The second method is to set the internal register (TH_S1:0) when STH is floating.

When the LEDx voltage exceeds the threshold for 480 ms (100% duty cycle), all strings are marked off. The IC remains on standby until the strings are released from shorting. This function can be enabled or disabled through SEN.

Short string protection is recoverable. The marked-off string sends a 10μ s pulse current to check if the short fault has been removed after every 500μ s delay.

Short LEDx-to-GND Protection

When LEDx shorts to GND, the COMP voltage increases and saturates. When the COMP voltage is saturated for 20 ms or 40 ms (this time can be selected by internal register bit TCOMP), the protection is triggered. The IC latches off, FF pulls low, and SD pulls high to turn on the external P-channel MOSFET.

Short VOUT-to-GND Protection

When VOUT shorts to GND, the output voltage decreases. When the voltage of the OVP pin reaches the OVP pin's under-voltage lockout (UVLO) threshold for $10 \mu \mathrm{~s}$, the protection is triggered, and SD pulls high to turn off the external P-channel MOSFET. VOUT disconnects from VIN, and the IC latches off.

Cycle-by-Cycle Current Limit

To prevent the external components from exceeding the current stress rating, the IC has cycle-by-cycle current limit protection. When the current exceeds the current limit value, the IC stops switching until the next clock cycle.

Latch-Off Current Limit Protection

The device may be damaged under extreme conditions, such as an inductor or diode short to GND. To help prevent damage, the MPQ33679 provides a latch-off current limit protection when the current flowing through the internal MOSFET reaches the threshold (7.5A), and lasts for 5 switching cycles.

Thermal Protection

To prevent the IC from damage when operating at exceedingly high temperatures, the MPQ3369 implements thermal protection by detecting the silicon die temperature.

Over-Temperature LED Current Decrement

When the die temperature exceeds $140^{\circ} \mathrm{C}$, the MPQ3369 automatically decreases the LED current amplitude (lled) (see Figure 6).

Figure 6: ILED Decrease with Temperature
This function is enabled by the over-temperature current decrement bit (OTID):

- When OTID $=0$, the over-temperature current decrement is disabled
- When OTID = 1 (default), the overtemperature current decrement is enabled

Thermal Shutdown

When the die temperature exceeds the upper threshold (TST), the IC shuts down and resumes normal operation. When the temperature drops below the lower threshold, the IC recovers. The hysteresis value is typically $20^{\circ} \mathrm{C}$.

$I^{2} \mathrm{C}$ Interface Register Description

${ }^{1}{ }^{2} C$ Chip Address

The 7 -bit MSB device address is 0×38. After the start condition, the $I^{2} \mathrm{C}$-compatible master sends a 7-bit address followed by an 8th data direction bit that is either 1 (indicating a read) or 0 (indicating a write).

The following bit indicates the register address to/from which the data will be written/read.

Table 1: The $\mathrm{I}^{2} \mathrm{C}$-Compatible Device Address

0	1	1	1	0	0	0	R / W

REGISTER MAP ${ }^{(7)}$

Add	D7	D6	D5	D4	D3	D2	D1	D0
$\mathbf{0 0 H}$	OTID	MODE1	MODE0	MIXTP	MIXFR	FSPMF1	FSPMF0	FSPR
$\mathbf{0 1 H}$	PSEN	TH_S1	TH_S0	FSW1	FSW0	CH2	CH1	CH0
$\mathbf{0 2 H}$	SEN	TCOMP	FT_LEDG	FT_OTP	FT_UVP	FT_OCP	FT_LEDS	FT_LEDO
$\mathbf{0 3 H ~}$	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Note:
7) Leave corresponding pins floating if internal registers are used.

Register 1

Addr: 0x00				
Bit	Bit Name	Access	Default	Description
7	OTID	R/W	1	Over-temperature LED current decrement function enable bit. 0 : Disabled 1: Enabled
6:5	MODE	R/W	00	Dimming mode selection bit. 00: Mix dimming 01: PWM dimming 10: Analog dimming 11: Reserved Float MIX/AD if this register is being used.
4	MIXTP	R/W	0	Mix dimming transfer point selection bit. 0: 25\% transfer point 1:12.5\% transfer point
3	MIXFR	R/W	0	Mix dimming output frequency selection bit. $\begin{aligned} & 0: 200 \mathrm{~Hz} \\ & 1: 23 \mathrm{kHz} \end{aligned}$
2:1	FSPMF1:0	R/W	11	Frequency spread spectrum modulation frequency selection bit. 00: $1 / 100$ of central frequency 01: $1 / 150$ of central frequency 10: $1 / 200$ of central frequency 11: Disable the frequency spread spectrum function Float FSP if this register is being used.
0	FSPR	R/W	0	Frequency spread spectrum jitter range selection bit. $0: 1 / 20$ of central frequency 1: $1 / 32$ of central frequency Float FSP if this register is being used.

