M5K5EMI
 SEMICONDUCTOR

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range
- 1.23 V to 37 V (57 V for HV version) $\pm 4 \%$ max over line and load conditions
- Guaranteed 3A output current
- Wide input voltage range, 40 V up to57V for HV version
- Requires only 4 external components
- $\quad 52 \mathrm{kHz}$ fixed frequency oscillator
- TTL shutdown capability, low power standbymode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck)regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical application Figure 1.(Fixed Output Voltage Versions)

Package Types

LM2576XX-MS/LM2576HVXX-MS
HF
Semiconductor

Pin Assignments

TO220B-5L/TO220-5L

TO263-5L

Pin Descriptions

Name	Description
Vin	Input supply voltage
Output	Switching output
Gnd	Ground
Feedback	Output voltage feedback
ON/OFF	ON/OFF shutdown Active is "Low" or floating

Block Diagram

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{~K}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{~K}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{~K}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{~K}$
For ADJ, Version
$\mathrm{R} 1=$ Open, $\mathrm{R} 2=0 \Omega$

Ordering information

Temperature Range	Output Voltage, V					Package Type
	3.3	5.0	12	15	ADJ	
$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \\ \leq 125^{\circ} \mathrm{C} \end{gathered}$	LM2576HVS-3.3	LM2576HVS -5.0	LM2576HVS -12	LM2576HVS -15	LM2576HVS -ADJ	TO-263
	LM2576S -3.3	LM2576S-5.0	LM2576S -12	LM2576S -15	LM2576S -ADJ	
	LM2576HVT -3.3	LM2576HVT -5.0	LM2576HVT-12	LM2576HVT-15	LM2576HVT-ADJ	TO-220
	LM2576T-3.3	LM2576T-5.0	LM2576T-12	LM2576T-15	LM2576T -ADJ	

Absolute Maximum Ratings ${ }_{\text {Parameter }}$ (Note 1)

Parameter	Maximum	Units
Maximum Supply Voltage		
LM2576	45	
LM2576HV	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}$ IN	
ON/OFF Pin Input Voltage	-1	
Output Voltage to Ground (Steady State)	Internally Limited	V
Power Dissipation	-65 to +150	W
Storage Temperature Range	150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	2	${ }^{\circ} \mathrm{C}$
Minimum ESD Rating (C=100pF, $\mathrm{R}=1.5 \mathrm{k} \Omega$)	260	kV
Lead Temperature (Soldering, 10 Seconds)	${ }^{\circ} \mathrm{C}$	

Operating Ratings

	Parameter	Value
Temperature Range	$-40 \leq T_{J} \leq+125$	Units
LM2576/LM2576HV		
Supply Voltage		
	LM2576	40

Electrical Characteristics LM2576-3.3,LM2576HV -3.3
Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-3.3 } \\ \text { LM2576HV }-3.3 \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I} \text { LOAD }=0.5 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\text { Max }) \end{gathered}$
Vout	Output Voltage LM2576	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq$ 3A Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	$\begin{gathered} V \\ \mathrm{~V}(\min) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
Vout	Output Voltage LM2576HV	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq$ 3A Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%

Electrical CharacteristicsLM2576-5.0,LM2576HV-5.0
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2576-5.0LM2576HV-5.0		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	5.0	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\operatorname{Max}) \end{gathered}$
$V_{\text {OUt }}$	OutputVoltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LAOD}} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & \text { 4.800/4.750 } \\ & 5.200 / 5.250 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUt }}$	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \\ & \text { Circuit of Figure } \end{aligned}$	5.0	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V} \text { (Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	77		\%

Electrical Characteristics LM2576 -12, LM2576HV -12
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-12 } \\ \text { LM2576HV -12 } \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit(Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ Circuit of Figure 2	12	$\begin{aligned} & 11.76 \\ & 12.24 \end{aligned}$	$\begin{aligned} & V \\ & V(\operatorname{Min}) \\ & V(\operatorname{Max}) \end{aligned}$
Vout	OutputVoltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \end{aligned}$ Circuit of Figure 2	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	$\begin{gathered} \hline \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
Vout	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \end{aligned}$	$\begin{gathered} \hline \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$, ILOAD $=3 \mathrm{~A}$	88		\%

Electrical Characteristics LM2576-15,LM2576HV
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-15 } \\ \text { LM2576HV -15 } \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
Vout	Output Voltage	$\mathrm{V}_{\text {IN }}=25, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	15	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\operatorname{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUt }}$	OutputVoltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 18 \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V} \end{aligned}$ $\text { Circuit of Figure } 2$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \end{aligned}$	$\begin{gathered} V \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$V_{\text {OUt }}$	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I} \text { LOAD } \leq 3 \mathrm{~A}, \\ & 18 \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\mathrm{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

Electrical Characteristics LM2576 -ADJ, LM2576HV -ADJ
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{array}{r} \text { LM2576 -ADJ } \\ \text { LM2576HV -ADJ } \\ \hline \end{array}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit(Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
Vout	Feedback Voltage	$\begin{aligned} & \hline V_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \\ & V_{\text {out }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	$\begin{gathered} V \\ V(\text { Min }) \\ V(\text { Max }) \end{gathered}$
Vout	Feedback Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I} \text { LOAD } \leq 3 \mathrm{AA}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \\ & 40 \mathrm{~V} \text { Vout } 5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	$\begin{aligned} & \text { V } \mathrm{V} \text {) } \\ & \text { V(Max) } \end{aligned}$
Vout	Feedback Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \\ & 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	$\begin{aligned} & V \\ & V(\operatorname{Min}) \\ & V(\operatorname{Max}) \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77		\%

