

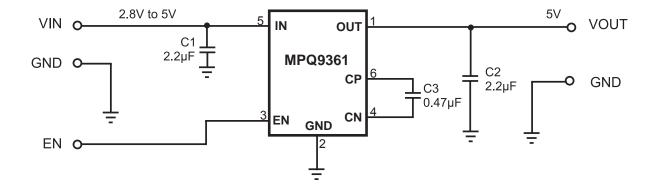
Industrial Grade, High Performance Regulated Charge Pump

DESCRIPTION

The MPQ9361 is a high performance, regulated charge pump converter. Its input voltage ranges from 2.8V to Vout. The output voltage is regulated to a fixed 5V. No external inductor is required for simplicity and compactness. Internal soft-start circuit effectively reduces the in-rush current both while start-up and mode change.

The MPQ9361 is available in a compact TSOT23-6 package

FEATURES

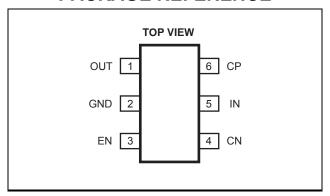

- Guaranteed Industrial Temp Range Limits
- Input Voltage Range: 2.8V to 5V
- Internal Soft-Start
- Output Maximum Current up to 110mA
- Fixed 5V Output Voltage with 30mV Ripple
- 2X Charge Pump
- Fixed 1.35MHz Switching Frequency
- Over Current Protection
- Short Circuit Protection
- In-rush Current limit
- TSOT23-6 package and Lead (pb)-Free

APPLICATIONS

- Cell phone, Smart phone, LED backlight
- PDA or hand Held Computer
- Camera Flash White LED
- LCD Display Supply
- TV-Remote Control

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	Top Marking	Free Air Temperature (T _A)	
MPQ9361DJ	TSOT23-6	U2	-40°C to +85°C	

* For Tape & Reel, add suffix –Z (e.g. MP MPQ9361DJ–Z); For RoHS compliant packaging, add suffix –LF (e.g. MPQ9361DJ–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM	RATINGS (1)
Supply Input Voltage	0.3V to +6.0V
All Other Pins	
Storage Temperature	-65°C to +150°C
Continuous Power Dissipation	$(T_A = +25^{\circ}C)^{(2)}$
	0.64W
Junction Temperature	+150°C
Lead Temperature	+260°C
Recommended Operating	Conditions ⁽³⁾
Supply Voltage V _{IN}	2.8V to 5.0V
Output Voltage V _{OUT}	5.0V
Operating Junct. Temp (T ₁)	-40°C to +125°C

Thermal Resistance ⁽⁴⁾	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
TSOT23-6	195	25	°C/W

Notes:

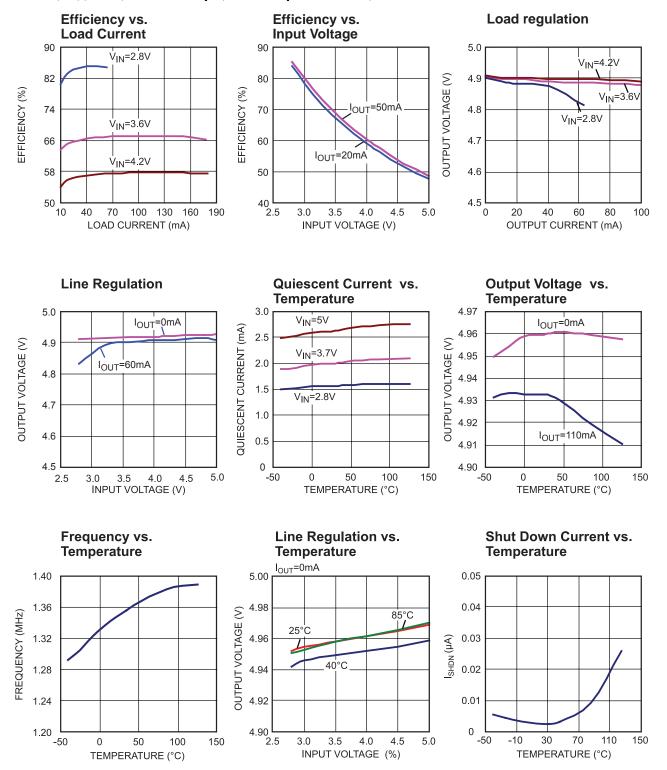
- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer board.

2

ELECTRICAL CHARACTERISTICS

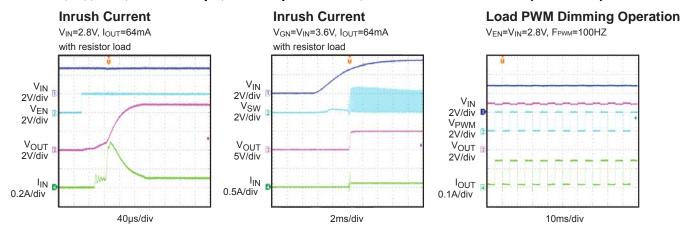
 V_{IN} =3.7V, C_{IN} = C_{OUT} =2.2uF, C_P =0.22 μ F, T_A =-40°C to +85°C. Typical values are at T_A =25°C, unless otherwise noted.

