

Product data sheet

www.msksemi.com

SOT-363

MMDT3904

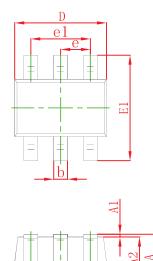
DUAL TRANSISTOR (NPN+NPN)

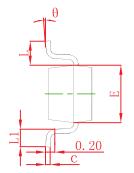
FEATURES

- Epitaxial planar die construction
- Ideal for low power amplification and switching

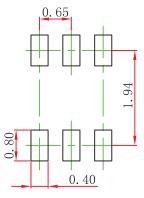
MARKING:K6N

MAXIMUM RATINGS (T_a=25℃ unless otherwise noted)


Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5	V
lc	Collector Current -Continuous	0.2	А
Pc	Collector Power Dissipation	0.2	W
TJ	Junction Temperature	150	°C
T _{stg}	Storage Temperature	-55-150	°C


ELECTRICAL CHARACTERISTICS (Ta=25℃ unless otherwise specified)

Parameter	Symbol Test conditions		Min	Тур	Max	Unit
Collector-base breakdown voltage	V _{(BR)CBO}	I _C =10μΑ,I _E =0	60			V
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _C =1mA,I _B =0	40			V
Emitter-base breakdown voltage	V _{(BR)EBO}	I _E =10μΑ,I _C =0	5			V
Collector cut-off current	I _{CBO}	V _{CB} =30V,I _E =0			0.05	μA
Emitter cut-off current	I _{EBO}	V _{EB} =5V,I _C =0			0.05	μA
Collector cut-off current	I _{CEX}	V _{CE} =30V,V _{BE(off)} =3V			0.05	μA
	h _{FE(1)}	V _{CE} =1V,I _C =0.1mA	40			
	h _{FE(2)}	V _{CE} =1V,I _C =1mA	70			
DC current gain	h _{FE(3)}	V _{CE} =1V,I _C =10mA	100		300	
	h _{FE(4)}	V _{CE} =1V,I _C =50mA	60			
	h _{FE(5)}	V _{CE} =1V,I _C =100mA	30			
	V _{CE(sat)1}	I _C =10mA,I _B =1mA			0.2	V
Collector-emitter saturation voltage	V _{CE(sat)2}	I _C =50mA,I _B =5mA			0.3	V
Read emitter esturation valtage	V _{BE(sat)1}	I _C =10mA,I _B =1mA	0.65		0.85	V
Base-emitter saturation voltage	V _{BE(sat)2}	I _C =50mA,I _B =5mA			0.95	V
Transition frequency	f _T	V _{CE} =20V,I _C =10mA,f=100MHz	300			MHz
Collector output capacitance	C _{ob}	V _{CB} =5V,I _E =0,f=1MHz			4	pF
Noise figure	NF	V_{CE} =5V,I _c =0.1mA,f=1kHz,R _S =1K Ω			5	dB
Delay time	Delay time t _d V _{CC} =3V, V _{BE(off)} =-0				35	nS
Rise time	tr	I _C =10mA , I _{B1} =-I _{B2} = 1mA			35	nS
Storage time	t_s $V_{CC}=3V, I_C=10mA$				200	nS
Fall time	t _f	I _{B1} =-I _{B2} =1mA			50	nS


SOT-363 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.100	0.150	0.004	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.400	0.085	0.094	
е	0.650 TYP		0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

SOT-363 Suggested Pad Layout

Note:

1.Controlling dimension:in millimeters.

2.General tolerance:± 0.05mm.

3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MMDT3904	SOT-363	3000

<u>Attention</u>

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

■ MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications f any and all MSKSEMI Semiconductor products described orcontained herein.

■ Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

■ Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by MSKSEMI manufacturer:

Other Similar products are found below :

 619691C
 MCH4017-TL-H
 MMBT-2369-TR
 BC546/116
 BC557/116
 BSW67A
 NJVMJD148T4G
 NTE123AP-10
 NTE153MCP
 NTE16

 NTE195A
 NTE92
 2N4401-A
 2N6728
 2SA1419T-TD-H
 2SA2126-E
 2SB1204S-TL-E
 2SC2712S-GR,LF
 SP000011176
 2N2907A
 2N3904

 NS
 2N5769
 2SC2412KT146S
 CPH6501-TL-E
 MCH4021-TL-E
 MJE340
 Jantx2N5416
 US6T6TR
 NJL0281DG
 732314D
 CPH3121-TL-E

 CPH6021-TL-H
 873787E
 IMZ2AT108
 MMST8098T146
 UMX21NTR
 MCH6102-TL-E
 NJL0302DG
 30A02MH-TL-E
 NTE13
 NTE26

 NTE282
 NTE323
 NTE350
 NTE81
 STX83003-AP
 JANTX2N2920L
 JANSR2N2222AUB
 CMLT3946EG
 TR
 2SA1371D-AE