Ceramic Filters (CERAFIL®)/ Ceramic Discriminators for Communications Equipment

mintata

EU RoHS Compliant

- All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

CONTENTS

Part Numbering 2
Products Guide 4
1 CERAFIL ${ }^{\circledR}$ kHz SMD Type SFPKA Series 5
2 CERAFIL $^{\circledR}$ kHz SMD Type CFUKG Series 7
3 CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKG_X Series 9
4 CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKF Series 11
5 CERAFIL ${ }^{\circledR}$ kHz SMD Type CFWKA Series 13
6 CERAFIL ${ }^{\circledR}$ kHz SMD Type CFWKA_Y Series 15
kHz SMD Type CERAFIL ${ }^{\circledR}$ Notice 17
7 CERAFIL ${ }^{\circledR}$ MHz SMD Type SFECF10M7 Series 21
8 CERAFIL ${ }^{\circledR}$ MHz SMD Type SFSCE 10M7 Series 23
MHz SMD Type CERAFIL ${ }^{\circledR}$ Notice 25
SMD Type CERAFIL ${ }^{\circledR}$ Standard Land Pattern Dimensions 31
kHz SMD Type CERAFIL ${ }^{\circledR}$ Packaging 32
MHz SMD Type CERAFIL ${ }^{\circledR}$ Packaging 34
9 CERAFIL ${ }^{\circledR}$ Plastic Case General Use CFULA Series 35
10 CERAFIL ${ }^{\circledR}$ Plastic Case General Use CFWLA Series 37
11 CERAFIL ${ }^{\circledR}$ Plastic Case Miniaturized Type CFULB Series 39
12 CERAFIL ${ }^{\circledR}$ Plastic Case Miniaturized Type CFWLB Series 41
13 CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFULA_Y Series 43
14 CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFWLA_Y Series 45
15 CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type Miniaturized Type CFULB_Y Series 47
16 CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFWLB_Y Series 49
Plastic Case Type CERAFIL ${ }^{\circledR}$ Minimum Quantity/Notice 51
17 kHz Type Ceramic Discriminators 52
18 MHz Type Ceramic Discriminators 65
Ceramic Discriminators Notice 70
Ceramic Discriminators Standard Land Pattern Dimensions/Packaging 74

Part Numbering

Ceramic Filters (CERAFIL ${ }^{\circledR}$) for IF

(Part Number)

SF	P	KA	455K	D4A		-R0
SF	E	CF	10M7	DFOO	so	-R0
(1)	(2)	3	(4)	5	6	(1)

(1)Product ID
(2) Oscillating/Element

Product ID		Oscillating/Element	
CF	Ceramic Filters	U	4 Elements Area Expansion mode
		W	6 Elements Area Expansion mode
SF		P	4 Elements Area Expansion mode
		E	2 Elements Thickness Expansion mode
		S	2 Elements Thickness Shear mode

(3Structure/Size

Code	Structure/Size
$\mathbf{C} \square / \mathbf{K} \square$	Chip Type
$\mathbf{L} \square$	Lead Type

\square is "A" or subsequent code, which indicates the size. It varies depending on vibration mode and number of elements.
Chip type is only applied for SF series.

4 Nominal Center Frequency

Expressed by four-digit alphanumerics. The unit is hertz (Hz). If the unit is "kHz", it is expressed by three figures plus "K." If the unit is "MHz", a decimal point is expressed by the capital letter "M."

Ceramic Discriminators for IF (kHz)

(Part Number)	CD	B	LB	450K	C	A	x	16		B0
	(1)		3	(4)	5					

(1)Product ID

Product ID	
CD	Ceramic Discriminators

(2) Oscillating

Code	Oscillating
B	Area Expansion mode

3Structure/Size

Code	Structure/Size
$\mathbf{C} \square / \mathbf{K} \square$	Chip Type
$\mathbf{L} \square$	Lead Type

\square is "A" or subsequent code, which indicates the size. It varies depending on vibration mode and number of elements.

4 Nominal Center Frequency
Expressed by four-digit alphanumerics. The unit is in hertz (Hz).
Capital letter "K" following three figures expresses the unit of "kHz."
(5Detection

Code	Detection
C	Quadrature Detection

Ceramic Discriminators for IF (MHz)

(Part Number)	CD	S	CB	10M7	GF	001	-R0
	$\begin{array}{llllllllllllllllllll}\text { (1) } & \text { 2 } & 3 & 4 & 5 & 6 & 7\end{array}$						
1 Product ID							
Product ID							
CD	Discriminators						
(2) Oscillation							
Code	Oscillation						
S	Thickness Shear mode						
(3) Structure/Size							
Code	Structure/Size						
C \square	Chip Type						

\square is expressed "A" or subsequent code, which indicates the size.

4 Nominal Center Frequency
Expressed by four-digit alphanumerics. The unit is in hertz (MHz). Decimal point is expressed by capital letter "M."

6Application

Code	Application
A	Standard
L	Application with coil

(7)Element Type

Code	Element Type
\mathbf{X}	Low-capacitance
\mathbf{Y}	High-capacitance

8IC

Code	IC
16	Applicable IC Control code

9Packaging

Code	Packaging
-B0	Bulk
-R0	Embossed Taping $\varnothing=180 \mathrm{~mm}$
-R1	Embossed Taping $\varnothing=330 \mathrm{~mm}$

Embossed taping is applied to chip type. With non-standard products, one letter indicating "Individual Specification" is added between "8Applicable IC" and "9Package Specification code."

(5)Product Specification

Code	Product Specification
GF	Two-digit alphanumerics express type, center frequency, rank, others

6 IC

Code	IC
$\mathbf{0 0 1}$	Applicable IC Control Code

7Packaging

Code	Packaging
-R0	Embossed Taping $\varnothing=180 \mathrm{~mm}$

With non-standard products, an alphanumerics indicating "Individual Specification" is added between "(6IC" and "7Packaging."

Products Guide

-SMD Type (kHz)

Type	Applications	General Use											Attenuation (dB) min.
	Series	6dB Bandwidth (kHz) min.											
		A	B	C	D	E	F	G	H	J	K	L	
		± 17.5	± 15	± 12.5	± 10	± 7.5	± 6	± 4.5	± 3	± 2	± 1.5	± 1	Within 455 ± 80 or $\pm 100 \mathrm{kHz}$
High Selectivity Series (Plastic Case Type)	SFPKA455K (4 Elements)	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	27 (G to H; 25)
	CFUKG455K (4 Elements)	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	27 (G; 25)
Narrow Bandwidth GDT Flat Type Miniature Series (Plastic Case Type)	CFUKG455K $\square \mathbf{X}$ (4 Elements)	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	27 (G to H; 25)
GDT Flat Type Miniature Series (Plastic Case Type)	CFUKF455K (4 Elements)	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	25 (D to E; 23)
GDT Flat Type High Selectivity SMD Series (Plastic Case Type)	CFWKA450KBFY (6 Elements)	-	\bigcirc	-	-	-	-	-	-	-	-	-	45
High Selectivity SMD Series (Plastic Case Type)	CFWKA450K (6 Elements)	-	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	50

OLead Type (kHz)

Type	Applications	General Use											Attenuation (dB) min.
	Series	6dB Bandwidth (kHz) min.											
		A	B	C	D	E	F	G	H	J	K	L	
		± 17.5	± 15	± 12.5	± 10	± 7.5	± 6	± 4.5	± 3	± 2	± 1.5	± 1	Within 455 ± 80 or $\pm 100 \mathrm{kHz}$
High Selectivity Low Profile Series	CFULA455K \square (4 Elements)	-	-	-	-	-	\bigcirc	-	\bigcirc	-	-	-	$27(\mathrm{G} ; 25$)
	CFWLA455K \square (6 Elements)	-	-	-	\bigcirc	-	-	-	\bigcirc	-	-	-	35 (H, J; 60)
High Selectivity Miniature Series	CFULB455K \square (4 Elements)	-	-	-	-	-	-	-	\bigcirc	-	-	-	$27\left(\begin{array}{l}(\mathrm{G}, 25 \\ (\mathrm{H}, \mathrm{J} ; 35)\end{array}\right.$
	CFWLB455K \square (6 Elements)	-	-	-	-	-	-	-	\bigcirc	-	-	-	35 (H, J; 55)
GDT Flat Type Series	CFULA455K $\square \mathbf{Y}$ (4 Elements)	-	-	-	\bigcirc	\bullet	-	\bullet	-	-	-	-	25 (D to G; 23)
	CFWLA455K $\square \mathbf{Y}$ (6 Elements)	\bullet	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-	40
GDT Flat Type Miniature Series	CFULB455K $\square \mathbf{Y}$ (4 Elements)	-	-	-	\bigcirc	-	-	\bigcirc	-	-	-	-	25 (D to G; 23)
	CFWLB455K $\square \mathbf{Y}$ (6 Elements)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	-	40 (F; 35)

Ceramic Filers (CERAFILQ |for Communications Equipment

CERAFIL ${ }^{\circledR}$ kHz SMD Type SFPKA Series

The SFPKA series is comprised of small, high-performance, economical, thin $(5.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements. Their innovative construction is perfect for shrinking mobile communication products such as cordless phones, pagers and transceivers.

■ Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.
3. They are slim, at only 5.0 mm maximum thickness.

4. The bandwidth ranges from D to H .
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	6 dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	Input/Output Impedance (ohm)
SFPKA455KD4A-R1	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 20.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	4.0 max. [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within fn } \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
SFPKA455KE4A-R1	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz}] \end{gathered}$	1500
SFPKA455KF4A-R1	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 4 \mathrm{kHz} \text {] } \end{gathered}$	1500
SFPKA455KG1A-R1	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 3 \mathrm{kHz}]} \end{gathered}$	1500
SFPKA455KH1A-R1	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \text { min. } \end{gathered}$	fn ± 9.0 max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within fn } \pm 2 \mathrm{kHz} \text {] } \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics
SFPKA455KE4A-R1

SFPKA455KE4A-R1

Ceramic Filters (CERAFIL ${ }^{\circledR}$) for Communications Equipment

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKG Series

The CFUKG series is comprised of small, high-performance, thin $(4.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements. Their innovative construction is perfect for shrinking mobile communication products such as pocket pagers and cellular phones.

- Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.
3. They are slim, at only 4.0 mm maximum thickness, and have a small mounting area ($7.5 \times 6.0 \mathrm{~mm}$) enabling flexible PCB design.
4. The bandwidth ranges from D to G.
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	6 dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	Input/Output Impedance (ohm)
CFUKG455KD4A-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 20.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFUKG455KE4A-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	1.5 max. [within $\mathrm{fn} \pm 5 \mathrm{kHz}$]	1500
CFUKG455KF4A-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	fn ± 6.0 min.	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	1.5 max. [within $\mathrm{fn} \pm 4 \mathrm{kHz}$]	1500
CFUKG455KG1A-R0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	1500

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Rg+R1=R2=Input/Output Impedance

Frequency Characteristics

CFUKG455KE4A-R0

CFUKG455KE4A-R0

Ceramic Filers (CERAFIL® | for Communications Equipment

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKG_X Series

The CFUKG_X series is comprised of small, highperformance, thin $(4.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements.
The filters exhibit an extremely flat GDT characteristic combined with a narrow bandwidth. The filters are recommended for narrow band digital communication applications.

- Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.

3. They are slim, at only 4.0 mm maximum thickness, and have a small mounting area ($7.5 \times 6.0 \mathrm{~mm}$) enabling flexible PCB design.
4. The bandwidth ranges from E to H .
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Center Frequency (fo) (kHz)	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} \text { Stop } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFUKG455KE4X-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 17.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] }} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 25.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFUKG455KF4X-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 15.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] }} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within fn } \pm 4 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 25.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 4 \mathrm{kHz}]} \end{gathered}$	1500
CFUKG455KG1X-R0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} f n \pm 4.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] }} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 3 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 25.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 3 \mathrm{kHz}]} \end{gathered}$	1500
CFUKG455KH1X-R0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 10.0 max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] }} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 2 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 25.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 2 \mathrm{kHz} \text {] } \end{gathered}$	1500

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Rg+R1=R2=Input/Output Impedance

Frequency Characteristics

CFUKG455KE4X-R0

CFUKG455KE4X-R0

Ceramic Filters (CERAFIL ${ }^{\circledR}$) for Communications Equipment

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKF Series

The CFUKF series is comprised of small, high-performance, thin $(4.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements. The filters exhibit an extremely flat GDT characteristic.
The filters are recommended for digital communication applications and are perfect in hand-held cellular phones, etc.

- Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.

Connection
(1): Input
2): Output
): Ground
(in mm)
3. They are slim, at only 4.0 mm maximum thickness, and have a small mounting area ($7.5 \times 6.0 \mathrm{~mm}$) enabling flexible PCB design.
4. The bandwidth ranges from A to E.
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Center Frequency (fo) (kHz)	$\begin{gathered} 6 \mathrm{~dB} \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} \text { Stop } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFUKF455KA2X-R0	$\begin{gathered} 455 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 17.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 40.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 1.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 12 \mathrm{kHz}] \end{gathered}$	$\begin{gathered} 15.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 12 \mathrm{kHz} \text {] } \end{gathered}$	1000
CFUKF455KB4X-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 35.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	5.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 10 \mathrm{kHz}] \end{gathered}$	$\begin{gathered} 15.0 \mathrm{max} . \\ \text { [within fn } \pm 10 \mathrm{kHz} \text {] } \end{gathered}$	1000
CFUKF455KC4X-R0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 8 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 15.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 8 \mathrm{kHz}]} \end{gathered}$	1000
CFUKF455KD1X-R0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \text { min. } \end{gathered}$	fn ± 25.0 max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 20.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{gathered}$	1500
CFUKF455KE1X-R0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 20.0 max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 5 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 20.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 5 \mathrm{kHz}]} \end{gathered}$	1500

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

Frequency Characteristics

CFUKF455KE1X-R0

CFUKF455KE1X-R0

Ceramic Filers (CERAFIL® ${ }^{(1)}$ for Communications Equipment

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFWKA Series

The CFWKA series is comprised of small, high-performance, thin $(3.0 \mathrm{~mm})$ filters consisting of 6 ceramic elements. The filters are recommend for pager or hand-held cellular phones.

Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered.
3. They are slim, at only 3.0 mm maximum thickness.
4. The filters are wide bandwidth, flat GDT within pass band.

. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$
Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Nominal Center Frequency (fn) (kHz)	$\begin{gathered} \text { 3dB } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~dB} \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$		Stop Band Attenuation (dB)	Stop Band Att.(2) (dB)	Insertion Loss (dB)	Ripple (dB)	Input/Output Impedance (ohm)
CFWKA450KDFA-R0	450.0	-	$\begin{gathered} f n \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 20.0 max. [within 50dB]	$\begin{gathered} 50 \mathrm{~min} . \\ {[\text { within } \mathrm{f} \pm 100 \mathrm{kHz}]} \end{gathered}$	-	4.0 max. [at minimum loss point]	$\begin{gathered} 3.0 \mathrm{max} . \\ \text { [within fn } \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWKA450KEFA-R0	450.0	-	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 15.0 max. [within 50dB]	$\begin{gathered} 50 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	-	6.0 max. [at minimum loss point]	$\begin{aligned} & 3.0 \mathrm{max} . \\ & \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{aligned}$	1500
CFWKA450KEFA001-R0	450.0	$\begin{gathered} \mathrm{fn} \pm 6.5 \\ \mathrm{~min} . \end{gathered}$	-	fn ± 15.0 max. [within 50dB]	$\begin{gathered} 55 \mathrm{~min} . \\ \text { [fn } \pm 18 \text { to } \pm 33 \mathrm{kHz}] \end{gathered}$	$\begin{gathered} 50 \mathrm{~min} . \\ {[\text { within fn } \pm 100 \mathrm{kHz}]} \end{gathered}$	$\begin{aligned} & 4.0 \text { max. } \\ & \text { [at fn] } \end{aligned}$	$\begin{gathered} 3.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 6.5 \mathrm{kHz}] \end{gathered}$	1500
CFWKA450KFFA-R0	450.0	-	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \mathrm{~min} . \end{gathered}$	fn $\pm 12.5 \mathrm{~min}$. [within 50dB]	$\begin{gathered} 50 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	-	6.0 max. [at minimum loss point]	3.0 max. [within fn $\pm 4 \mathrm{kHz}$]	1500
CFWKA450KGFA-R0	450.0	-	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 11.0 max. [within 50dB]	$\begin{gathered} 50 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz}] \end{gathered}$	-	6.0 max. [at minimum loss point]	$2.0 \text { max. }$ [within fn $\pm 3 k H z$]	1500

For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Rg+R1=R2=Input/Output Impedance

Frequency Characteristics

CFWKA450KEFA001-R0

CFWKA450KEFA001-R0

CFWKA450KEFA001-R0

Ceramic Filters (CERAFIL® | for Communications Equipment

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFWKA_Y Series

The CFWKA_Y series is comprised of small, highperformance, thin $(3.0 \mathrm{~mm})$ filters consisting of 6 ceramic elements. The filters are recommend for digital communication applications and are perfect in hand-held cellular phones.