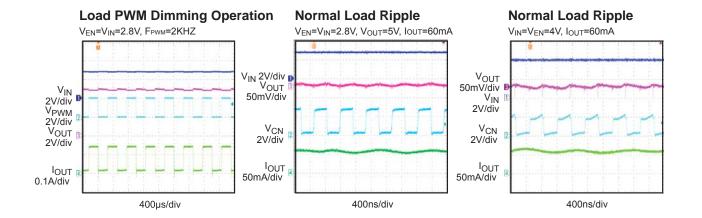
Parameter	Symbol	Condition		Min	Тур	Max	Units
Input Supply Voltage	V_{IN}			2.8		5	V
Output Voltage	V _{OUT}	V _{IN} >3.2V, I _{OUT} <110mA	T _A =25°C	4.8	5	5.2	V
Output voltage	V 001		$-40^{\circ}C \le T_A \le +85^{\circ}C$	4.6	5	5.2	
Quiescent Current	ΙQ	I _{OUT} =0	I _{OUT} =0		2	4	mA
Maximum Output Current	Io	V _{IN} >3.2V	V _{IN} >3.2V				mA
Over Current Protection	I _{OCP}	V _{OUT} =5V	V _{OUT} =5V		350	500	mA
Short Circuit Protection	I _{SHORT}	T _A =25°C			60	90	mA
		-40°C ≤ T _A ≤	+85°C		60	150	
Output Ripple		I _{OUT} =60mA			30		mV
Shut Down Current	I _{SHDN}	V_{IN} =4.5V, V_{E}	_N <0.4V		0.1	1	μΑ
Operation Frequency	Fosc			1.1	1.35	1.6	MHz
Enable Voltage, High	V _{EN} (HIGH)				1.5		V
Enable Voltage, Low	V _{EN} (LOW)				0.4		V
Enable Pin Leakage	I _{EN}	V _{EN} =5V			0.2	1	μA


PIN FUNCTIONS

Pin#	Name	Description
1	OUT	Output Voltage. Decoupled with a 2.2µF ceramic capacitor for a load current less than 60mA. For a load current greater than 60mA, use 10µF decoupling capacitor.
2	GND	Ground.
3	EN	Device Enable: A logic high input (V_{EN} >1.5V) turns on the regulator. A logic low input (V_{EN} >0.4V)
4	CN	Flying Capacitor Negative Terminal.
5	IN	Input.
6	CP	Flying Capacitor Positive Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS


 V_{IN} =3.7V, V_{OUT} =5V, C1=C2=2.2 μ F, C3=0.47 μ F. T_A =25°C, unless otherwise noted.



TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN}=3.7V$, $V_{OUT}=5V$, C1=C2=2.2 μ F, C3=0.47 μ F. $T_A=25^{\circ}$ C, unless otherwise noted. (continued)

OPERATION

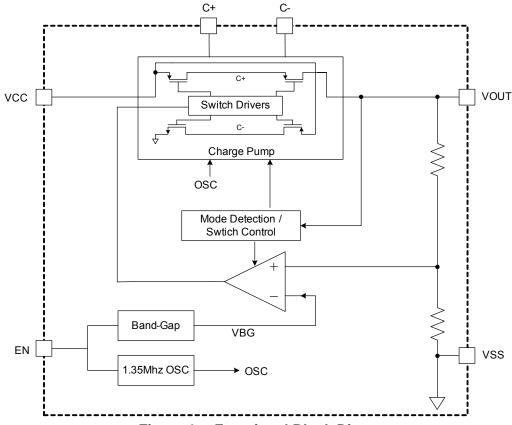
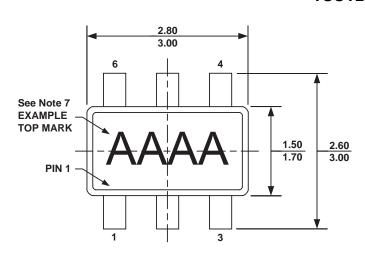
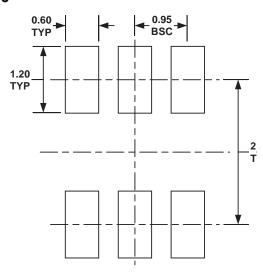
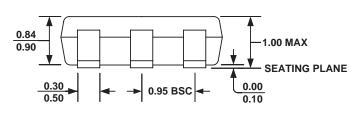


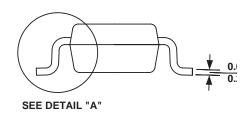
Figure 1— Functional Block Diagram


The MPQ9361 uses a switched capacitor charge pump to boost an input voltage to a regulated output voltage. Regulation is achieved by sensing the charge pump output voltage through an internal resistor divider network. A switched doubling circuit is enabled when the divided output drops below a preset trip point controlled by an internal comparator. The switching signal, which drives the charge pump, is created by an integrated oscillator within the control circuit block. The fixed charge pump switching frequency is approximately 1.35MHz.

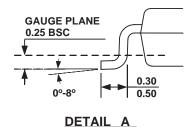

The MPQ9361 has complete output short-circuit and thermal protection to safeguard the device under extreme operating conditions. An internal thermal protection circuit senses die temperature and will shut down the device if the internal junction temperature exceeds approximately 145°C. The charge pump will remain disabled until the fault condition is relieved.

PACKAGE INFORMATION


TSOT23-6



TOP VIEW


RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FL OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FOF SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION
- 6) DRAWING IS NOT TO SCALE.
- 7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Drivers category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below:

LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201
IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7
STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR
TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1
AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z
MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z NCL30486A2DR2G IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUACTR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2
BD9206EFV-E2 BD9416FS-E2 LYT4227E