All Output VoltageVersions

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{I N}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{I N}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{I N}=30 \mathrm{~V}$ for the 15 V version, , LLOAD $=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{array}{r} \text { LM2576 -XX } \\ \text { LM2576HV-XX } \\ \hline \end{array}$		Units (Limits)
			Typ	Limit (Note 2)	
DEVICE PARAMETERS					
Ib_{b}	Feedback Bias Current	Vout $=5 \mathrm{~V}$ (Adjustable Version Only)	50	100/500	nA
fo	Oscillator Frequency	(Note 8)	52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\mathrm{Min}) \\ \mathrm{kHz}(\mathrm{Max}) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	lout $=3 \mathrm{~A}$ (Note 4)	1.4	1.8/2.0	$\begin{gathered} \text { V } \\ \text { V(Max) } \\ \hline \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 5)	98	93	$\begin{gathered} \% \\ \%(M i n) \end{gathered}$
I_{CL}	Current Limit	(Notes 4, 8)	5.8	$\begin{aligned} & \text { 4.2/3.5 } \\ & 6.9 / 7.5 \end{aligned}$	A A(Min) A(Max)
l L	Output Leakage Current	(Notes 6, 7): $\begin{aligned} & \text { Output }=-1 \mathrm{~V} \\ & \text { Output }=-1 \mathrm{~V} \end{aligned}$	7.5	2 30	$\begin{gathered} \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \\ \hline \end{gathered}$
I_{Q}	Quiescent Current	(Note 6)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current		50	200	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$
$\overline{\text { ON/ }}$ OFF CONTROL					
V_{IH}	ON/OFF Pin Logic Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.4	2.2/2.4	V(Min)
$\mathrm{V}_{\text {IL }}$		Vout $=$ Nominal Output Voltage	1.2	1.0/0.8	V(Max)
I_{H}	ŌN/OFF Pin Input Current	ŌN/OFF Pin = 5V (OFF)	12	30	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$
IIL		ON/OFF Pin $=0 \mathrm{~V}(\mathrm{ON})$	0	10	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \\ \hline \end{gathered}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standa rd type face) and at temperature extremes (bold type face).
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576/LM2576HV is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5: Feedback pin removed from output and connected to 0V.
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V , versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (60 V for high voltage version).
Note 8: The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protections feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Typical Performance Characteristics (Circuit of Figure 2)

Normalized Output Voltage

Standby
 Quiescent Current

₹

Switch Saturation Voltage

Minimum Operating Voltage

Line Regulation

Quiescent Current

Efficiency

vs Duty Cycle

Dropout Voltage

Current Limit

Oscilator Frequency

Feedback Voltage vs Duty Cycle

Maximum Power Dissipation (TO-263)

Switching Waveforms

Feedback Pin Current

Load Transient

$V_{\text {OUt }}=15 \mathrm{~V}$
A: Output Pin Voltage, 50V/div
B: Output Pin Current, 2A/div
C: Inductor Current, 2A/div
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible.
Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Fixed Output Voltage Versions (Figure 2a)

$\mathrm{C}_{\mathrm{IN}}-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminum Electrolytic
Cout - $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 - Schottky, MBR360
$\mathrm{L}_{1}-100 \mu \mathrm{H}$, Pulse Eng. PE-92108
R1-2k, 0.1%
$R_{2}-6.12 \mathrm{k}, 0.1 \%$

Adjustable Output Voltage Version (Figure 2b)

$\mathrm{V}_{\text {OUT }} \mathrm{V}_{\text {REF }}(1+\underline{R}$
$R_{2} \quad R_{1} \quad\left(\begin{array}{l}\left.V_{\text {REF }}{ }^{2}{ }^{2}\right) \\ \left({ }_{\text {OUT- }}\right) 1\end{array}\right.$
where $\mathrm{V}_{\mathrm{REF}}=1.23 \mathrm{~V}$, R 1 between 1 k and 5 k

Package Information

(1) TO220-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	4.06	4.83	0.160	0.190
b	0.76	1.02	0.030	0.040
C	0.36	0.64	0.014	0.025
D	14.22	15.49	0.560	0.610
E	9.78	10.54	0.385	0.415
e	1.57	1.85	0.062	0.073
$\mathrm{e}(1)$	6.68	6.93	0.263	0.273
F	1.14	1.40	0.045	0.055
$\mathrm{H}(1)$	5.46	6.86	0.215	0.270
$\mathrm{~J}(1)$	2.29	3.18	0.090	0.125
L	13.21	14.73	0.520	0.580
$\Phi \mathrm{P}$	3.68	3.94	0.145	0.155
Q	2.54	2.92	0.100	0.115

Semiconductor
Compiance

Package Information

(2) TO263-5

Abstract

Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications. - MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.

■ Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts orequipment.

- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
■ In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by MSKSEMI manufacturer:
Other Similar products are found below :
NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600 AZ7500BMTR-E1 SG3845DM NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ ISL6421ERZ

