MSKSEMI 美森科

TVC

TCC

MOV

GDT

PIFF

MAX3232E

Product specification

DESCRIPTION

MAX3232E is a 3.3V-power-supply, dual-channel, high ESD-protected, low-power RS-232 transceiver that fully meets the requirements of the TIA/EIA-232 standard.

MAX3232E includes two drives and two receivers, with enhanced ESD protection function, reaching the protection capacity of HBM ESD above 15kV and 8kV IEC-4100-4-2 contact discharge.

Powered by 3.3V power supply, The charge pump requires only four 1µF external capacitance to work at a rate of at least 120Kbps error-free data transmission, both of which can be independently enabled and closed. Each driver and receiver can be used independently.

FEATURES

- Supply voltages from 3 V to 5.5V
- Dual-channel
- 120kbps Data Rates
- 15kV HBM ESD-Protected
- 8kV IEC-4100-4-2 Contact Dischar

Reference News

PACKAGE OUTLINE	PIN CONFIGURATION	Marking
Control of the contro	C1+ 1	MSKSEMI MAX3232***MS * * * *
SOP-16		

PINNING

PIN	SYMBOL	DESCRIPTION
1	C1+	Positive Terminal for the first Charge Pump Capacitor
2	V+	Doubled Voltage Terminal
3	C1-	Negative Terminal for the first Charge Pump Capacitor
4	C2+	Positive Terminal for the second Charge Pump Capacitor
5	C2-	Negative Terminal for the second Charge Pump Capacitor
6	V_	Inverted Voltage Terminal
7	T2OUT	Second Transmitter Output Voltage
8	R2IN	Second Receiver Input Voltage
9	R2OUT	Second Receiver Output Voltage
10	T2IN	Second Transmitter Input Voltage
11	T1IN	First Transmitter Input Voltage
12	R10UT	First Receiver Output Voltage
13	R1IN	First Receiver Input Voltage
14	T10UT	First Transmitter Output Voltage
15	GND	Ground
16	VCC	Supply Voltage

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	VCC	-0.3~+6	V
Doubled Voltage Terminal	V+	VCC-0.3~+7	V
Inverted Voltage Terminal	V-	+0.3~-7	V
V+ + V-		+13	V
Transmitter Input Voltage Range	T1IN,T2IN	-0.3~+6	V
Receiver Input Voltage Range	R1IN,R2IN	±25	V
Transmitter Output Voltage Range	T1OUT,T2OUT	±13.2	V
Receiver Output Voltage Range	R1OUT,R2OUT	-0.3~VCC+0.3	V
Operating Temerature		-40~85	$^{\circ}$
Storage Temperature		-60~150	$^{\circ}$
Soldering Temperature		300	$^{\circ}$
Continuous Power		760	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

Supply Current

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
SupplyCurrentwith no Load	${ m I}_{ m sup}$			2		mA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25°C, C1-C4=IµF).

Logic Input Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Logic Control Low Level	VTTIN_L	T1IN,T2IN			0.8	V
Logic Control High Level	VTTIN_H	T1IN,T2IN	2			V
Logic Control Hysteresis		T1IN,T2IN		0.3		V
Input Logic Current	ITIN	T1IN,T2IN			±1	μA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4=IµF)

Receiver Output Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Output Logic-Low Voltage	$ m V_{ROL}$	IOUT=1.6mA, VCC=5V or 3.3V			0.4	V
Receiver Output Logic-High Voltage	$ m V_{ROL}$	IOUT=-0.5mA, VCC=5V or 3.3V	VCC-0.6	VCC-0.1		V

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4= $l\mu F$)

Receiver Input Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Input Range	VRIN		-25		+25	V
Receiver Input	VDII	VCC=3.3V	0.6	1.1		V
Low Threshold	VRIL	VCC=5V	0.8	1.5		V
Receiver Input	Vou	VCC=3.3V		1.5	2.4	V
High Threshold	VRIH	VCC=5V		1.9	2.4	V
Receiver Input Hysteresis				0.4		V
Receiver Input Impedance	RRIN		3	5	7	kΩ