Register 2

Addr: 0x01				
Bit	Bit Name	Access	Default	Description
7	PSE	R/W	0	Phase shift enable bit. 0: Phase shift disabled $1:$ Phase shift enabled

6:5	TH_S1:0	R/W	01	LED short protection threshold set bit. $\begin{aligned} & 00: 2.5 \mathrm{~V} \\ & 01: 5 \mathrm{~V} \\ & 10: 7.5 \mathrm{~V} \\ & 11: 10 \mathrm{~V} \end{aligned}$
4:3	FSW1:0	R/W	01	Switching frequency set bit. $\begin{aligned} & 00: 200 \mathrm{kHz} \\ & 01: 400 \mathrm{kHz} \\ & 10: 1 \mathrm{MHz} \\ & 11: 2.2 \mathrm{MHz} \end{aligned}$ Float FREQ if this register is being used.
2:0	CH2:0	R/W	000	Channel selection bit. 000: All 6 channels are in use 001: LED1-5 are in use 010: LED1-4 are in use 011: LED1-3 are in use 100: LED1-2 are in use 101: LED1 is in use 110, 111: Reserved

Fault Register

		Addr: 0x02			
Bit	Bit Name	Access	Default	Description	
7	SEN	R/W	0	Short all LED protection when the PWM duty cycle exceeds 2%. $0:$ Disable $1:$ Enable	
6	TCOMP	R/W	0	COMP-saturated time select bit for LEDx-to-GND short. $0: 20 \mathrm{~ms}$ $1: 40 \mathrm{~ms}$	
5	FT_LEDG	R	0	LEDx short to GND protection fault indication bit. If this short occurs, the fault bit remains set to 1 until a read-back or power reset. $0:$ No fault $1:$ Fault Once this bit is read, the fault status cannot latch off until it is reset to 0.	
4	FT_OTP	R	0	Over-temperature protection (OVP) fault indication bit. If OVP occurs, the fault bit is set to 1 until read-back or power reset. $0:$ No fault $1:$ Fault Once this bit is read, the fault status cannot latch off until it is reset to 0.	
3	FT_UVP	R	0	Output under-voltage protection (UVP) fault indication bit. If UVP occurs, the fault bit is set to 1 until readback or power reset. $0:$ No fault $1:$ Fault Once this bit is read, the fault status cannot latch off until it is reset to 0.	

2	FT_OCP	R	0	Over-current protection (OCP) fault indication bit. If OCP occurs, the fault bit is set to 1 until readback or power reset. 0 : No fault 1: Fault Once this bit is read, the fault status cannot latch off until it is reset to 0 .
1	FT_LEDS	R	0	LED current source short fault indication bit. If this short occurs, the fault bit is set to 1 until readback or power reset. 0 : No fault 1: Fault Once this bit is read, the fault status cannot latch off until it is reset to 0 .
0	FT_LEDO	R	0	LED current source open fault indication bit. If this fault occurs, the fault bit is set to 1 until readback or power reset. 0 : No fault 1: Fault Once this bit is read, the fault status cannot latch off until it is reset to 0 .

Table 4: ID Register

Addr: 0x03						
Bit	Bit Name	Access	Default		Description	
$7: 0$	ID7:0	R	01100111	Device ID bits.		

APPLICATION INFORMATION

LED Current Setting

The LED current amplitude (lled) is set by an external resistor connected from ISET to GND. led $_{\text {Lean }}$ be estimated with Equation (4):

$$
\begin{equation*}
\operatorname{ILED}(\mathrm{mA})=\frac{1245}{\mathrm{R}_{\text {ISET }}(\mathrm{k} \Omega)} \tag{4}
\end{equation*}
$$

When $\mathrm{R}_{\text {ISET }}=24.9 \mathrm{k} \Omega$, and $\mathrm{I}_{\text {LED }}=50 \mathrm{~mA}$.

