
MSKSEMI

ESD

TVS

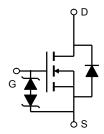
TSS

MOV

GDT

PLED

Broduct data sheet


SOP-8

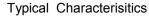
- 1 Source 2 Source 3 Source
- 5 Drain 6 Drain 7 Drain
- 8 Drain $4\ \mathrm{Gate}$

Features

- V_{DS} (V) = 40V
- ID = 14 A (VGS = 10V)
- RDS(ON) < 13.0m Ω (VGS = 10V)
- RDS(ON) < 16.5m Ω (VGS = 4.5V)

Absolute Maximum Ratings Ta = 25℃

Parameter	Symbol	Rating	Unit		
Drain-Source Voltage		VDS	40	V	
Gate-Source Voltage		Vgs	±20		
Continuous Drain Current	Ta=25℃	lo	14		
	Ta=70°C		10	A	
Pulsed Drain Current	IDM	70			
Avalanche Current		lar			30
Repetitive Avalanche Energy	L=0.3mH	Ear	135	mJ	
Power Dissipation	Ta=25℃	Pp	3.1	W	
1 ower Dissipation	Ta=70°C	10	2	VV	
Thermal Resistance.Junction- to-Ambient	t ≤ 10s	RthJA	40		
	Steady-State		75	°C/W	
Thermal Resistance.Junction- to-Lead		RthJL	24		
Junction Temperature		TJ	150	$^{\circ}$	
Storage Temperature Range		Tstg	-55 to 150		



Electrical Characteristics Ta = 25℃

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VDSS	ID=250 μ A, VGS=0V	40			V
Zana Oata Wallana Basin Ourrant	IDSS	VDS=32V, VGS=0V			1	^
Zero Gate Voltage Drain Current		VDS=32V, VGS=0V, TJ=55℃			5	uA
Gate-Body Leakage Current	Igss	VDS=0V, VGS=±20V			±100	uA
Gate Threshold Voltage	VGS(th)	VDS=VGS, ID=250uA	1		3	٧
Static Drain-Source On-Resistance	Rds(on)	Vgs=10V, Ip=14A	11.5		11.5	
		Vgs=10V, ID=14A TJ=125°C		13		mΩ
		Vgs=4.5V, ID=5A			16.5	
On State Drain Current	Id(on)	Vgs=10V, Vps=5V	70			Α
Forward Transconductance	grs	VDS=5V, ID=5A	50			S
Input Capacitance	Ciss			1600	1920	pF
Output Capacitance	Coss	Vgs=0V, Vps=20V, f=1MHz		320		
Reverse Transfer Capacitance	Crss			100		
Gate Resistance	Rg	Vgs=0V, Vps=0V, f=1MHz		3.4		Ω
Total Gate Charge (10V)	Qg			22		nC
Total Gate Charge (4.5V)	Qg	Vgs=10V, Vps=20V, Ip=14A		10.5		
Gate Source Charge	Qgs	VGS-10V, VDS-20V, ID-14A		4.2		
Gate Drain Charge	Qgd			4.8		
Turn-On DelayTime	td(on)			3.5		
Turn-On Rise Time	tr	Vgs=10V, Vps=20V, Rt=1.5Ω,		6		ns
Turn-Off DelayTime	td(off)	Rgen=3Ω		13.2		
Turn-Off Fall Time	tf			3.5		
Body Diode Reverse Recovery Time	trr	I== 14A di/d== 100A/up		31		
Body Diode Reverse Recovery Charge	Qrr	F= 14A, di/dt= 100A/us		33		nC
Maximum Body-Diode Continuous Current	Is				4	Α
Diode Forward Voltage	VsD	Is=1A,VGS=0V			1	V

Note : The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max.