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4= $l\mu F$)

Transmitter Output Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Transmitter Output Swing	Vтоит	All output ports of transmitter connect 3kΩ load to ground	±4		±5	V
Transmitter Output Impedance	Rтоит	VCC=0V, Transmitter Input=±2V	300			Ω
ransmitter Short-Circuit Current	ltsc				60	mA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4=IµF)

ESD protection

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
R1IN、R2IN T1OUT、T2OUT		HBM		±15		KV
		Air Discharge		±15		KV
		Contact Discharge		±8		KV

Switching Characteristics Parameter

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Rate	Speed	RL=3kΩ, CL=1000pF		120		kbps
Receiver Propagation	tRPHL	·		300		ns
delay	tRPLH	CL=150pF		300		ns
tRPHL-tRPLH				150		ns
tTPHL- tTPLH				150		ns
Transmitter Slew Rate	SR	RL=3kΩ~7kΩ, CL=150pF~1000F from-3.0V~3.0V or from3.0V~-3.0V See figures 2 and 3	4		30	V/µs

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4= $l\mu F$)

TEST CIRCUIT

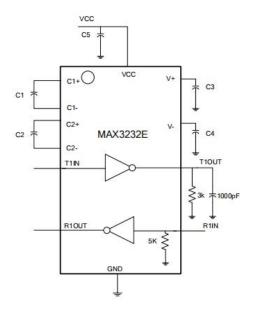


Figure 2 minimum swing rate test circuit

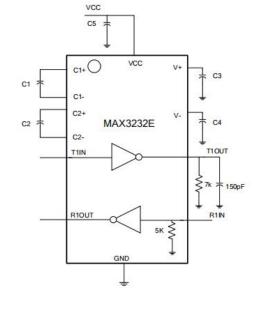


Figure 3 maximum swing rate test circuit

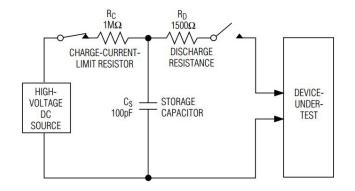


Figure 4 ESD test model of human body mode

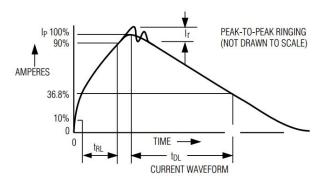


Figure 5 human body mode current waveform

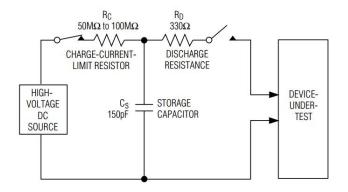


Figure 6 ESD test model of IEC 1000-4-2

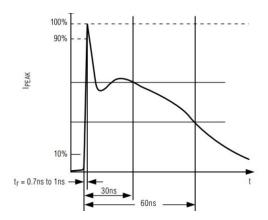


Figure 7 current waveform of IEC 1000-4-2 ESD

ADDITIONAL DESCRIPTION

1 Dual Charge-Pump Operation

MAX3232E has a two-way charge pump inside to support the chip's voltage conversion work. Dual-electric pump provides +5.5V and -5.5V output voltage in the range of $3.0 \sim 5.5$ V, Each charge pump requires a capacitor(C1,C2) and an energy storage capacitor(C3,C4) to generate V+ and V-power supplies, as shown in Fig 8.

2 RS232 Transmitter

Convert the TTL/CMOS logic voltage to a voltage compatible with the EIA/TIA-232 standard. MAX3232E Transmiter can guarantee 120kbps data rate under the worst operating conditions (Parallel load of $3k\Omega$ resistor and 1000pf capacitor). Transmitter can drive multiple receivers in parallel. There is no pull-up resistance inside the input terminals T1IN and T2IN of MAX3232E transmitter. If the transmitter is not used, the unused input terminals T1IN and T2IN can be connected to GND or VCC.

