

86mm 1U Front End AC-DC Power Supply

NB: D1U86P-W-1600-12-HB3DC Model Shown

FEATURES

1600W output power						
94% minimum efficiency at 50% load						
12V main output						
12V standby output of 30W						
1U height: 3.4" x 7.78" x 1.59"						
38.6 Watts per cubic inch density						
N+1 redundancy, including hot plugging (up to 8						
in parallel)						
Droop Current sharing both outputs						
Overvoltage, overcurrent, overtemperature						
protection						
Internal cooling fan (variable speed)						
■ PMBus [™] / I ² C interface monitoring and control						
RoHS compliant						
Two Year Warranty						

3D Models of AC-DC **Power Supplies** in STEP, IGES, or PDF format **Click here**

Available now at: http://power.murata.com/en/3d/acdc.html

PRODUCT OVERVIEW

The D1U86P-W-1600-12-HBxDC products are high efficiency 1600 watt, power factor corrected front end supplies with a 12V main output and a 12V (30W) standby. They have current sharing and up to 8 supplies may be operated in parallel. The supplies may be hot plugged, they recover from over-temperature faults, and have logic and PMBus™ monitoring and control. Their low profile 1U package and >38.6W/cubic inch power density make them ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power systems.

ORDERING GUIDE								
Part Number	Powe	Power Output; AC Line		Main Standby		Airflow	Handle	
Fait Nullinei	(90-264V)	(108-264V)	(180-264V)	Output	Output	AII IIOW	Colour	
D1U86P-W-1600-12-HB4DC	1200W 1350W	16001/	12V	12V	Back to Front	Red		
D1U86P-W-1600-12-HB3DC	120000	1350W	1600W	IZV	ΙΖV	Front to Back	Blue	

INPUT CHARACTERISTICS								
Parameter	Conditions	Min.	Nom.	Max.	Units			
Input Voltage Operating Range		90	115/230	264	Vac			
Frequency		47	50/60	63	Hz			
Turn-on Voltage	Ramp up	81		89	Vac			
Turn-off Voltage	Ramp down	70.5	73	78	Vac			
Maximum Input Current	1200W, 100Vac			14.1	Arms			
Inrush Current	At 264Vac at 25°C cold start			35	Apk			
Power Factor	At 230Vac, half load		0.98					
Efficiency (230Vac) excluding fan	20% load	90						
, , ,	50% load	94			%			
load	100% load	91						

OUTPUT VOLTAGE CHARACTERISTICS

Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units		
	Voltage Set Point	50% load	12.17	12.2	12.23	Vda		
	Line and Load Regulation		11.4		12.6	Vdc		
	Droop			3.10		mV/A		
12V	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p		
IZV	Output Current (230 Vac) ²		0		133.4	Á		
	Output Current (120 Vac) ²		0		112.5	А		
	Output Current (100 Vac) ²		0		100.0	А		
	Load Capacitance				10,000	μF		
	Voltage Set Point	50% load	11.97	12.0	12.02	Vdc		
12VSB	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p		
	Output Current		0		2.5	Α		

¹Ripple and noise measured with a parallel combination of a 1.0μF ceramic and 10μF tantalum capacitor on each of the power module outputs. A short coaxial cable connected directly to the input of a scope is required. ²To meet ripple and transient step load specifications a minimum load of 4A is required.

86mm 1U Front End AC-DC Power Supply

OUTPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Output Rise Monotonicity	No voltage excursion				
Startup Time	AC ramp up		1.5	3	S
Transient Deepense	12V, 50% load step, 1.0Aµs di/dt		600		mV
Transient Response	12VSB, 50% load step,1.0Aµs di/dt		600		IIIV
Current sharing accuracy (up to 8 in parallel) ³	At 100% load			±5	%
Hot Swap Transients	All outputs remain in regulation			5	%
Holdup Time	At full load	12			ms
3		1.1. 1. 11.1. ((6.13)		,	E0(:

³ Load current of 100% applies to each power module max load connected in an N+1 configuration; therefore the total load will be "N" x 100%. The share accuracy of ±5% is a fixed percentage irrespective of total loading and number of units connected in parallel.

