
Product data sheet

www.msksemi.com

TO-252

Absolute Maximum Ratings

Description

The AOD478-MS is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The AOD478-MS meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Product Summary

BVDSS	RDSON	ID
100V	70 mΩ	20A

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	20	А
I₀@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	10	А
I₀@T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	3.4	A
Ідм	Pulsed Drain Current ²	30	А
EAS	Single Pulse Avalanche Energy ³	6.1	mJ
las	Avalanche Current	15	А
P _D @T _C =25°C	Total Power Dissipation ³	34.7	W
P _D @T _A =25°C	Total Power Dissipation ³	2	W
Tstg	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-ambient ¹		62	°C/W
Rejc	Thermal Resistance Junction-Case ¹		3.6	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{\text{DSS}} / \triangle T_{\text{J}}$	BVDSS Temperature Coefficient	Reference to $25^{\circ}C$, $I_D=1mA$		0.098		V/°C
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		70	87	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =8A		85	90	mΩ
V _{GS(th)}	Gate Threshold Voltage		1.0		2.5	V
$ riangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	──V _{GS} =V _{DS} , I _D =250uA		-4.57		mV/°C
	Dursin Source Lookene Current	V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	
IDSS	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =55°C			5	uA
Igss	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		13		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2		Ω
Qg	Total Gate Charge (10V)			26.2		
Q_{gs}	Gate-Source Charge			4.6		nC
Q _{gd}	Gate-Drain Charge			5.1		
T _{d(on)}	Turn-On Delay Time			4.2		
Tr	Rise Time	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω		8.2		
T _{d(off)}	Turn-Off Delay Time	I _D =10A		35.6		ns
T _f	Fall Time			9.6		
Ciss	Input Capacitance			1535		
Coss	Output Capacitance Vbs=15V , Vgs=0V , f=1MHz			60		pF
Crss	Reverse Transfer Capacitance			37		

Diode Characteristics

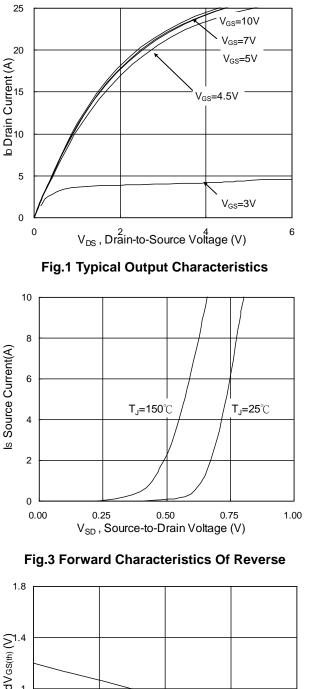
Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5}				20	А
Ism	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			30	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time			37		nS
Qrr	Reverse Recovery Charge	IF=10A,dI/dt=100A/µs,TJ=25°C		27.3		nC

