MSKSEMI 美森科

ESD

S

GDT

PLED

SN74LVC1G3157XXXX-MS

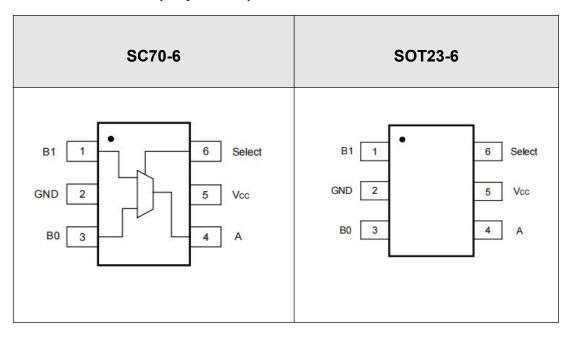
Product specification

DESCRIPTION

The SN74LVC1G3157XXXX-MS is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay while maintaining CMOS low power dissipation. Analog and digital voltages that may vary across the full power–supply range (from VCC to GND).

The Select pin has over voltage protection that allows voltages above VCC, up to 7.0 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.

FEATURES


- Low power dissipation
- High speed
- Standard CMOS logic levels
- High bandwidth, improved linearity
- Switches Standard NTSC/PAL Video, Audio, SPDIF and HDTV
- be used for Clock Switching, Data Mux'ing,etc.
- Low RDSON
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- Operating temperature -55C ~ +125C
- package: SC70-6, DFN1.45 × 1.0-6, SOT23-6

ORDER INFORMATION

P/N	PKG	QTY
SN74LVC1G3157DCKR-MS	SC70-6	Tape and Reel, 3000
SN74LVC1G3157DBVR-MS	SOT23-6	Tape and Reel, 3000

PIN CONFIGURATION (Top View)

PIN DESCRIPTIONS

Pin	I/O	Pin Function
A, B0 , B1	I/O	Data port
Select	I	Controlling choice
VCC	1	Power supply port
GND	1	Ground

FUNCTIONS DESCRIPTION

Select input port	Function
L	B0 Connected to A
Н	B1 Connected to A

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.5 ~ +7.0	V
DC Switch Voltage (1)	Vs	-0.5 ~ V _{CC} +0.5	V
DC Input Voltage (1)	V _{IN}	-0.5 ~ +7.0	V
DC Input Diode Current @ V _{IN} < 0 V	I _{IK}	-50	mA
DC Output Current	lout	128	mA
DC V _{CC} or Ground Current	Icc/I _{GND}	100	mA
Storage Temperature Range	Tstg	-65 ~ +150	С
Junction Temperature Under Bias	T _J	150	С
Junction Lead Temperature (Soldering, 10 Seconds)	T _L	260	С
Power Dissipation @ +85°C	P _D	180	mW

NOTE:

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

CAUTION

This integrated circuit can be damaged by **ESD** if you don't pay attention to **ESD** protection. recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

QCSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact sales office to get the latest datasheet.

RECOMMENDED OPERATING CONDITIONS (2)

Ch	Symbol	Min	Max	Unit	
Supply	Voltage Operating	VCC	1.65	5.5	V
Sele	ct Input Voltage	VIN	0	VCC	V
Swit	VIN	0	VCC	V	
0	VOUT	0	VCC	V	
Opera	TA	-55	+125	С	
Input Rise and Fall Time	Control Input VCC = 2.3 V ~ 3.6 V	tr tf	0	10	ns/V
	Control Input VCC = 4.5 V ~ 5.5 V	tr,tf	0	5.0	115/ V

Note:

2. Select input must be held HIGH or LOW, it must not float.

ELECTRICAL CHARACTERISTICS

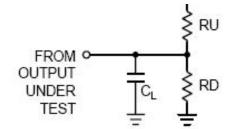
Symbol	Davamatav	Test		1	TA = 25C			TA = -40C ~ +85C	
Symbol	Parameter	Conditions	VCC	Min	Тур	Max	Min	Max	Unit
DC ELECTRICAL CHARACTERISTICS									
			1.65 ~ 1.95				0.75Vcc		
High Level Input		2.3 ~ 2.8				1.5		V	
VIH	Voltage		3 ~ 4.2				2.4		
			4.5 ~ 5.5				0.6Vcc		
			1.65 ~ 1.95					0.25VCC	
VIL	Low Level Input Voltage		2.3 ~ 2.8					0.4	V
	_		3 ~ 5.5					0.3Vcc	
IIN	Input Leakage Current	0 < VIN < 5.5 V	0 ~ 5.5		±0.05	±0.1		±1	uA
IOFF	OFF State Leakage Current	0 < A, B < Vcc	1.65 ~ 5.5		±0.05	±0.1		±1	uA
ICC	Quiescent Supply	VIN = Vcc or GND IOUT = 0	5.5			1.0		10	uA
	Analog Signal Range		VCC	0		VCC	0	VCC	٧
		VIN = 0 V, IO = 30 mA			3.0			7.0	Ω
		VIN = 2.4 V, IO = -30 mA			5.0			12	Ω
		VIN = 4.5 V, IO = -30 mA	4.5		7.0			15	Ω
		VIN = 0 V, IO = 24 mA			4.0			9.0	Ω
		VIN = 3 V , IO = -24 mA	3.0		10			20	Ω
RON	Switch On Resistance ⁽³⁾	VIN = 0 V, IO = 8 mA			5.0			12	Ω
	Resistance	VIN = 2.3 V, IO = -8 mA	2.3		13			30	Ω
		VIN=0V, IO =4 mA			6.5			20	Ω
		VIN = 1.65 V, IO = -4 mA	1.65		17			50	Ω
	On Resistance	IA = -30 mA 0 ≤ VBn ≤ VCC	4.5					25	Ω
RRANGE	Over Signal Range ⁽³⁾⁽⁷⁾	IA = -24 mA 0 ≤ VBn ≤ VCC	3					50	Ω

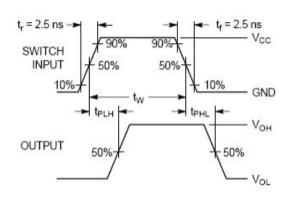
ELECTRICAL CHARACTERISTICS (continued)

o	D	T1 0 - 1111		TA = 25C			TA = -4	0C ~ +85C	
Symbol Parame	Parameter	Test Conditions	vcc	Min	Тур	Max	Min	Max	Unit
	On Resistance Over Signal	IA = -8 mA 0 ≤ VBn ≤ VCC	2.3					100	Ω
RRANGE	Range(3)(7)	IA = -4 mA 0 ≤ VBn ≤ VCC	1.65					300	Ω
		IA = -30 mA VBn = 3.15	4.5		0.15				Ω
		IA = -24 mA VBn = 2.1	3		0.2				Ω
ΔRON	On Resistance Match Between	IA = -8 mA VBn = 1.6	2.3		0.5				Ω
ΔRON	Channels(3)(4)(5)	IA = -4 mA VBn = 1.15	1.65		0.5				Ω
		IA = -30 mA 0 ≤ VBn ≤ VCC	5		6.0				Ω
		IA = -24 mA 0 ≤ VBn ≤ VCC	3.3		12				Ω
DELAT	On Resistance	IA = -8 mA 0 ≤ VBn ≤ VCC	2.5		28				Ω
RFLAT	Flatness(3)(4)(6)	IA = -4 mA 0 ≤ VBn≤ VCC	1.8		125				Ω
ELECT	RICAL CHARACT	TERISTICS							
			1.65 ~ 1.95						nS
	Propagation		2.3 ~ 2.7					1.2	nS
tPHL	Delay Bus to	Figure 1	3.0 ~ 3.5					0.8	nS
tPLH	Bus (8)	VI = OPEN	4.5 ~ 5.5					0.3	nS
	Output Enable	Figure 1	1.65 ~ 1.95			23	7.0	24	nS
tPZL	Time,	VI = 2*VCC for	2.3 ~ 2.7			13	3.5	14	nS
	Turn On Time	tPZL ,VI = 0 V for	3.0 ~ 3.5			6.9	2.5	7.6	nS
tPZH	(A to Bn)	tPZH	4.5 ~ 5.5			5.2	1.7	5.7	nS
			1.65 ~ 1.95			12.5	3.0	13	nS
	Output Disable	Figure 1	2.3 ~ 2.7			7.0	2.0	7.5	nS
	Time, Turn Off	VI = 2*VCC for	3.0 ~ 3.5			5.0	1.5	5.3	nS
tPLZ tPHZ	Time (A Port to	tPLZ ,VI = 0 V for							