ENVIRONMENTAL CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Storage Temperature Range		-40		85		
Operating Temperature Range		0		55	U	
Operating Humidity	Noncondensing	5		90	%	
Storage Humidity		5		95	70	
Altitude (without derating at 45°C)		3000			m	
Shock	30G non-operating	30G non-operating				
Vibration	10-500Hz, 0.5G (non-operational)					
MTBF	Per Telcordia SR-322 M1C1@40°C	559K			hrs	
Acoustic				65	dBA/@1m	
Safety Approvals	CSA 60950-1-07+A1:2011 ANSI/UL 60950-1-2011, Second Edition IEC 60950-1:2005 (2nd Edition) + A1:2009 EN 60950-1:2006 +A11+A1+A2					
Input Fuse	Power Supply has internal 16A/250V fast b	low fuse on the A	C line input			
Weight	2.33/1.06 lbs/K					

PROTECTION CHARACTERISTICS

Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Overtemperature (intake)	An OTP warning will be issued via the PMBus [™] interface when the air inlet exceeds 65°C; however the power module shall not shut down until critical internal hotspot temperatures are exceeded.		65		°C
	Overvoltage	Latching	13.2		14.4	V
12V	Overcurrent at 220Vac	Shutdown of the output followed by auto- recovery after one second. The output shall attempt three such auto-recovery attempts	140		153	
	Overcurrent at 120Vac	and then enter a permanent latched state. Recovery of the permanent latched state shall require cycling of the incoming AC source or toggling of the PSON# signal.	118		129	A
12VSB	Overvoltage	Latching	13.2		14.4	V
1242R	Overcurrent	Auto-recovery	2.75		3	А

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Insulation Safety Rating / Test Voltage	Input to Output - Reinforced	3000			Vrms
	Input to Chassis - Basic	1500			Vrms
Isolation	Output to Chassis	500			Vdc
Leakage Current	1.5mA at 264Vac, 50/60Hz				

86mm 1U Front End AC-DC Power Supply

Murata Power Solutions

EMISSIONS AND IMMUNITY		
Characteristic	Standard	Compliance
Input Current Harmonics	IEC/EN 61000-3-2	Complies
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies
Conducted Emissions	FCC 47 CFR Part 15/CISPR 22/EN55022	Class A, 6dB margin
ESD Immunity	IEC/EN 61000-4-2	Level 3 criteria A
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria B
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	Level 3 criteria A
Surge Immunity	IEC/EN 61000-4-5	Level 3 criteria A
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A
Magnetic Field Immunity	IEC/EN 61000-4-8	3 A/m criteria B
		230Vin, 100% load, Phase 0°, Dip 100% Duration 10ms (A)
Voltage dips, interruptions	IEC/EN 61000-4-11	230Vin, 50% load, Phase 0°, Dip 100% Duration 20ms (VSB:A, V1:A)
		230Vin, 100% load, Phase 0°, Dip 100% Duration > 20ms (VSB, V1:B)

STATUS AND CONTRO	OL SIGNALS	3							
Signal Name	I/O	Description						Inte	erface Details
PSOK (Output OK)	6	Dutput The PSOK output is a logical "OR" of three internal signals; however the output is not strictly a "digital" signal that transitions between "low" and "high" but is analogue in nature. The internal logic signals are as follows: 1. DC_OK_H 2. PWR_GOOD_H						prov	h internal signal is buffered and vided with a series or pull up stor: DC_OK_H; 1K62 series resistor
			ULT_L						
		upon the three in	ternal logic signa	als:	alogue levels	of operation of the	e signal dependent	2.	PWR_GOOD_H; 3K32 series resistor
		PSOK TRUTH	TABLE VS. ANAL	og output					
			PWR_GOOD_H	PS_FAULT_L	F	SOK	OPERATION MODE	3.	PS_FAULT_L; a 10K pull up resistor to VDD_OR (an internally derived 3.3VDC rail)
		0	0	1	< 0.1Vdc		No AC Input		
		0	1	1	(1/3) VDD		Invalid		embedded truth table shows the
		1	0	1	(2/3) VDD	VDD = 3.3Vdc	Standby	арр	ropriate levels.
		1	1	1	VDD		Power Good		
		X	Х	0	0.2-0.4Vdc		PS Fault		
		The timing relation	onship of this sig	nal is shown in	the Timing Sp	ecification sectior	1 that follows.		
PS_INTERRUPT (FAULT/WARNING)	Output	is intended to ale correctly (within s	The signal output is driven low to indicate that the power supply has detected a warning or fault and is intended to alert the system. This output must be driven high when the power is operating correctly (within specified limits).Pulled up internally via 10K to 3.3 A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal buffer (oper drain output).					gic high >2.0Vdc gic low <0.8Vdc en low by internal buffer (open	
PRESENT#	Output	of an (installed) p Main 12Vdc outp	ower module wi ut.	thin the host sys	stem. Howeve	r it is also intende		of th follo	
		conjunction with To "enable" the I In the host syster 1. If the signal 2. If the signal	the host system Main 12Vdc outp n. The value of t is to be pulled u	and is provided ut the signal rec he pull up resist to to the 12VSB o to to a 3.3Vdc rai	on a short "la quires to be pu or is as follow output then th	ılled "high" with r ⁄s: e resistor value sh	o break" signal pin. espect +12V_GND.	i F t 2. V	When the power module is not nstalled the voltage will be the as per the rail to which it is pulled up o $3.3Vdc$ or $12Vdc$ (host system) When the power module is nstalled the voltage will be pulled down to $0.54Vdc \pm 5\%$) by the PSU
PS_ON (Power Supply Enable/Disable	Input	"enable" the Mai Alternatively the s switch between " The signal is pull power supply ma In the low state the The 12Vdc output	PS_ON can be permanently connected to $\pm 12V_{GND}$ (via the host system mid/back plane) to hable" the Main 12Vdc output. Pratively the signal can be connected via the host system electronics to provide the ability to the between "enable/disable" states. e signal is pulled up internally to the internal housekeeping supply (within the power supply). The ver supply main 12Vdc output will be enabled when this signal is pulled low to $\pm 12V_{GND}$. he low state the signal input shall source a nominal 1.2mAdc. $\pm 12Vdc output will be disabled when the input is driven higher than 2.4V, or open circuited. ling this signal shall clear latched fault conditions.$						
ADDR (Address Select)	Input	microprocessor)	used for digital c uitable resistor t	ommunications. o +12V_GND, ir		l slave devices (El with an internal re	EPROM and sistor divider chain,		voltage between the limits of 0 +3.3Vdc.

