

Reference Specification

Type KX Series P (Safety standard certified ceramic capacitor)

DATE: Apr. 20, 2012

Product specifications in this drawing are subject to change or our products described in this drawing may be discontinued without advance notice.

The parts numbers and specifications listed in this drawing are for information only. You are requested to transact the "Approval Sheet for Product Specification", before your ordering.

Engineering Section Capacitor Division 2 Izumo Murata Manufacturing Co., Ltd. Do not use these products in any Automotive Power train or Safety equipment including Battery charger for Electric Vehicles and Plug-in Hybrid. Only Murata products clearly stipulated as "for Automotive use" on its product specification can be used for automobile applications such as Power train and Safety equipment.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	∨о-р		Vp-p	Vp-p	

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

0V voltage sine wave

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 $^{\circ}$ C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

3. PERFORMANCE CHÉCK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to following safety standard certified ceramic capacitor Type KX. Type KX is Safety Standard Certified disc ceramic capacitor of Class X1,Y1.

Approval standard and certified number
--

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)	
UL	UL60384-14	E37921	300	
CSA	CSA E60384-14	1343810	300	
VDE	IEC60384-14, EN60384-14	40002831	300	
BSI	EN60065 (8.8,14.2), IEC60384-14, EN60384-14	KM 37901	300	
SEMKO		1200074	300	
DEMKO		D01004	300	
FIMKO	IEC60384-14, EN60384-14	24191	300	
NEMKO		P12215096	300	
ESTI		12.0094	300	
IMQ	EN60384-14	V4069	300	

*Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range

-25 ~ +125°C

2-2. Part number configuration

ex.) <u>DE1</u>	E3	KX	472	Μ	TM	<u> </u>	P28F
Product	Temperature	Туре	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

• Product code

DE1 denotes X1,Y1 class .

• Temperature characteristic

Code	Temperature characteristic
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KX.

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 472.

 $47 \times 10^2 = 4700 \text{pF}$

- Capacitance tolerance Please refer to [Part number list].
- Lead code

Code	Lead style
A*	Vertical crimp long type
T*	Vertical crimp short type
N*	Vertical crimp taping type

* Please refer to [Part number list]

• Packing style code

Code	Packing type
В	Bulk type
A	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specification	ו
P04F	 Rated voltage : AC300V(r.m.s.) Body thickness(T) : 5.0mm max. Halogen free 	
P28F	$ \left(\begin{array}{c} Br \leq 900 \text{ppm}, Cl \leq 900 \text{ppm} \\ Br + Cl \leq 1500 \text{ppm} \end{array} \right) $ \bullet CP wire	Tolerance of lead space : ±0.5mm

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

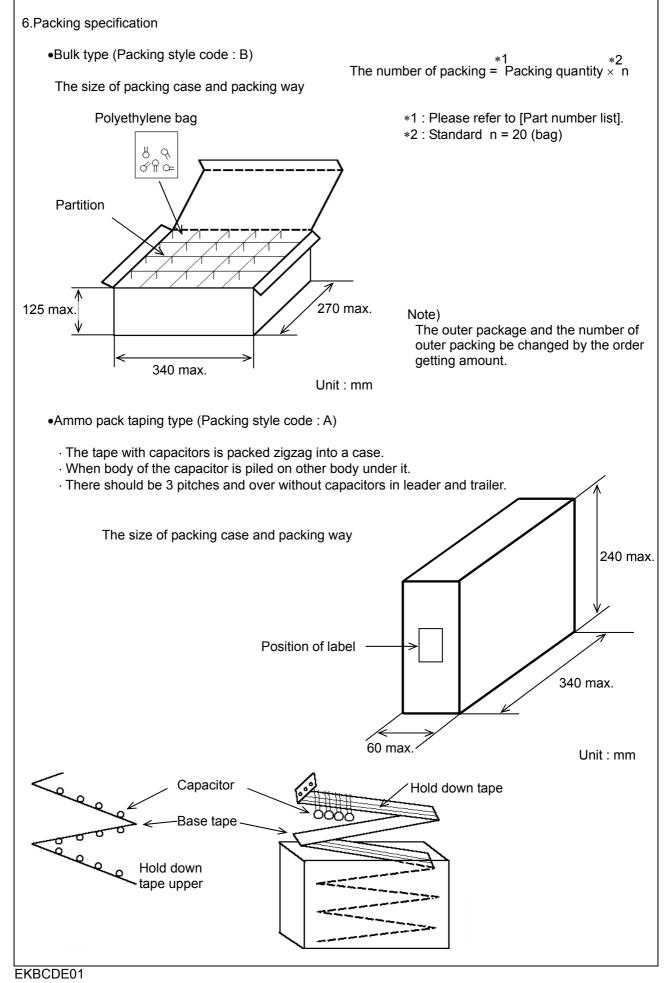
Nominal capacitance Capacitance tolerance Type name Rated voltage mark Class code Halogen free mark Manufacturing year Manufacturing month	: 3 digit system : Code : KX : 300~ : X1Y1 : HF : Letter code(The last digit of A.D. year.) : Code $\begin{pmatrix} Feb./Mar. \rightarrow 2 & Aug./Sep. \rightarrow 8 \\ Apr./May \rightarrow 4 & Oct./Nov. \rightarrow O \\ Jun./Jul. \rightarrow 6 & Dec./Jan. \rightarrow D \end{pmatrix}$
Company name code	: ④8 (Made in Taiwan), ④15 (Made in Thailand) (Example)