3 RS232 Receiver

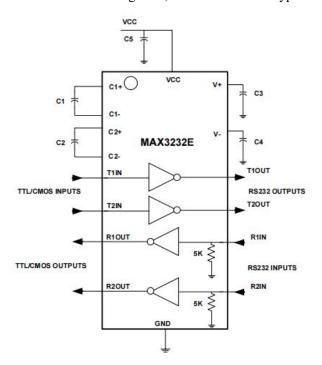
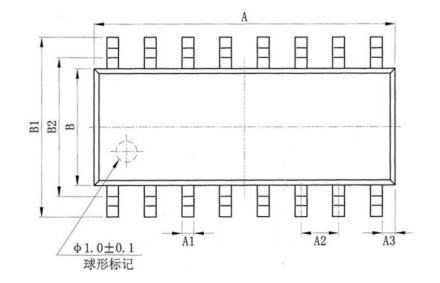
The MAX3232E has two separate receivers that convert the RS-232 signal to the CMOS logic output level.

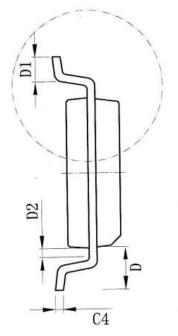
4 ESD Protection

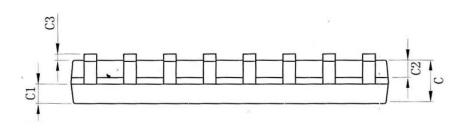
All pins of MAX3232E adopt ESD protection structure, and all driver outputs and receiver inputs have additional electrostatic protection capability. It can withstand ±15kV ESD (HBM) discharge, contact discharge above ±8KV and air gap discharge above ± 15kV. The ESD protection structure can withstand the impact of high voltage ESD under all conditions, including standard working mode and power-off mode.

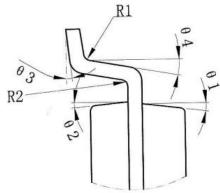
5 Typical Application

Typical dual-Path application scenarios are shown in Figure 8, where the C1-C5 typical capacitance value is 0.1μF.

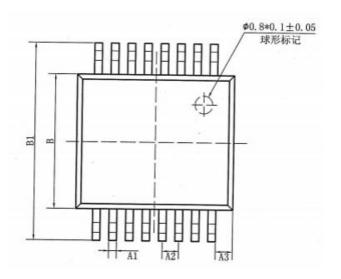



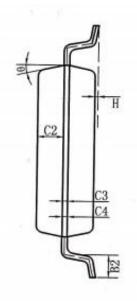

Figure 8 Typical dual-Path application scenarios

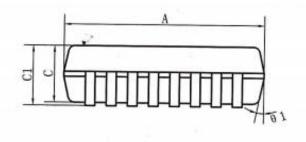


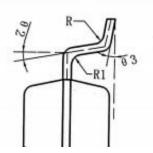

SOP16 DIMENSIONS

SIZE SYMBOL	MIN./mm	MAX./mm	
А	9.80	10.00	
A1	0.356	0.456	
A2	1.	27TYP	
А3	0.3	302TYP	
В	3.85	3.95	
B1	5.84	6.24	
B2	5.0	00 TYP	
С	1.40	1.60	
C1	0.61	0.71	
C2	0.54	0.64	
C3	0.05	0.25	
C4	0.203	0.233	
D	1.0	05 TYP	
D1	0.40	0.70	
D2	0.15	0.25	
R1	0.	20TYP	
R2	0.	20TYP	
θ1	8°~12°TYP4		
θ2	8°~12°TYP4		
θ3	()°~8°	
θ4	4	°~12°	