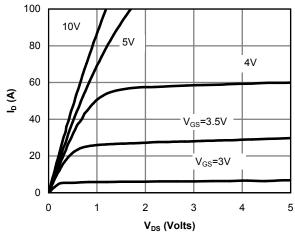


Figure 1: On-Region Characteristics

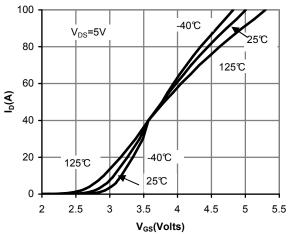


Figure 2: Transfer Characteristics

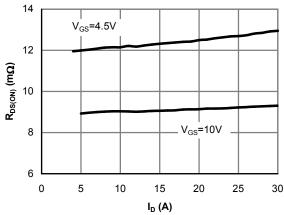


Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

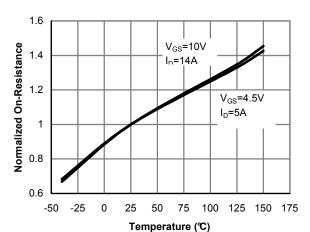


Figure 4: On-Resistance vs. Junction Temperature

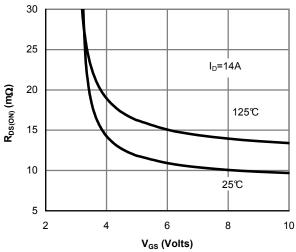


Figure 5: On-Resistance vs. Gate-Source Voltage

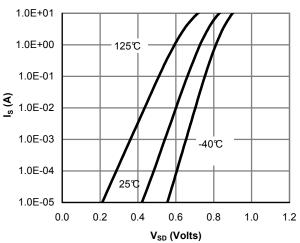


Figure 6: Body-Diode Characteristics

Typical Characterisitics

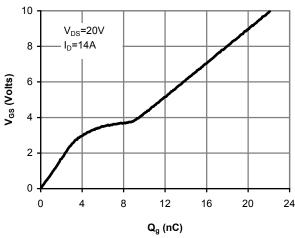


Figure 7: Gate-Charge Characteristics

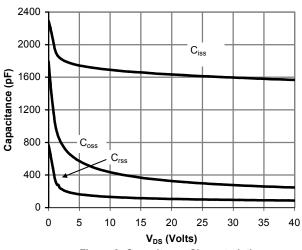
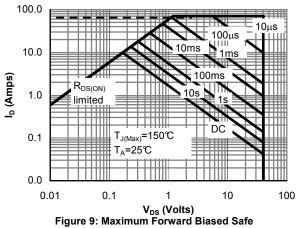



Figure 8: Capacitance Characteristics

Operating Area (Note F)

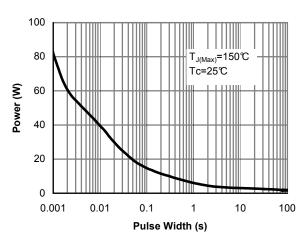
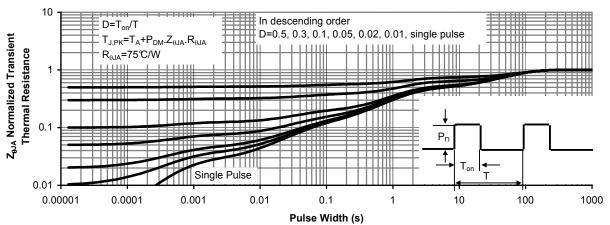
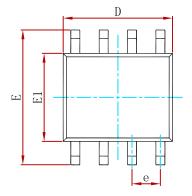
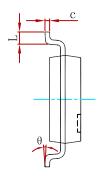
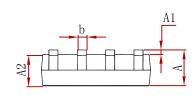
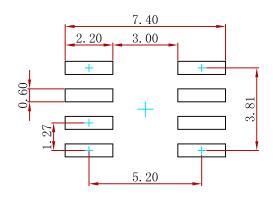


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

PACKAGE MECHANICAL DATA



Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0. 250	0.007	0.010	
D	4.800	5.000	0. 189	0. 197	
e	1.270 (BSC)		0.050 (BSC)		
Е	5. 800	6. 200	0. 228	0.244	
E1	3.800	4.000	0. 150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
AO4480-MS	SOP-8	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by MSKSEMI manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T)

405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD

TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7

NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7

BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1 IPS60R1K0PFD7SAKMA1

IPS60R360PFD7SAKMA1 IPS60R600PFD7SAKMA1