■ Features

1. The filters are mountable by automatic placers, and can be reflow soldered.
2. They are slim, at only 3.0 mm maximum thickness.

3. The filters are wide bandwidth, flat GDT within pass band.
4. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Nominal Center Frequency (fn) (kHz)	3 dB Bandwidth (kHz)	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Spurious Response (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFWKA450KBFY001-R0	450.0	f $\mathrm{f} \pm 11.5$ min .	$\begin{gathered} f n \pm 13.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 50dB]	$\begin{gathered} 45 \mathrm{~min} . \\ {[\text { within } \mathrm{f} \pm 100 \mathrm{kHz}]} \end{gathered}$	4.0 max [at minimum loss point]	$\begin{gathered} 20 \mathrm{~min} . \\ {[\text { within } 0.1 \text { to } 1.0 \mathrm{MHz}]} \end{gathered}$	$\begin{gathered} 30.0 \mathrm{max} . \\ \text { [within fn } \pm 10 \mathrm{kHz} \text {] } \end{gathered}$	1000

For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Rg+R1=R2=Input/Output Impedance

Frequency Characteristics

SFPKA/CFUKG/CFUKF Series Notice

- Soldering and Mounting

1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.
(2) Soldering Iron

Electrode is directly soldered with the tip of soldering iron at $+350 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds.
(3) Other

Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.
2. Wash
(1) Cleaning Solvent

CFC alternatives (HCFC Series), Isopropyl Alcohol (IPA), Water (Demineralized Water), Cleaning Water Solution (Cleanthrough-750H, Pine Alpha 100S), Silicon
(Technocare FRW)
(2) Cleaning Conditions

- Immersion Wash

2 minutes max. in above solvent at $+60^{\circ} \mathrm{C}$ max.

- Shower or Rinse Wash

2 minutes max. in above solvent at $+60^{\circ} \mathrm{C}$ max.
(3) Notice

- When components are immersed in solvent, be sure to maintain the temperature of components below the temperature of solvent.
- Please do not use ultrasonic cleaning.
- Total washing time should be 4 minutes maximum.
- Please ensure the component is thoroughly evaluated in your application circuit.
- Please do not use chlorine, petroleum or alkali cleaning solvent.
- If you plan to use any other types of solvents, please consult with Murata or Murata representative prior to using.

3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

kHz SMD Type CERAFIL® ${ }^{\circledR}$ Notice

Continued from the preceding page

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid such places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85\% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

1. If the component is cleaned, please confirm that the reliability has not been degraded.
2. The components, packed in a moisture-proof bag (dry pack), are sensitive to moisture. The following treatment is required before applying reflow soldering, to avoid package cracks or reliability degradation caused by thermal stress. When unpacked, store the component in an atmosphere of below $25^{\circ} \mathrm{C}$ and below 65% R.H., and solder within 48 hours.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
3. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.
3. For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.

CFWKA Series Notice

- Soldering and Mounting

1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.
(2) Soldering Iron

Electrode is directly soldered with the tip of soldering iron at $+350 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds.
(3) Other

Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.
2. Wash

Do not clean or wash the component as it is not hermetically sealed.

3. Coating

Do not apply conformal coating onto the component as it's not hermetically sealed.

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because the solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas,

Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
4. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

kHz SMD Type CERAFIL® Notice

Continued from the preceding page.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.

Ceramic Filers (CERAFIL® ${ }^{(1)}$ for Communications Equipment

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFECF10M7 Series

SFECF10M7 series for FM receivers are small, high-performance and super thin (1.4mm max.) filters. The piezoelectric element is sandwiched by the ceramics substrate.
They have 1.4 mm max. thickness and a small mounting area ($3.45 \times 3.1 \mathrm{~mm}$).
SFECF series and CDSCB series (MHz Discriminator) enable customers to make VICS/RKE/TPMS set very thin and small.

Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.4 mm max. thickness, and have a small mounting area ($3.45 \times 3.1 \mathrm{~mm}$) enabling flexible PCB design.
3. Various bandwidths are available. Select a suitable type in accordance with the desired selectivity.
4. Operating Temperature Range:
-20 to $+80\left({ }^{\circ} \mathrm{C}\right)($ Standard Type)
-40 to $+85\left({ }^{\circ} \mathrm{C}\right)($ High-reliability Type)
Storage Temperature Range:
-40 to $+85\left({ }^{\circ} \mathrm{C}\right)($ Standard Type)
-55 to $+85\left({ }^{\circ} \mathrm{C}\right)($ High-reliability Type)

Standard Type

Part Number	Center Frequency (fo) (MHz)	Nominal Center Frequency (fn) (MHz)	3dB Bandwidth $(k H z)$	Attenuation (kHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Attenuation (1) (dB)	Spurious Attenuation (2) (dB)	Input/Output Impedance (ohm)
SFECF10M7HA00-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$180 \pm 40 \mathrm{kHz}$	470 max.	$4.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	$30 \mathrm{~min} .$ [within 9 MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ \text { [within fo to } 12 \mathrm{MHz}] \end{gathered}$	330
SFECF10M7HF00-R0	-	10.700	$\mathrm{fn} \pm 25 \mathrm{~min}$.	510 max.	8.0 max. [at fn]	1.0 max.	30 min. [within 9 MHz to fn]	$\begin{gathered} 25 \text { min. } \\ \text { [within fn to } 12 \mathrm{MHz}] \end{gathered}$	330
SFECF10M7GA00-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$230 \pm 50 \mathrm{kHz}$	510 max.	$3.5 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min . [within 9 MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ \text { [within fo to } 12 \mathrm{MHz} \text {] } \end{gathered}$	330
SFECF10M7GF00-R0	-	10.700	$f n \pm 45$ min.	560 max.	8.0max. [at fn]	1.0 max.	$\begin{gathered} 30 \mathrm{~min} . \\ \text { [within } 9 \mathrm{MHz} \text { to } \mathrm{fn}] \end{gathered}$	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within fn to } 12 \mathrm{MHz}] \end{gathered}$	330
SFECF10M7FA00-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$280 \pm 50 \mathrm{kHz}$	590 max.	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min . [within 9 MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7FF00-R0	-	10.700	$\mathrm{fn} \pm 65 \mathrm{~min}$.	620 max.	7.0max. [at fn]	1.0 max.	30 min . [within 9 MHz to fn]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7EA00-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$330 \pm 50 \mathrm{kHz}$	700 max.	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min . [within 9 MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7DA0001-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	420 min .	950 max.	$3.0 \pm 2.0 \mathrm{~dB}$	3.0 max.	35 min. [within 9 MHz to fo]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7DF00-R0	-	10.700	fn $\pm 150 \mathrm{~min}$.	990 max.	6.0max. [at fn]	3.0 max.	20 min . [within 9MHz to fn]	20 min . [within fn to 12MHz]	330