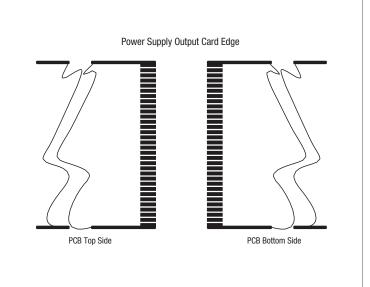
86mm 1U Front End AC-DC Power Supply

Murata Power Solutions

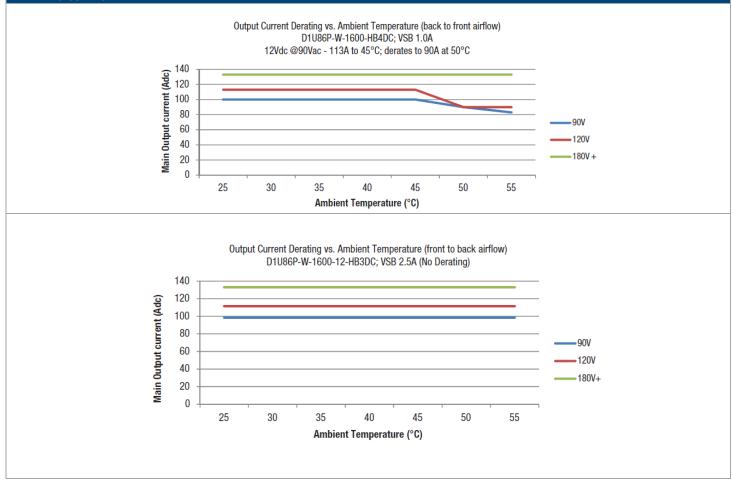
STATUS AND CONTR			
Signal Name	I/O	Description	Interface Details
SCL (Serial Clock)	Both	A serial clock line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. No additional internal capacitance is added that would affect the speed of the bus. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered,	$\begin{array}{l} V_{IL} \text{ is } 0.8V \text{ maximum} \\ V_{OL} \text{ is } 0.4V \text{ maximum when sinking} \\ 3mA \\ V_{IH} \text{ is } 2.1V \text{ minimum} \end{array}$
SDA (Serial Data)	Both	A serial data line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered,	$\begin{array}{l} V{\scriptstyle \rm IL} \mbox{ is } 0.8V \mbox{ maximum} \\ V{\scriptstyle \rm OL} \mbox{ is } 0.4V \mbox{ maximum} \mbox{ when sinking} \\ 3mA \\ V{\scriptstyle \rm H} \mbox{ is } 2.1V \mbox{ minimum} \end{array}$
I <u>MONITOR</u>	Voltage	An analogue DC output voltage signal directly proportional to load current and can be used as an indication of the power supply's load current. This signal of multiple connected units should not be tied together.	Analogue output voltage: 60.15mV/Amp