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Т	TA = 25C		TA = -40	C ~ +85C	
Symbol	Farameter	rest Conditions	VCC	Min	Тур	Max	Min	Max	Unit
			1.65 ~ 1.95				0.5		nS
	Break Before	Figure2 ,	2.3 ~ 2.7				0.5		nS
tB-M	Make Time ⁽⁷⁾	CL = 50 pF ,	3.0 ~ 3.5				0.5		nS
	Make Time V	RL = 600 Ω	4.5 ~ 5.5				0.5		nS
		Figure 3, CL = 0.1 nF,	5.0		7.0				рС
Q	(7) Charge Injection	VGEN = 0 V , RGEN = 0 Ω	3.3		3.0				рС
OIRR	Off Isolation ⁽⁹⁾	Figure 4, RL = 50Ω , f = $10MHz$	1.65 ~ 5.5		-57				dB
		Figure 5,							
Xtalk	Crosstalk	RL= 50 Ω , f = 10MHz	1.65 ~ 5.5		-54				dB
BW	−3 dB Bandwidth	Figure 8, RL = 50 Ω	1.65 ~ 5.5		350M				Hz
THD	Total Harmonic Distortion ⁽⁷⁾	RL = 600 Ω, 0.5VP-P f = 600 Hz ~ 20 kHz	5.0		0.011				%
CIN	Select Pin Input Capacitance (10)		0		2.3				pF
CIO-B	B Port Off Capacitance (10)	Figure 6	5.0		5.0				pF
CIOA- O N	A Port Capacitance when Switch is Enabled ⁽¹⁰⁾	Figure 7	5.0		15.5				pF


Note:


- 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
- 4. Parameter is characterized but not tested in production.
- 5. Δ RON = RON max RON min measured at identical VCC, temperature and voltage levels.
- 6. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
- 7. Guaranteed by Design.
- 8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
- 9. Off Isolation = 20 log10 [VA/VBn].
- 10. TA = +25°C, f = 1 MHz, Capacitance is characterized but not tested in production.

TEST CIRCUITS

NOTE: Input driven by 50 Ω source terminated in 50 Ω

NOTE: C_L includes load and stray capacitance NOTE: Input PRR = 1.0 MHz; t_W = 500 ns

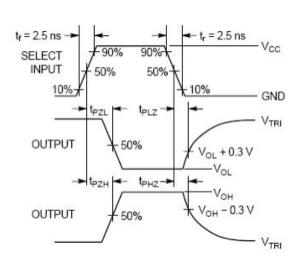
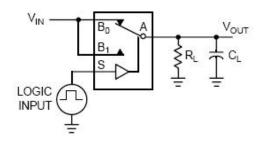



Figure 1. AC Test Circuit ,AC Waveforms

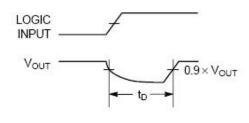


Figure 2. Break Before Make Interval Timing

TESTCIRCUITS(continued)