[^0]
High-reliability Type

Part Number	Center Frequency (fo) (MHz)	Nominal Center Frequency (fn) (MHz)	3dBBandwidth (kHz)	Attenuation (kHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Attenuation (1) (dB)	Spurious Attenuation (2) (dB)	Input/Output Impedance (ohm)
SFECF10M7HA00S0-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$180 \pm 40 \mathrm{kHz}$	470 max.	$4.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min . [within 9MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7HF00S0-R0	-	10.700	$\mathrm{fn} \pm 25 \mathrm{~min}$.	510 max.	8.0 max. [at fn]	1.0 max.	30 min . [within 9MHz to fn]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7GA00S0-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$230 \pm 50 \mathrm{kHz}$	510 max.	$3.5 \pm 2.0 \mathrm{~dB}$	1.0 max.	$30 \mathrm{~min} .$ [within 9MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ \text { [within fo to } 12 \mathrm{MHz} \text {] } \end{gathered}$	330
SFECF10M7GF00S0-R0	-	10.700	$f n \pm 45$ min.	560 max.	$8.0 \max$. [at fn]	1.0 max.	30 min . [within 9MHz to fn]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7FA00S0-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$280 \pm 50 \mathrm{kHz}$	590 max.	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min . [within 9MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7FF00S0-R0	-	10.700	$\mathrm{fn} \pm 65 \mathrm{~min}$.	630 max.	$7.0 \max$. [at fn]	1.0 max.	30 min . [within 9 MHz to fn]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$	330
SFECF10M7EA00S0-R0	$\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$	-	$330 \pm 50 \mathrm{kHz}$	700 max.	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min . [within 9 MHz to fo]	$\begin{gathered} 30 \mathrm{~min} . \\ \text { [within fo to } 12 \mathrm{MHz}] \end{gathered}$	330
SFECF10M7DF00S0-R0	-	10.700	$\mathrm{fn} \pm 145 \mathrm{~min}$.	990 max.	6.0max. [at fn]	3.0 max.	20 min. [within 9 MHz to fn]	$\begin{gathered} 20 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$	330

Area of Attenuation: [within 20dB]
Area of Insertion Loss: at minimum loss point Area of Ripple: within 3dB B.W.
Center frequency (fo) defined by center of 3dB bandwidth.
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$\mathrm{Rg}=50 \Omega \quad \mathrm{R}_{1}=280 \Omega \pm 5 \% \quad \mathrm{R}_{2}=330 \Omega+5 \%$
$\mathrm{C}_{2}=10 \pm 2 \mathrm{pF}$ (Including stray capacitance and Input capacitance of RF Volt Meter)
E1: S.S.G. Output Voltage
(1): Input (2)(5): Ground
(3)(4):
(3)(4): No connect (6): Output

Frequency Characteristics

SFECF10M7FA00-R0

SFECF10M7FA00-R0

Ceramic Filers (CERAFIL® (for Communications Equipment

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFSCE10M7 Series

SFSCE series are chip surface mount filters available for 3 dB bandwidth at 700 kHz to 1.3 MHz . (more than twice width compared with current types)
They have 1.0 mm max. thickness and small mounting area $(4.5 \times 3.8 \mathrm{~mm})$.

\square Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.0 mm max. thickness, and have a small mounting area ($4.5 \times 3.8 \mathrm{~mm}$) enabling flexible PCB design.
3. Available lead (Pb) free solder reflow.
4. Operating temperature range:

$$
-20 \text { to }+80\left({ }^{\circ} \mathrm{C}\right)
$$

Storage temperature range:

$$
-40 \text { to }+85\left({ }^{\circ} \mathrm{C}\right)
$$

Applications

1. SS digital communication system
2. Digital wireless audio
3. PHS Evolution system
4. RFID Reader Writer
5. RKE

Part Number	Nominal Center Frequency (fn) (MHz)	3 dB Bandwidth (kHz)	Stop Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Response (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
SFSCE10M7WF03-R0	10.700	fn ± 500.0 min.	2.2 max. (Total) [within 20dB]	6.0 max. [at minimum loss point]	2.0 max. [within 3dB Bandwidth]	30/25 min. [within 5.7 MHz to fn / fn to 15.7 MHz]	0.6 max. [within $\mathrm{fn} \pm 400 \mathrm{kHz}$]	470
SFSCE10M7WF04-R0	10.700	$\mathrm{fn} \pm 400.0$ min.	1.8 max. (Total) [within 20dB]	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } 3 \mathrm{~dB} \text { Bandwidth] } \end{gathered}$	35/25 min. [within 5.7 MHz to fn / fn to 15.7 MHz]	0.6 max. [within $\mathrm{fn} \pm 325 \mathrm{kHz}$]	470
SFSCE10M7WF05-R0	10.700	$\mathrm{fn} \pm 325.0$ min.	$\begin{aligned} & 1.7 \text { max. (Total) } \\ & \text { [within 20dB] } \end{aligned}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } 3 \mathrm{~dB} \text { Bandwidth] } \end{gathered}$	40/30 min. [within 5.7 MHz to fn / fn to 15.7 MHz]	0.6 max. [within $\mathrm{fn} \pm 250 \mathrm{kHz}$]	470

For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

(1): Input
(2): Output
(3): No Conne
(4): Ground
$R 1+\mathrm{Rg}=\mathrm{R} 2=$ Input/Output Impedance, $\mathrm{Rg}=50 \Omega$

Frequency Characteristics

SFSCE10M7WF03-R0

SFSCE10M7WF03-R0

SFECF10M7 Series Notice

- Soldering and Mounting

1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.

(2) Soldering Iron

Filter is soldered at $+350 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds. The soldering iron should not touch the filter while soldering.
(3) Condition for Placement Machines

The component is recommended with placement machines that employ optical placement capabilities. The component might be damaged by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated on positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component. Depending on the soldering conditions, the effective area of terminations may be reduced. Solder containing Ag should be used to prevent the electrode erosion.
(f) Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.

MHz SMD Type CERAFIL® ${ }^{\circledR}$ Notice

Continued from the preceding page.
2. Wash

Do not clean or wash the component as it is not hermetically sealed.

3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85\% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

1. Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
2. The components, packed in a moisture proof bag (dry pack), are sensitive to moisture. The following treatment is required before applying reflow soldering, to avoid reliability degradation caused by thermal stress. When unpacked, store the component in an atmosphere of reflow $30^{\circ} \mathrm{C}$ and below 60% R.H., and solder within 1 week.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
3. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.
3. For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.

SFSCE10M7WF03-R0 Notice

- Soldering and Mounting

1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.

(2) Soldering Iron

Filter is soldered at $+280 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds. The soldering iron should not touch the filter while soldering.
(3) Condition for Placement Machines

The component is recommended with placement machines that employ optical placement capabilities. The component might be damaged by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated on positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component.
(f) Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.
[Component Layout Close to Board]
 of : $A>C>B$
[Component Direction]

Place the component laterally to the direction in which stress acts.

MHz SMD Type CERAFIL® ${ }^{\circledR}$ Notice

Continued from the preceding page.
2. Wash

Do not clean or wash the component as it is not hermetically sealed.

3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

1. Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
2. For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
3. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

SFSCE10M7WF04/05-R0 Notice

- Soldering and Mounting

1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.

(2) Soldering Iron

Filter is soldered at $+280 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds. The soldering iron should not touch the filter while soldering.
(3) Condition for Placement Machines

The component is recommended with placement machines that employ optical placement capabilities. The component might be damaged by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated on positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component.
(f) Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.
[Component Layout Close to Board]
 stress is in the order of : $A>C>B$
[Component Direction]

Place the component laterally to the direction in which stress acts.

MHz SMD Type CERAFIL® ${ }^{\circledR}$ Notice

Continued from the preceding page.
2. Wash

Do not clean or wash the component as it is not hermetically sealed.

3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

1. Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
2. For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
3. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

SMD Type CERAFIL ${ }^{\circledR}$ Standard Land Pattern Dimensions

SFPKA Series

(in mm)
\square CFUKG/CFUKF Series

(in mm)
\square SFECF10M7 Series

$\square \square /$ It shows solder resist land pattern.

SFSCE10M Series

\boxed{Z} It shows solder resist land pattern.
(1): Input
(2): Output
(3): No Connect
(4): Ground
(in mm)

kHz SMD Type CERAFIL® Packaging

Minimum Quantity

Part Number	$\varnothing 180 \mathrm{~mm}$	$\varnothing 330 \mathrm{~mm}$
SFPKA		1,000
CFUKG	450	
CFUKF	450	
CFWKA	350	

SFPKA Series

■ CFUKG/CFUKF Series

Dimensions of Carrier Tape
Dimensions of Reel

Continued from the preceding page.