STATUS INDICATOR CONDITIONS

	LED State	Mode	Operating Condition				
1.	Off	AC Turn-off	The incoming AC source is below the minimum power module turn-on specification				
2.	Green – blinking 1Hz	Standby	The power module VStandby output is operating within normal parameters and main output is disabled				
3.	Green – solid	Power-good	The power module active; VStandby & Main outputs are operating within normal parameters and delivering				
4.	Yellow – blinking 1Hz	Warning	A warning condition within the power supply has been detected				
5.	Yellow – solid	Fault	A fault condition within the power supply has been detected.				

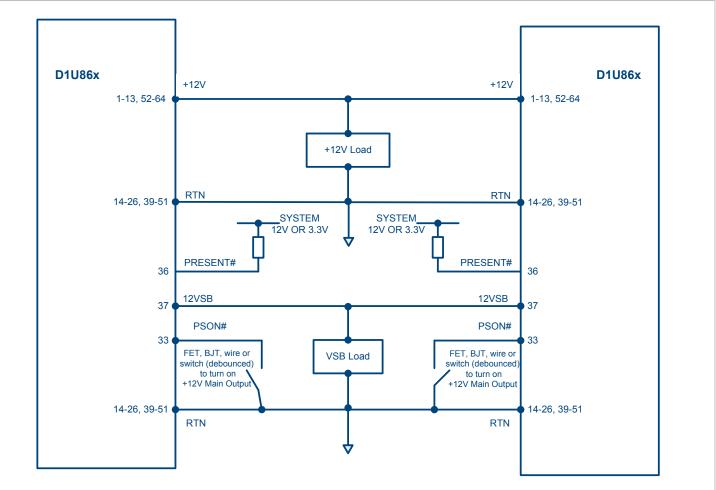

*NOTE: The PSOK levels after the loss of the incoming AC source may be either 1.1V or 2.2V depending on the relative timing of the TACPOK_OFF and TPWRP_GOOD_HOLD-Up

NING SPECIFICATIONS				
Parameter	Description	Min	Max	Unit
Tsb_On	Delay from AC being applied to standby output being within regulation	0	3000	ms
Tsb_Vout	Delay from standby output to main output voltage being within regulation	50	500	ms
TPWR_GOOD_On	Delay from output voltages within regulation limits to PWR_GOOD assertion	20	500	ms
TAC_OK_OFF	Delay from loss of AC to deassertion of AC_OK	20	60	ms
TAC_OK_On	Delay from AC being applied to assertion of AC_OK	1	3000	ms
TPWR_GOOD_Hold-up	Delay from loss of AC to deassertion of PWR_GOOD	7	30	ms
TVout_Hold-up	Delay from loss of AC to main output being out of regulation	12	20	ms
Tsb_Hold-up	Delay from loss of AC to standby output being out of regulation	20	2000	ms
TPWR_GOOD_OFF	Delay from deassertion of PWR_GOOD to output falling out of regulation	0	2	ms
TPSON_On_Delay	Delay from PSON assertion to output being within regulation	1	200	ms



86mm 1U Front End AC-DC Power Supply

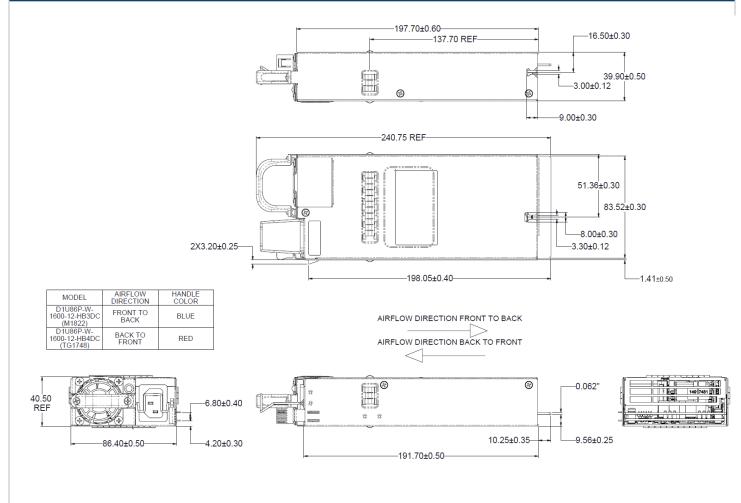
Pin#	Function	Pin Type	Description	
14-26, 39- 51	+12V_GND/RTN	Power Ground	Power and Standby Return	
1-13, 52-64	+12V	Power	12V Output	
37	+12VSB	Power	12V Standby Output	
38	PSINTERRUPT	Output	Active low; interrupt line for power supply fault & warning detection as per PMBus™ spec	
36	PRESENT#	Input	Power Supply Present Signal (shortes pin)	
35	PSOK	Analog output	Combination of three power supply output indicator signals: 1. AC input OK 2. Power Good 3. Power Supply Fault	
34	IMONITOR	Analog I/O	main output current signal ypical analog voltage shall be 60.15mV/Amp of main output current.	
33	PSON#	Input	Power Supply on/off control signal	
32	SCL	Input	SMBus/PMBus Clock	
31	SDA	I/0	SMBus/PMBus Data	
30	+12V_GND/RTN	Analog I/O	Power Supply Signal Ground	
29	N/A	N/A	Reserved; no User connection	
28	N/A	N/A	Reserved; no User connection	
27	ADDR	Analog input	PMBus Address	