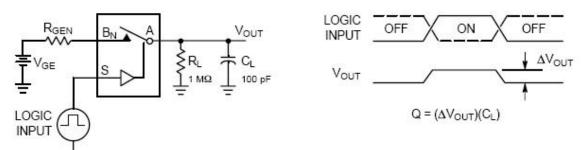


Figure 3. Charge Injection Test

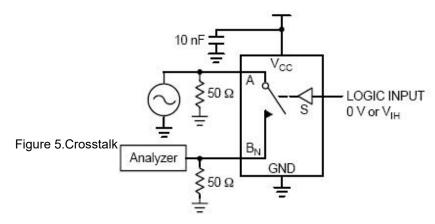


Figure 4. Off Isolation

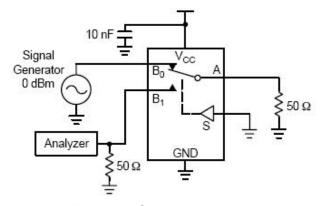


Figure 5.Crosstalk

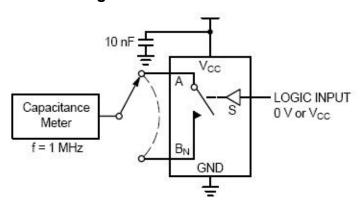


Figure 6. Channel Off Capacitance

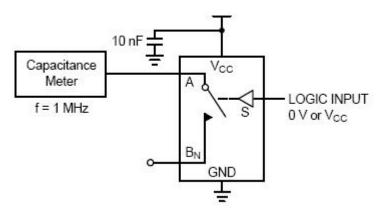
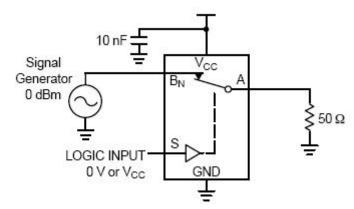
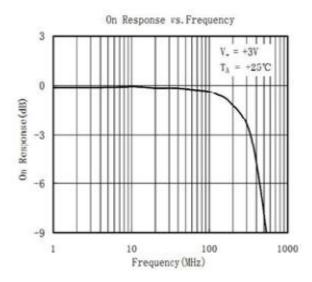
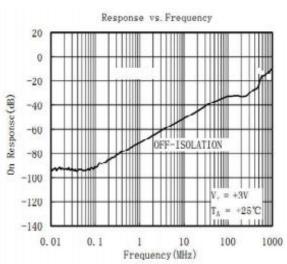
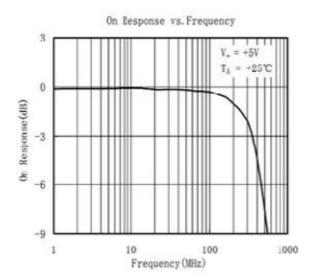
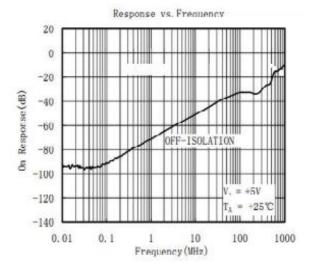
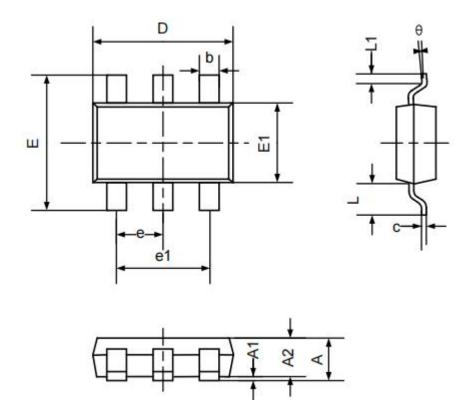


Figure 7. Channel On Capacitance

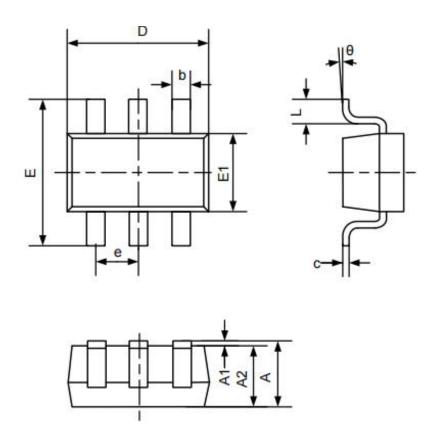






Figure 8. Bandwidth



PACKAGE OUTLINE

SC70-6



Symbol	Dimensions in Millimeters					
	Min	Max				
А	0.85	1.05				
A1	0.00	0.10				
A2	0.80	1.00				
b	0.15	0.35				
С	0.08	0.22				
D	2.02	2. 12				
E	2.20	2.40				
E1	1.25	1.35				
е	0.65	BSC				
e1	1.30BSC					
L	0.50REF					
L1	0.28	0.38				
θ	0° 8°					

PACKAGE OUTLINE

SOT-23-6

Symbol	Dimensions in Millimeters						
	Min	Min Nom					
A			1.240				
A1	0.010	0.050	0.090				
A2	1.050	1.100	1.150				
b	0.300	0.300 0.350					
С	0.117	0.117					
D	2.870	2.920	2.970				
E	2.720	2.800	2.880				
E1	1.550	1.600	1.650				
е	0.950BSC						
1	1.900BSC						
L	0.320	0.400	0.480				
θ	0°		5°				

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by MSKSEMI manufacturer:

Other Similar products are found below:

74HC85N NL17SG32DFT2G CD4068BE NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38
74LVC1G08Z-7 74LVC32ADTR2G CD4025BE MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G
NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G
NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7
NLV7SZ97DFT2G NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G
NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G
NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G