CFWKA Series

MHz SMD Type CERAFIL® Packaging

Minimum Quantity

Part Number	$\varnothing 180 \mathrm{~mm}$
SFECF	2,000
SFSCE	1,500

SFECF10M7 Series

SFSCE10M7 Series

Dimensions of Carrier Tape
Dimensions of Reel

Ceramic Filers (CERAFIL® ${ }^{(1)}$ for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case General Use CFULA Series

CFULA series are high selectivity ceramic filters, which consist of 4 ceramic elements connected in a ladder form.
They are most suitable for digital communications and cellular phones because of their improved GDT characteristics.

■ Features

1. High selectivity
2. A variety of bandwidths available
3. Excellent GDT characteristics are available within pass bandwidth.

4. Easily mounted on a printed circuit board
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (k H z) \end{gathered}$	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Input/Output Impedance (ohm)
CFULA455KB2A-B0	$\begin{gathered} 455 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULA455KC2A-B0	$\begin{gathered} 455 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 24.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFULA455KD4A-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 20.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULA455KE4A-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	1500
CFULA455KF4A-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	fn ± 6.0 min.	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULA455KG1A-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULA455KH1A-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 9.0$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics

CFULA455KE4A-B0

CFULA455KE4A-B0

Ceramic Filters (CERAFIL ${ }^{\circledR}$) for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case General Use CFWLA Series

Ceramic filter CFWLA series are low profile high selectivity ceramic filters, which use 6 elements in ladder form.
They are best suitable to high-class transceivers, cordless telephones and amateur radios.

■ Features

1. Low profile, high selectivity
2. Available bandwidths are B to J as standard
3. Easily mountable on any PC board
4. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$ Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Nominal Center Frequency (fn) (kHz)	6 dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	Input/Output Impedance (ohm)
CFWLA455KBFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	3.0 max. [within fn $\pm 10 \mathrm{kHz}$]	1500
CFWLA455KCFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 24.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 3.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 8 \mathrm{kHz}] \end{gathered}$	1500
CFWLA455KDFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	4.0 max. [at minimum loss point]	$\begin{gathered} 3.0 \text { max. } \\ \text { [within fn } \pm 7 \mathrm{kHz}] \end{gathered}$	1500
CFWLA455KEFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \text { min. } \end{gathered}$	fn ± 15.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 3.0 \text { max. } \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KFFA-B0	455.0	fn ± 6.0 min.	$\mathrm{fn} \pm 12.5$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 3.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 4 \mathrm{kHz}] \end{gathered}$	2000
CFWLA455KGFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 10.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within fn } \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	2000
CFWLA455KHFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 9.0$ max. [within 50dB]	$\begin{gathered} 60 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within fn } \pm 2 \mathrm{kHz} \text {] } \end{gathered}$	2000
CFWLA455KJFA-B0	455.0	fn ± 2.0 min.	$\mathrm{fn} \pm 7.5$ max. [within 50dB]	$\begin{gathered} 60 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$7.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 1.5 \mathrm{kHz}]} \end{gathered}$	2000

For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

Frequency Characteristics

CFWLA455KEFA-B0

CFWLA455KEFA-B0

Ceramic Filers (CERAFILQ ${ }^{(1)}$ for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case Miniaturized Type CFULB Series

CFULB series ceramic filters are miniature, highperformance ceramic filters composed of piezoelectric elements connected in a ladder form. These filters, only 6.3 mm high, are 65% the volume of conventional types.
They are well suited for miniaturizing various kinds of communications equipment, pocket pagers, car radios, cordless telephones and mobile telephones.

Features

1. Miniature and high selectivity
2. A variety of bandwidths are available
3. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Input/Output Impedance (ohm)
CFULB455KB2A-B0	$\begin{gathered} 455 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} \mathrm{n} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFULB455KC2A-B0	$\begin{gathered} 455 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 24.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULB455KD4A-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFULB455KE4A-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	fn ± 15.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	1500
CFULB455KF4A-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	fn ± 6.0 min.	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000
CFULB455KG1A-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000
CFULB455KH1A-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 9.0$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000
CFULB455KJ1A-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	fn ± 2.0 min.	$\mathrm{fn} \pm 7.5$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
CFULB455K_series filters are 4-element ceramic filters and miniature versions of CFULA455K_series.
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

Frequency Characteristics

CFULB455KE4A-B0

CFULB455KE4A-B0

Ceramic Filers (CERAFILQ ${ }^{\text {Q }}$ for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case Miniaturized Type CFWLB Series

CFWLB series ceramic filters are miniature, highperformance ceramic filters composed of piezoelectric elements connected in a ladder form.
These filters, only 6.3 mm high, are 67% the volume of conventional types.
They are well suited for miniaturizing various kinds of communications equipment, pocket pagers, pagers, car radios, cordless telephones and mobile telephones.

Features

1. Miniature and high selectivity

2. A variety of bandwidths are available.
3. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Nominal Center Frequency (fn) (kHz)	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Input/Output Impedance (ohm)
CFWLB455KBFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \text { min. } \end{gathered}$	fn ± 30.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFWLB455KCFA-B0	455.0	$\begin{gathered} \mathrm{f} \mathrm{n} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	fn 24.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFWLB455KDFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \text { min. } \end{gathered}$	fn ± 20.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFWLB455KEFA-B0	455.0	$\begin{aligned} & \mathrm{fn} \pm 7.5 \\ & \text { min. } \end{aligned}$	fn ± 15.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	1500
CFWLB455KEFA004-B0	455.0	$\begin{aligned} & \mathrm{fn} \pm 7.5 \\ & \text { min. } \end{aligned}$	fn ± 15.0 max. [within 60dB]	$\begin{gathered} 60 \mathrm{~min} . \\ \text { [within fn } \pm 15 \mathrm{kHz} \text { to } 30 \mathrm{kHz} \text {] } \end{gathered}$	5.0 max. [at fn]	1500
CFWLB455KFFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \text { min. } \end{gathered}$	fn ± 12.5 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000
CFWLB455KGFA-B0	455.0	$\begin{aligned} & \mathrm{fn} \pm 4.5 \\ & \mathrm{~min} . \end{aligned}$	fn ± 10.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000
CFWLB455KHFA-B0	455.0	$\begin{aligned} & \mathrm{fn} \pm 3.0 \\ & \text { min. } \end{aligned}$	$\mathrm{fn} \pm 9.0$ max. [within 50dB]	$\begin{gathered} 55 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	2000
CFWLB455KJFA-B0	455.0	$\begin{gathered} \mathrm{fn} \pm 2.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 7.0$ max. [within 50dB]	$\begin{gathered} 55 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	7.0 max. [at minimum loss point]	2000

For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

$R g+R 1=R 2=$ Input/Output Impedance

Frequency Characteristics
CFWLB455KEFA-B0

CFWLB455KEFA-B0

Ceramic Filters (CERAFII ${ }^{\circledR}$) for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFULA_Y Series

CFULA_Y series are high selectivity ceramic filters, which consist of 4 ceramic elements connected in a ladder form.
They are most suitable for digital communications and cellular phones because of their improved GDT characteristics.

■ Features

1. High selectivity
2. A variety of bandwidths are available.
3. Excellent GDT characteristics are available within pass bandwidth.

. Easily mounted on a printed circuit board
4. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	Center Frequency (fo) (kHz)	6 dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFULA455KB4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 35.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	5.0 max. [at minimum loss point]	$\begin{gathered} 15.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 10 \mathrm{kHz}] \end{gathered}$	1500
CFULA455KC4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 15.0 \text { max. } \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULA455KD1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 10.0$ min.	fn ± 25.0 max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULA455KE1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz}] \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULA455KF1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 17.5$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	9.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 4 \mathrm{kHz}] \end{gathered}$	2000
CFULA455KG1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & \mathrm{fn} \pm 4.5 \\ & \text { min. } \end{aligned}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	10.0 max. [at minimum loss point]	20.0 max. [within fn $\pm 3 \mathrm{kHz}$]	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics
CFULA455KE1Y-B0

CFULA455KE1Y-B0

Ceramic Filters (CERAFIL ${ }^{\circledR}$) for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFWLA_Y Series

CFWLA_Y series are high selectivity ceramic filters, which consist of 6 ceramic elements connected in a ladder form.
They are most suitable for digital communications and mobile telephones because of their improved GDT characteristics.