DERATING CURVES

86mm 1U Front End AC-DC Power Supply

WIRING DIAGRAM FOR OUTPUT

CURRENT SHARING NOTES


Main Output: Current share is achieved using the droop method. Nominal output voltage (12.20V) is achieved at 50% load and output voltage varies at a rate of 3.10mv per amp increase/decrease. Startup of parallel power supplies is not internally synchronized. If more than 1600W combined power is needed, start-up synchronization must be provided by using a common PS_ON signal. To account for \pm 5% full load current sharing accuracy and the reduction in full load output voltage due to droop, available output power must be derated by 10% when units are operated in parallel.

The Standby output can be tied together for redundancy however the total combined power must not exceed the Standby rail capability (30W) of a single supply. Internal MOSFET ORING devices are employed.

86mm 1U Front End AC-DC Power Supply

MECHANICAL DIMENSIONS

1. AC input connector: IEC 320-C14

- 2. 86.4mm x 197.7mm x 40.5mm [3.4" x 7.78" x 1.59"]
- This drawing is a graphical representation of the product and may not show all fine details.
 Reference File: D1U86P-W-1600-12-HBxDC (TG1748-M1822)_Drawing for Product Datasheet_20160106.PDF

MATING CONNECTOR		
Part Number		Description
FCI 10053363-200LF		Right Angle
FCI 10046971-001LF		Vertical
OPTIONAL ACCESSORIES		
Description	Part Number	

Description	Part Number
12V D1U86P Output Connector Card	D1U86P-12-CONC

APPLICATION NOTES				
Document Number	Description	Link		
ACAN-50	D1U86P-12-CONC Interface Connector Card	http://power.murata.com/datasheet?/data/apnotes/acan-50.pdf		
ACAN-51	D1U86P PMBus [™] Communication Protocol	http://power.murata.com/datasheet?/data/apnotes/acan-51.pdf		

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 and 14001 REGISTERED

Critical Application Sales Policy. Refer to: http://www.murata-ps.com/requirements/ Murata Power Solutions, Inc. ("Murata") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipoment constructed in accordance therewith. Buyer prepresents and agrees that the all the nearesay expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions, Buver will fully indemnify Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Specifications are subject to change without notice.

This product is subject to the following operating requirements and the Life and Safety

© 2018 Murata Power Solutions, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rack Mount Power Supplies category:

Click to view products by Murata manufacturer:

Other Similar products are found below :

M83723/75R2219N M83723/75R2255N L/C G08-M02 HFE2500BP HWS100A-24/ADIN PET1300-12-054NAE HFE1600BP AXX1100PCRPS RKP-1UT FXP7000-48-SG 73-311-0001 73-317-0148 73-495-0233 750-1016 FUP550SNRPS J2014001L402 VRA.00335.0 VRA.00334.0 VRA.00333.0 HFE1600-KIT CP841A_3C3R_S CC109156898 CC109146503 92100117-01 TET3200-12-069RA RKP-1UI FNP600-12G D1U54P-W-650-12-HB4C PFE1100-12-054ND FND300-1012G 73-951-0001T 73-954-0001C XGT XGR LCM600Q-T-4-A LCM600L-T-4-A DS550DC-3 LOK 4601-2R DRP-3200-48 N6731B CAR1248FPBXXZ01A FPS100032/P N5766A/861 N6745B N6744B LCM1000Q-T CP3000AC54TEZ N6776A N6762A LCM300W-T