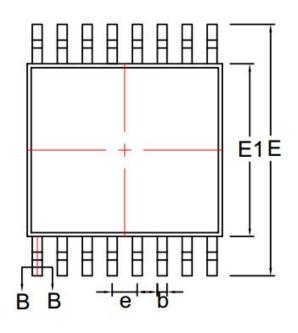


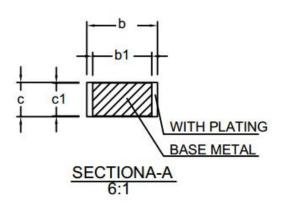


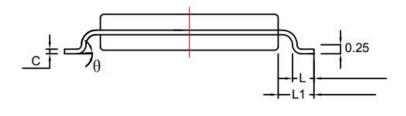


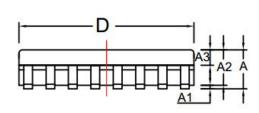

SSOP16(0.65) DIMENSIONS

SIZE SYMBOL	MIN/mm	MAX/mm	
А	6.15	6.25	
A1	0.	30ТҮР	
A2	0.	.65TYP	
A3	0.6	675TYP	
В	5.25	5.35	
B1	7.65	7.95	
B2	0.60	0.80	
С	1.70	1.80	
C1	1.75	1.95	
C2	(0.799	
C3	(0.152	
C4	(0.172	
Н	0.05	0.15	
θ	12	° TYP4	
θ 1	12	° TYP4	
θ 2	10° TYP		
θ 3	0° ~8°		
R	0.2	0° TYP	
R	0. 1	L5° TYP	

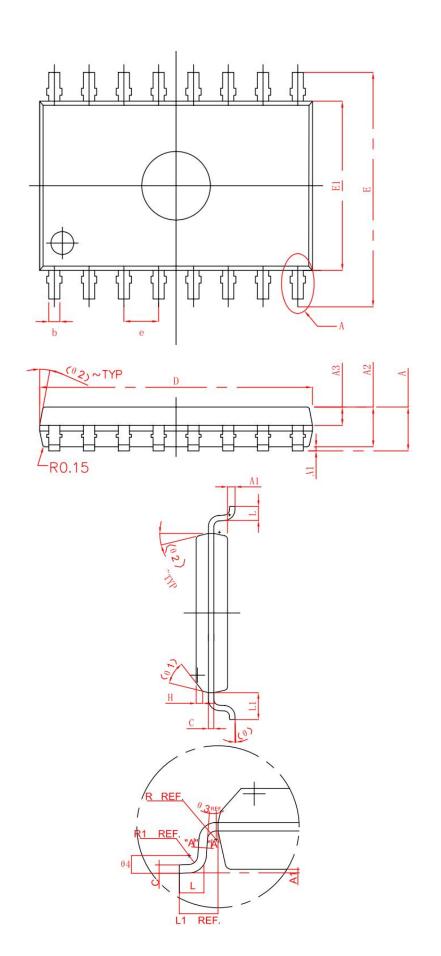


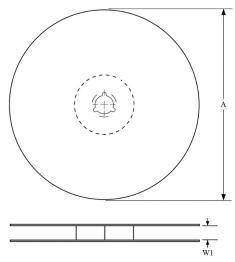




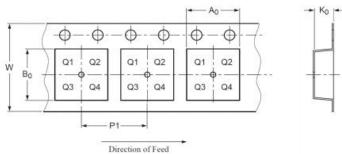

TSSOP16 DIMENSIONS

SIZE	MIN./mm	TYP./mm	MAX./mm	
A			1.20	
A1	0.05		0.15	
A2	0.90	1.00	1.05	
ь	0.20		0.30	
b1	0.19	0.22	0.25	
С	0.110	0.127	0.145	
cl	0.12	0.13	0.14	
D	4.86	4.96	5.06	
Е	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
e	0.65BSC			
L	0.45	0.60	0.75	
L1	1.00BSC			
	0°		8°	