■ Features

1. High selectivity
2. A variety of bandwidths are available
3. Excellent GDT characteristics are available within pass bandwidth.

4. Easily mounted on a printed circuit board
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	$\underset{\substack{6 d B \\ \text { Bandwidth } \\(k H z)}}{ }$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFWLA455KB4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \text { max. } \\ \text { [within fn } \pm 10 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KC4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 27.5$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 8 \mathrm{kHz}]} \end{gathered}$	1500
CFWLA455KD1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 25.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KE1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & \mathrm{fn} \pm 7.5 \\ & \text { min. } \end{aligned}$	$\mathrm{fn} \pm 20.0$ max [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$9.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 30.0 \mathrm{max} . \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KF1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & \mathrm{fn} \pm 6.0 \\ & \text { min. } \end{aligned}$	$\mathrm{fn} \pm 17.5$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}] \end{gathered}$	$10.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 40.0 \text { max. } \\ \text { [within fn } \pm 4 \mathrm{kHz} \text {] } \end{gathered}$	2000
CFWLA455KG1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & \mathrm{fn} \pm 4.5 \\ & \text { min. } \end{aligned}$	$\mathrm{fn} \pm 15.0$ max [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	11.0 max. [at minimum loss point]	$\begin{gathered} 40.0 \mathrm{max} . \\ \text { [within fn } \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

$R g+R 1=R 2=$ Input/Output Impedance

Frequency Characteristics
CFWLA455KE1Y-B0

CFWLA455KE1Y-B0

Ceramic Filers (CERAFIL® (for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type Miniaturized Type CFULB_Y Series

Ceramic filter CFULB_Y series are miniature and highperformance filters. These filters, only 6.3 mm high, are 65% the volume of conventional types. Well suited for miniaturizing communications equipment, especially for a cellular phone.

- Features

1. Miniature, flat GDT characteristics

2. Suitable for a cellular phone
3. A variety of bandwidths are available.
4. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~dB} \\ \begin{array}{c} \text { Bandwidth } \\ (\mathrm{kHz}) \end{array} \end{gathered}$	\qquad	Stop Band Attenuation (dB)	Insertion Loss (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFULB455KB4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 35.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	5.0 max. [at minimum loss point]	$\begin{gathered} 15.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 10 \mathrm{kHz}] \end{gathered}$	1500
CFULB455KC4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 15.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 8 \mathrm{kHz}]} \end{gathered}$	1500
CFULB455KD1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 10.0$ min.	$\mathrm{fn} \pm 25.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz}] \end{gathered}$	1500
CFULB455KE1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULB455KF1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 17.5$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	9.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 4 \mathrm{kHz}]} \end{gathered}$	2000
CFULB455KG1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	10.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 3 \mathrm{kHz}]} \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
CFULB455K_Y series filters are 4-element ceramic filters and miniature versions of CFULA455K_Y series
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics
CFULB455KE1Y-B0

CFULB455KE1Y-B0

Ceramic Filters (CERAFIL ${ }^{\circledR}$) for Communications Equipment

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFWLB_Y Series

Ceramic filter CFWLB_Y series are miniature and high-performance filters. These filters, only 6.3 mm high, are 67% the volume of conventional types. Well suited for miniaturizing communications equipment, especially for a cellular phone.

- Features

1. Miniature, flat GDT characteristics
2. Suitable for a cellular phone
3. A variety of bandwidths are available.
4. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	6 dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFWLB455KB4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 10 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLB455KC4Y-B0	$\begin{gathered} 455 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 12.5$ min.	$\mathrm{fn} \pm 27.5$ max. [within 50dB]	40 min . [within fn $\pm 100 \mathrm{kHz}$]	7.0 max. [at minimum loss point]	30.0 max. [within fn $\pm 8 \mathrm{kHz}$]	1500
CFWLB455KD1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 25.0 max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$8.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 30.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{gathered}$	1500
CFWLB455KE1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 20.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	9.0 max. [at minimum loss point]	30.0 max. [within $\mathrm{fn} \pm 5 \mathrm{kHz}$]	1500
CFWLB455KF1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 17.5$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	10.0 max. [at minimum loss point]	40.0 max. [within $\mathrm{fn} \pm 4 \mathrm{kHz}$]	2000
CFWLB455KG1Y-B0	$\begin{gathered} 455 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	11.0 max. [at minimum loss point]	40.0 max. [within $\mathrm{fn} \pm 3 \mathrm{kHz}$]	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
CFWLB455K_Y series filters are 4-element ceramic filters and miniature versions of CFWLA455K_Y series.
For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics
CFWLB455KE1Y-B0

CFWLB455KE1Y-B0

Minimum Quantity

Part Number	Bulk
CFULA Series	200
CFULB Series	250
CFWLA Series	150
CFWLB Series	150

The order quantity should be an integral multiple of the "Minimum Quantity" shown above.

\square Notice

- Soldering and Mounting

The component cannot withstand washing.

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
4. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

1. Do not use this product with bend. The component may be damaged if excessive mechanical stress is applied to it mounted on the printed circuit board.
2. All kinds of reflow soldering must not be applied on the component.
3. Do not clean or wash the component as it is not hermetically sealed.
4. Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in flow soldering.
5. Conformal coating of the component is not acceptable due to non-sealed construction.
6. Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
7. For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.

Ceramic Discriminators for Communications Equipment

kHz Type Ceramic Discriminators

Ceramic discriminator consists of a wide band piezoelectric resonator.
It is ideal for mobile communications equipment due to its small size and light weight.
Standard line includes products for a wide range of applications, from cordless telecom to cellular telephone. Practically adjustment free at the detection circuit, small size is suitable for downsizing.

Features

1. Small in size and light weight
2. Adjustment free at detection circuit
3. High sensitivity and stability
4. Wide range of standard products are available for various ICs.
5. Operating temperature range: -20 to $+80\left({ }^{\circ} \mathrm{C}\right)$

Storage temperature range: -40 to $+85\left({ }^{\circ} \mathrm{C}\right)$

CDBKB Series

Impedance Curve

CDBLB455KCAX02-B0

CDBLB455KCAX31-B0

Specified by Impedance Characteristics (Type 2)

| Part Number | Nominal Center
 Frequency (fn) | Anti-resonant
 Frequency (Fa) | Delta F
 (Fa-Fr) | Resonant
 Resistance (R) | Capacitance
 (C) | IC | IC Maker |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Type

For safety purposes, avoid applying a direct current between the terminals.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Impedance Curve