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,I_{AS}=11A


4.The power dissipation is limited by 150 $^\circ\text{C}$ junction temperature

5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

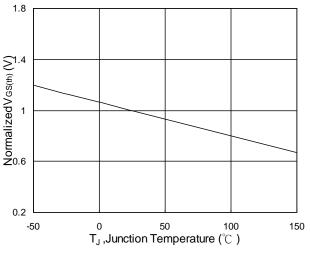


Fig.5 Normalized $V_{GS(th)}$ vs. T_J

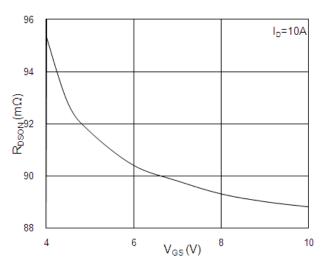


Fig.2 On-Resistance vs. Gate-Source

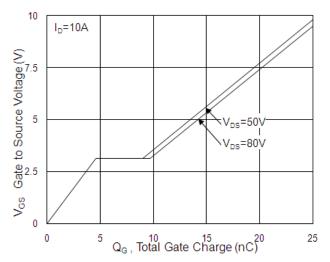
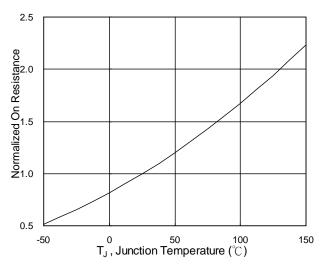
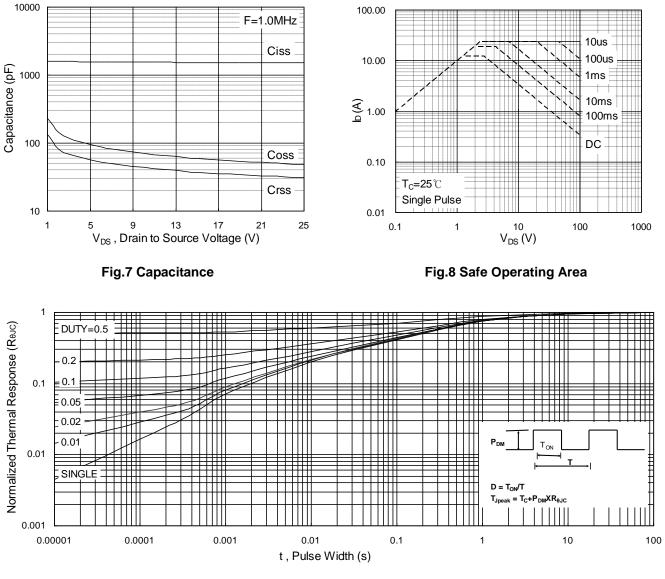
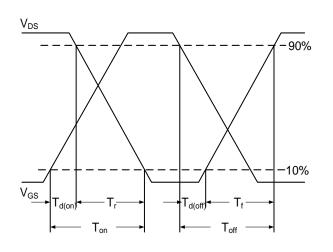
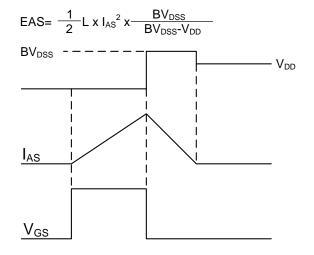
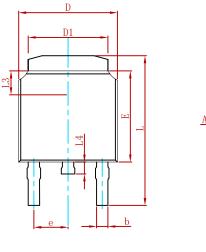
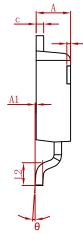


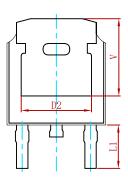
Fig.4 Gate-Charge Characteristics

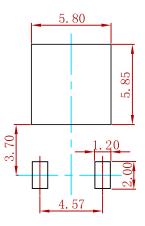

Fig.6 Normalized RDSON vs. TJ


Fig.11 Unclamped Inductive Switching Waveform



PACKAGE MECHANICAL DATA



h

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
A	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.635	0.770	0.025	0.030
С	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830	REF.	0.190	REF.
E	6.000	6.200	0.236	0.244
е	2.186	2.386	0.086	0.094
L	9.712	10.312	0.382	0.406
L1	2.900	REF.	0.114 REF.	
L2	1.400	1.700	0.055	0.067
L3	1.600	REF.	REF. 0.063 REF.	
L4	0.600	1.000	0.024	0.039
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.250	REF.	0.207	REF.

Suggested Pad Layout

Note:

1.Controlling dimension:in millimeters.

2.General tolerance:± 0.05mm.

3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
AOD478-MS	TO-252	2500

<u>Attention</u>

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

■ MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications f any and all MSKSEMI Semiconductor products described orcontained herein.

■ Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

■ Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by MSKSEMI manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1 IPS60R600PFD7SAKMA1