Switching Frequency

The switching frequency can be configured with a resistor, $I^{2} \mathrm{C}$ interface, or external clock.
To program the frequency on FREQ/SYNC with an external resistor, the switching frequency can be calculated with Equation (5):

$$
\begin{equation*}
\mathrm{fsw}(\mathrm{kHz})=\frac{22000}{\mathrm{R}_{\mathrm{osc}}(\mathrm{k} \Omega)} \tag{5}
\end{equation*}
$$

When Rosc $=44.2 \mathrm{k} \Omega$, $\mathrm{f}_{\mathrm{Sw}}=500 \mathrm{kHz}$.
Synchronize the switching frequency with an external clock to improve EMI, efficiency, and thermal performance.
For details on how to set the switching frequency bit (fSW1:0), see Register Map 2 on page 20. Float FREQ if the fSW1:0 bit is used.

Selecting the Input Capacitor

The input capacitor reduces the switching noise from the device and the surge current drawn from the input supply. The input capacitor impedance at the switching frequency should be below the input source impedance to prevent the high-frequency switching current from passing through to the input. Ceramic capacitors with X5R or X7R dielectrics are recommended for their low ESR and small temperature coefficients. For most applications, a $10 \mu \mathrm{~F}$ ceramic capacitor is sufficient.

Selecting the Inductor

The MPQ3369 requires an inductor to supply a higher output voltage while being driven by the input voltage. A larger-value inductor results in less ripple current, lower peak inductor current, and less stress on the internal N -channel MOSFET.

However, a larger-value inductor has a larger physical size, higher series resistance, and lower saturation current.

Choose an inductor that does not saturate under worst-case conditions (minimum V_{IN}, maximum LED current). Select the minimum inductor value to ensure that the boost converter works in continuous conduction mode with high efficiency and good EMI performance.

Calculate the required inductance value with Equation (6):

$$
\begin{equation*}
\mathrm{L} \geq \frac{\eta \times V_{\text {OUT }} \times D \times(1-D)^{2}}{2 \times f_{\text {Sw }} \times I_{\text {LOAD }}} \tag{6}
\end{equation*}
$$

Where $\mathrm{V}_{\text {OUt }}$ is the output voltage, $\mathrm{f}_{\text {Sw }}$ is the switching frequency, I LOAD is the LED load current, η is the efficiency, and D can be estimated with Equation (7):

$$
\begin{equation*}
\mathrm{D}=1-\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OUT }}} \tag{7}
\end{equation*}
$$

Where $\mathrm{V}_{\text {IN }}$ is the input voltage.
With the given inductor value, the inductor DC current rating is at least 40% greater than the maximum input peak inductor current for most applications. The inductor's DC resistance should be as small as possible to improve efficiency.

Selecting the Output Capacitor

The output capacitor keeps the output voltage ripple small and ensures feedback loop stability. The output capacitor impedance must be low at the switching frequency. Ceramic capacitors with X7R dielectrics are recommended for their low ESR. For most applications, a $10 \mu \mathrm{~F}$ ceramic capacitor is sufficient.

PCB Layout Guidelines

Careful attention must be paid to the PCB board layout and components placement. Proper layout of the high-frequency switching path is critical to prevent noise and electromagnetic interference problems.
The IC exposed pad is internally connected to AGND pin, and all logic signals are referred to
the AGND. For the best results, follow the guidelines below:

1. Keep the loop between the SW to PGND pin, output diode, and capacitor as short as possible due to the high-frequency pulse current.
2. Externally connect PGND to AGND.
3. Route PGND away from the logic signals.

TYPICAL APPLICATION CIRCUIT

Figure 7: Typical Application Circuit for the MPQ3369 in a QFN-24 Package
The MPQ3369 allows the user to connect two or more channels (LEDx pins) for one LED string. However, in this case it is not recommended to use the phase shift function.

PACKAGE INFORMATION

QFN-24 (4mmx4mm)

BOTTOM VIEW

SIDE VIEW

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
4) JEDEC REFERENCE IS MO-220.
5) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MPQ3369GR-Z	QFN-24 (4mmx4mm)	5000	N/A	13 in	12 mm	8 mm

Notice: The information in this document is subject to change without notice. Users should warrant and guarantee that thirdparty Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Monolithic Power Systems manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z NCL30486A2DR2G IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUACTR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E