CDBKB455KCAX33-R0

CDBLB455KCAY03-B0

Impedance Curve
CDBLB455KCAX15-B0

CDBLB455KCAX33-B0

CDBLB455KCAX25-B0

Specified by Recovered Audio Characteristics

Part Number	Nominal Center Frequency (fn) (kHz)	Recovered Audio 3dB BW (kHz)	Recovered Audio Output (mV)	Distortion (at fn) (\%)	Distortion (\%)	IC	IC Maker	Type
CDBKB450KCAY79-R0	450	$\mathrm{fn} \pm 3.0 \mathrm{~min}$.	145 ± 40	-	-	TB32302FG	TOSHIBA	SMD
CDBKB455KCAY07-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	350 ± 60	3.0 max.	-	MC3357	MOTOROLA	SMD
CDBKB455KCAY09-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	120 ± 40	1.5 max.	-	NE604N	PHILIPS	SMD
CDBKB455KCAY13-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	330 ± 50	4.0 max.	-	CXA1003BM	SONY	SMD
CDBKB455KCAY16-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	175 ± 40	2.0 max.	-	MC3372	MOTOROLA	SMD
CDBKB455KCAY24-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.0 max.	-	TA31136	TOSHIBA	SMD
CDBKB455KCAY27-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	90 ± 30	2.0 max.	-	TK10487	TOKO	SMD
CDBKB455KCAY28-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31142F	TOSHIBA	SMD
CDBKB455KCAY29-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 30	2.5 max.	-	NE605	PHILIPS	SMD
CDBKB455KCAY35-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.5 max.	-	TK10930	TOKO	SMD
CDBKB455KCAY40-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.5 max.	-	TA31145	TOSHIBA	SMD
CDBKB455KCAY49-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	45 ± 10	3.0 max.	-	MC3361	MOTOROLA	SMD
CDBKB455KCAY50-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	64 ± 6.4	4.0 max.	-	CXA3117N	SONY	SMD
CDBKB455KCAY66-R0	455	$\mathrm{fn} \pm 4.2 \mathrm{~min}$.	40 ± 10	4.0 max.	-	NJM2590	JRC	SMD
CDBKB455KCLX36-R0	455	$\mathrm{fn} \pm 13.0$ min.	90 ± 30	2.5 max.	$\begin{gathered} 5.0 \mathrm{max} . \\ {[\text { within fn } \pm 6 \mathrm{kHz}]} \end{gathered}$	NE(SA)606/NE(SA)616	PHILIPS	SMD
CDBKB455KCLX39-R0	455	$\mathrm{fn} \pm 11.0 \mathrm{~min}$.	130 ± 20	2.5 max.	7.0 max. [within fn $\pm 8 \mathrm{kHz}$]	NE607/NE617	PHILIPS	SMD
CDBKB455KCLY13-R0	455	$\mathrm{fn} \pm 13.0$ min.	120 ± 30	1.5 max.	5.0 max. [within fn $\pm 8 \mathrm{kHz}$]	CXA1003BM	SONY	SMD
CDBLB455KCAY07-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	340 ± 60	3.0 max.	-	MC3357	MOTOROLA	Lead
CDBLB455KCAY13A-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	350 ± 50	3.0 max.	-	CXA1003BM	SONY	Lead
CDBLB455KCAY24-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.0 max.	-	TA31136	TOSHIBA	Lead
CDBLB455KCAY28-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31142FN	TOSHIBA	Lead
CDBLB455KCAY34-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	65 ± 20	2.5 max.	-	MC13136	MOTOROLA	Lead
CDBLB455KCAY40-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31145	TOSHIBA	Lead
CDBLB455KCAY42-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 15	3.0 max.	-	TK14590/TK14591	TOKO	Lead
CDBLB455KCAY49-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	45 ± 10	3.0 max.	-	MC3361	MOTOROLA	Lead
CDBLB455KCAY50-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	64 ± 6.4	4.0 max.	-	CXA3117N	SONY	Lead
CDBLB455KCLY09-B0	455	$\mathrm{fn} \pm 15.0$ min.	70 ± 20	1.5 max.	$\begin{gathered} 3.5 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 8 \mathrm{kHz}]} \end{gathered}$	NE604N	PHILIPS	Lead

Part Number	Nominal Center Frequency (fn) (kHz)	Recovered Audio 3dB BW (kHz)	Recovered Audio Output (mV)	$\begin{gathered} \hline \text { Distortion } \\ \left(\begin{array}{c} \text { at fn) } \\ (\%) \end{array}\right. \\ \hline \end{gathered}$	Distortion (\%)	IC	IC Maker	Type
CDBLB455KCLY13-B0	455	$\mathrm{fn} \pm 15.0$ min.	110 ± 30	1.5 max.	5.0 max. [within fn $\pm 8 \mathrm{kHz}$]	CXA1003BM	SONY	Lead
CDBLB455KCAX16-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	185 ± 40	2.0 max.	-	MC3372	MOTOROLA	Lead
CDBLB455KCAX18-B0	455	$\mathrm{fn} \pm 3.0 \mathrm{~min}$.	180 ± 40	2.0 max.	-	MC3371	MOTOROLA	Lead
CDBLB455KCAX36-B0	455	$\mathrm{fn} \pm 3.5 \mathrm{~min}$.	100 ± 25	3.5 max.	-	NE606/NE616	PHILIPS	Lead

For safety purposes, avoid applying a direct current between the terminals.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog

Test Circuit

MC3357

Part Number (X)	C	R
CDBLB455KCAY07-B0	150 pF	$1.5 \mathrm{k} \Omega$
CDBKB455KCAY07-R0	150 pF	$1.3 \mathrm{k} \Omega$

CXA1003BM

MC3371

NE604N

MC3372

TA31136

- Test Circuit

TK10487

NE605

TK10930

NE(SA)607/617

Part Number (X)	C	R	L
Unit C: F			
R: Ω			
CDBKB455KCLX39-R0	22 pF	$2.7 \mathrm{k} \Omega$	1 mH

TA31142

MC13136

NE(SA)606/616

TA31145

Test Circuit

TK14590/14591

CXA3117

Recovered Audio Curve

CDBKB455KCAY07-R0

MC3361

T.H.D. (\%)

Continued on the following page

Recovered Audio Curve

CDBKB455KCAY13-R0

CDBLB455KCAY13A-B0

CDBKB455KCLY13-R0

CDBLB455KCLY13-B0

Recovered Audio Curve

CDBLB455KCAY24-B0

CDBLB455KCAX16-B0

CDBKB455KCAY24-R0

CDBKB455KCAY27-R0

Continued on the following page. 7

Recovered Audio Curve

CDBKB455KCAY29-R0

CDBKB455KCAY35-R0

CDBLB455KCAY28-B0

CDBLB455KCAY34-B0

厄
$\stackrel{\circ}{\circ}$
\vdots

CDBKB455KCLX36-R0

Recovered Audio Curve

CDBKB455KCAY40-R0

CDBLB455KCAY42-B0

CDBKB455KCLX39-R0

т.H.D. (\%)

CDBKB455KCAY49-R0

Recovered Audio Curve

CDBLB455KCAY49-B0

CDBLB455KCAY50-B0

CDBKB455KCAY50-R0

T.H.D. (\%)

Specified by S Curve Characteristics

Part Number	Nominal Center Frequency (fn) (kHz)	S Curve (1) Output Volt. at fn (mVV)	S Curve (2) at fn $\pm 4.8 \mathrm{kHz}$ (mV)	IC	IC Maker	Type
CDBKB455KCAY54-R0	455	165 ± 20	170 ± 20	TA31149	TOSHIBA	SMD

Test Circuit

TA31149

S Curve

CDBKB455KCAY54-R0

Ceramic Discriminators for Communications Equipment

MHz Type Ceramic Discriminators

CDSCB10M7 series forms a resonator on a piezoelectric ceramic substrate. In combination with ICs, this type obtains stable demodulation characteristics in a wide bandwidth.
They have 1.0 mm max. thickness and small mounting area ($4.5 \times 2.0 \mathrm{~mm}$).

■ Features

1. Compact and high reliability and recommended for automotive applications.

CDSCB Series
2. Can be combined with various ICs. The IC is determined by the last number in the part number.

Stable demodulation characteristics can be obtained without adjustment.
4. Stable temperature characteristics
5. Available lead (Pb) free solder reflow.

Part Number	Center Frequency (fo) (MHz)	Recovered Audio 3dB BW (kHz)	Recovered Audio Output (mV)	Distortion $(\%)$	S Curve (mV)	IC
CDSCB10M7GA105A-R0	$10.700 \pm 30 \mathrm{kHz}$	220 min.	110 min.	1.5 max.	-	TEA5757HL
CDSCB10M7GA113-R0	$10.700 \pm 30 \mathrm{kHz}$	300 min.	110 min.	1.0 max.	-	TA2154FN
CDSCB10M7GA119-R0	$10.700 \pm 30 \mathrm{kHz}$	500 min.	75 min.	1.0 max.	-	TRF6901
CDSCB10M7GA121-R0	$10.700 \pm 30 \mathrm{kHz}$	390 min.	80 min.	1.0 max.	-	LV23100V
CDSCB10M7GA135-R0	$10.700 \pm 30 \mathrm{kHz}$	155 min.	75 min.	-	-	TH71101
CDSCB10M7GA136-R0	$10.700 \pm 30 \mathrm{kHz}$	140 min.	120 min.	-	-	TH7122
CDSCB10M7GF072-R0	$10.700(\mathrm{fn})$	$\mathrm{fn} \pm 150 \mathrm{~min}$.	130 min.	2.0 max.	-	TA31161
CDSCB10M7GF107S-R0	$10.700(\mathrm{fn})$	$\mathrm{fn} \pm 80 \mathrm{~min}$.	52 min.	3.0 max.	-	TA31272FN
CDSCB10M7GF109-R0	$10.700(\mathrm{fn})$	$\mathrm{fn} \pm 100 \mathrm{~min}$.	170 min.	3.0 max.	-	TK14588V
CDSCB10M7GF123-R0	$10.700(\mathrm{fn})$	-	-	-	900 min.	TA31275FN
CDSCB10M7GF123S-R0	$10.700(\mathrm{fn})$	-	-	-	900 min.	TA31275FN
CDSCB10M7GF126-R0	$10.700(\mathrm{fn})$	-	-	-	400 min.	NJM2295AV

[^1]The order quantity should be an integral multiple of the "Minimum Quantity" shown in the package page.
For safety purposes, avoid applying a direct current between the terminals.