WSOP16 DIMENSIONS

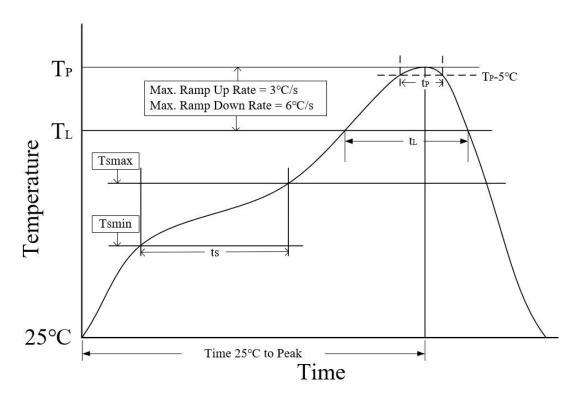
SIZE	MIN./mm	TYP./mm	
SYMBOL			
А	-	2.65	
A1	0.10	0.30	
A2	2.25	2.35	
А3	0.97	1.07	
D	10.10	10.50	
E	10.26	10.60	
E1	7.30	7.70	
е	1.27BSC		
L	0.55	0.85	
L1	1.4BSC		
Н	0.345	0.365	
R	0.20TYP		
R1	0.30TYP		
θ	0°	8°	
1	45°TYP		
θ2	12°TYP		
θ3	0°	8°	
θ4	0°	10°	



TAPE AND REEL INFORMATION

	Dimension designed to accommodate the
A0	component width
	Dimension designed to accommodate the
В0	component length
	Dimension designed to accommodate the
K0	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1


Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP16	330	16	6.43±0.10	10.40±0.1	1.85±0.10	8.00±0.1	16.00 +0.30 -0.10
SSOP16	330	16	8.30 +0.10	6.60 +0.10	2.40 +0.10	8.00±0.1	16.00 +0.30
TSSOP16	330	12	6.80±0.1	5.50±0.1	1.30±0.1	8.00±0.1	12.00±0.30

TAPE AND REEL INFORMATION

TYPE NUMBER	PACKAGE	PACKING
MAX3232ESE-MS	SOP16	Tape and reel
MAX3232EAE-MS	SSOP16	Tape and reel
MAX3232EUE-MS	TSSOP16	Tape and reel
MAX3232EWE-MS	WSOP16 Wide body	Tube

SOP 16, SSOP16 and TSSOP16 is packed with 2500 pieces/disc in braided packing. WSOP16 is packed with 44 pieces/tube in tubed packaging.

Parameter	Lead-free soldering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3 °C/second max	
Preheat time ts	60-120 seconds	
$(T_{smin}=150 \text{ °C to } T_{smax}=200 \text{ °C})$	00- 120 seconds	
Melting time t _L (T _L =217 °C)	60- 150 seconds	
Peak temp T _P	260-265 °C	
5°C below peak temperature t _P	30 seconds	
Ave cooling rate (T _P to T _L)	6 °C/second max	
Normal temperature 25°C to peak temperature	8 minutes max	
T _P time	o minutes max	

Important statement

MSKSEMI reserves the right to change the above-mentioned information without prior notice.

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents—or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by MSKSEMI manufacturer:

Other Similar products are found below:

062191EB XR32330EBERTR-F HIN202CB HIN202CBN HIN202EIB HIN206CB HIN206EIA HIN207EIAZ HIN207EIBZ HIN208ECB HIN213EIB HIN232ACB HIN232ACBN HIN232ACP HIN232CB HIN232ECP HIN232IB HIN232IP HIN238CB HIN239CB HIN241CA ICL232CBE ICL232IBE ICL3207ECA ICL3217ECB ICL3221CV ICL3221ECA ICL3221ECV ICL3221IA ICL3223CA ICL3223ECA ICL3223ECA ICL3223ECA ICL3223ECA ICL3223ECA ICL3223ECA ICL3223ECA ICL3223ECA ICL3223ECA ICL3232CP ICL3232CV ICL3232ECB ICL3232IBN ICL3223IV ICL3237CA ICL3237ECA ICL3238ECA ICL3243ECA ICL3243CA ICL3243CB ICL3243ECA ICL3243ECA ICL3243ECA ICL3245ECA