Test Circuit

CDSCB10M7GA119-R0

CDSCB10M7GA135-R0

CDSCB10M7GA113-R0

CDSCB10M7GA121-R0

CDSCB10M7GA136-R0

Continued on the following page. 7

Test Circuit
CDSCB10M7GF072-R0

X: CDSCB10M7GF072-R R: 820

Unit $C: F$
$R: \Omega$
$L: H$

CDSCB10M7GF107S-R0

CDSCB10M7GF123-R0

X: CDSCB10M7GF109-R0 R: 820

CDSCB10M7GF126-R0

Recovered Audio Curve

CDSCB10M7GA105A-R0

CDSCB10M7GA119-R0

CDSCB10M7GA135-R0

CDSCB10M7GA113-R0

CDSCB10M7GA121-R0

CDSCB10M7GA136-R0

Input $=100 \mathrm{~dB} \mu$
fdev. $= \pm 50 \mathrm{kHz}$ fdev. $= \pm 50 \mathrm{kH}$
fmod. $=1 \mathrm{kHz}$ fmod. $=1 \mathrm{kHz}$
$\mathrm{Vcc}=5.0 \mathrm{~V}$

Recovered Audio Curve
CDSCB10M7GF072-RO

S Curve

CDSCB10M7GF123-R0

CDSCB10M7GF109-R0

ut $=100 \mathrm{~dB} \mu$
fdev. $= \pm 64 \mathrm{kHz}$ fdev. $= \pm 64 \mathrm{k}$
fmod. $=1 \mathrm{kHz}$

CDSCB10M7GF126-R0

Ceramic Discriminators Notice

CDBKB Series Notice (Soldering and Mounting)

1. Standard Reflow Soldering Conditions
(1) Reflow

Filter is soldered twice within the following temperature conditions.
(2) Soldering Iron

Electrode is directly soldered with the tip of soldering iron at $+350 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds.
2. Wash
(1) Cleaning Solvent

CFC alternatives (HCFC Series), Isopropyl Alcohol (IPA), Water (Demineralized Water), Cleaning Water Solution (Cleanthrough-750H, Pine Alpha 100S), Silicon (Technocare FRW)
(2) Cleaning Conditions

- Immersion Wash

2 minutes max. in above solvent at $+60^{\circ} \mathrm{C}$ max.

- Shower or Rinse Wash

2 minutes max. in above solvent at $+60^{\circ} \mathrm{C}$ max.
(3) Notice

- When components are immersed in solvent, be sure to maintain the temperature of components below the temperature of solvent.
- Please do not use ultrasonic cleaning.
- Total washing time should be within 4 minutes.
- Please ensure the component is thoroughly evaluated in your application circuit.
- Please do not use chlorine, petroleum or alkaline cleaning solvents.
- If you plan to use any other type of solvents, please consult with Murata or Murata representative prior to using.

\square CDBKB Series Notice (Handling)

1. The component will be damaged when an excessive stress is applied.
2. If the component is cleaned, please confirm that the reliability has not been degraded.
3. In case of covering filter with over coating, conditions such as material of resin, cure temperature, and so on should be evaluated carefully.
4. Do not use strong acidity flux, more than $0.2 w t \%$ chlorine content, in reflow soldering.

5. The product, packed in a moisture-proof bag (dry pack), is sensitive to moisture.
The following treatment is required before applying reflow soldering, to avoid package cracks or reliability degradation caused by thermal stress. When unpacked, store the component in an atmosphere of below 25 degrees C . and below 65% R.H., and solder within 48 hours.

Ceramic Discriminators Notice

Continued from the preceding page.

CDBLB Series Notice (Handling)

1. Do not use this product with bend. The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
2. The component will be damaged when an excessive stress is applied.
3. No type of reflow soldering should be applied to this component.
4. Do not clean or wash the component as it is not hermetically sealed.
5. Do not use strong acidity flux, more than $0.2 w t \%$ chlorine content, in flow soldering.
6. In case of covering discriminator with over coating, conditions such as material of resin, cure temperature, and so on should be evaluated carefully.

Ceramic Discriminators Notice

CDSCB Series Notice

- Soldering and Mounting

1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.

(2) Soldering Iron

Filter is soldered at $+300 \pm 5^{\circ} \mathrm{C}$ for 3.0 ± 0.5 seconds. The soldering iron should not touch the filter while soldering.
(3) Condition for Placement Machines

The component is recommended with placement machines that employ optical placement capabilities. The component might be damaged by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated on positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component. Depending on the soldering conditions, the effective area of terminations may be reduced. Solder containing Ag should be used to prevent the electrode erosion.

[Component Direction]

Place the component laterally to the direction in which stress acts.
[Component Layout Close to Board]

Susceptibility to stress is in the order of : $A>C>B$

Continued from the preceding page.

2. Wash

Do not clean or wash the component as it is not hermetically sealed.

3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

- Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality and may be degraded in solderability due to storage in a chemical atmosphere.

- Rating

The component may be damaged if excessive mechanical stress is applied.

- Handling

1. Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
2. For safety purposes, avoid applying a direct current between the terminals.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor condition.
(5) Please do not drop the products to avoid cracking of ceramic element.
3. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

Ceramic Discriminators Standard Land Pattern Dimensions/Packaging

Standard Land Pattern Dimensions

CDBKB Series

(in mm)

CDSCB Series

Minimum Quantity

Part Number	Taping $\varnothing 180 \mathrm{~mm}$	Bulk
CDBKB Series	500	
CDBLB Series		500
CDSCB Series	2000	

The order quantity should be an integral multiple of the "Minimum Quantity" shown above.

\square CDBKB Series

Dimensions of Carrier Tape

- Part number marked side is always facing up.

Ceramic Discriminators Standard Land Pattern Dimensions/Packaging

Continued from the preceding page.

CDSCB Series

[^2]
© Note:

1. Export Control
<For customers outside Japan>
No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.
<For customers in Japan>
For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.
2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
(1) Aircraft equipment
(2) Aerospace equipment
(3) Undersea equipment

Power plant equipment
(5) Medical equipment
(7) Traffic signal equipment
(9) Data-processing equipment
(6) Transportation equipment (vehicles, trains, ships, etc.)
(8) Disaster prevention / crime prevention equipment
(10) Application of similar complexity and/or reliability requirements to the applications listed above
3. Product specifications in this catalog are as of September 2011. They are subject to change or our products in it may be discontinued without advance notice.

Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
4. Please read rating and \triangle CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please review our product specifications or consult the approval sheet for product specifications before ordering.
6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

minRta Murata Manufacturing Co., Ltd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Murata manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E1305$\underline{3}$ 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 TP-102-PIN TP-103-PIN BD1222J50200AHF

[^0]: Area of Attenuation: [within 20dB]
 Area of Insertion Loss: at minimum loss point Area of Ripple: within 3dB B.W.
 Center frequency (fo) defined by center of 3dB bandwidth.
 For safety purposes, connect the output of filters to the IF amplifier through a DC blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
 The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

[^1]: (fn) means nominal center frequency.

[^2]: - Part number marked side is always facing up.