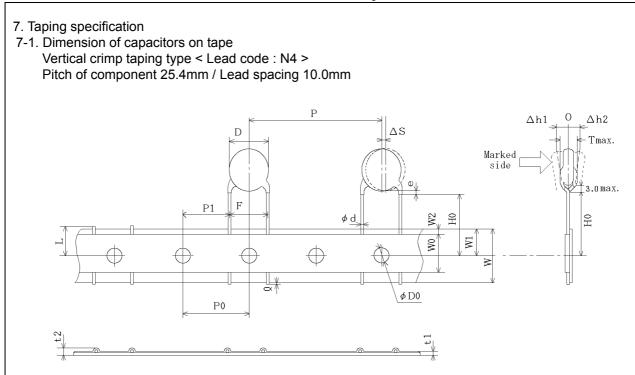
Г

Vertic (Lead Upto the end of crimp F±1 Note)	code:A*)	25.0 min. \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	•Vertical crimp (Lead code:T*) Omax. Up to the end of crimp F ± 0.5 er from lead spacing(F)		type 3.5±0		<u></u>	3.0ma 1±0.0	
(Lead Up to the end of crimp F±1 Note)	code:A*)	x. Tmax. 25.0 min. ϕd *' of lead code diff meter(d).	(Lead code:T*) 0 max. Up to the end of crimp $F \pm 0.5$						
the end of crimp F±1 Note)	0 The mark lead dia	25.0min. *' of lead code diff meter(d).	0 max. Up to the end of crimp $F \pm 0.5$		}.5±0				
			about details.					L loit -	~~~~
								Unit :	
Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	Dir D	Dimension (mm)			Lead code	Pack qty. (pcs)
100	±10%		DE1B3KX101KA4BP04F	7.0	5.0	10.0	0.6	A4	250
150	±10%		DE1B3KX151KA4BP04F	7.0	5.0	10.0	0.6	A4	250
220	±10%		DE1B3KX221KA4BP04F	8.0	5.0	10.0	0.6	A4	250
330	±10%		DE1B3KX331KA4BP04F	7.0	5.0	10.0	0.6	A4	250
470	±10%		DE1B3KX471KA4BP04F	7.0	5.0	10.0	0.6	A4	250
680	±10%		DE1B3KX681KA4BP04F	8.0	5.0	10.0	0.6	A4	250
1000	±20%		DE1E3KX102MA4BP04F	7.0	5.0	10.0	0.6	A4	250
1500	±20%		DE1E3KX152MA4BP04F	8.0	5.0	10.0	0.6	A4	250
2200	±20%		DE1E3KX222MA4BP04F	9.0	5.0	10.0	0.6	A4	250
3300	±20%		DE1E3KX332MA4BP04F			10.0	0.6	A4	250
4700	±20%		DE1E3KX472MA4BP04F	12.0	5.0	10.0	0.6	A4	200
			DE (DOI() (10 () (T) (DDOO)	7.0	5.0		0.6	TM	
100	±10%		DE1B3KX101KTMBP28F						500
150	±10%		DE1B3KX151KTMBP28F	7.0		10.0	0.6	ТМ	500
150 220	±10% ±10%		DE1B3KX151KTMBP28F	7.0	5.0	10.0	0.6	TM TM	500 500
150 220 330	±10% ±10% ±10%		DE1B3KX151KTMBP28F DE1B3KX221KTMBP28F DE1B3KX331KTMBP28F	7.0 8.0 7.0	5.0 5.0	10.0 10.0	0.6 0.6	TM TM TM	500 500 500
150 220 330 470	±10% ±10% ±10% ±10%		DE1B3KX151KTMBP28F DE1B3KX221KTMBP28F DE1B3KX331KTMBP28F DE1B3KX471KTMBP28F	7.0 8.0 7.0 7.0	5.0 5.0 5.0	10.0 10.0 10.0	0.6 0.6 0.6	TM TM TM TM	500 500 500 500
150 220 330 470 680	±10% ±10% ±10% ±10% ±10%		DE1B3KX151KTMBP28F DE1B3KX221KTMBP28F DE1B3KX331KTMBP28F DE1B3KX471KTMBP28F DE1B3KX681KTMBP28F	7.0 8.0 7.0 7.0 8.0	5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6	TM TM TM TM TM	500 500 500 500 500
150 220 330 470 680 1000	±10% ±10% ±10% ±10% ±10% ±20%		DE1B3KX151KTMBP28F DE1B3KX221KTMBP28F DE1B3KX331KTMBP28F DE1B3KX471KTMBP28F DE1B3KX681KTMBP28F DE1B3KX681KTMBP28F DE1E3KX102MTMBP28F	7.0 8.0 7.0 7.0 8.0 7.0	5.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6	TM TM TM TM TM TM	500 500 500 500 500 500
150 220 330 470 680 1000 1500	±10% ±10% ±10% ±10% ±10% ±20%		DE1B3KX151KTMBP28F DE1B3KX221KTMBP28F DE1B3KX331KTMBP28F DE1B3KX471KTMBP28F DE1B3KX681KTMBP28F DE1E3KX102MTMBP28F DE1E3KX152MTMBP28F	7.0 8.0 7.0 7.0 8.0 7.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6	TM TM TM TM TM TM TM	500 500 500 500 500 500 500
150 220 330 470 680 1000	±10% ±10% ±10% ±10% ±10% ±20%		DE1B3KX151KTMBP28F DE1B3KX221KTMBP28F DE1B3KX331KTMBP28F DE1B3KX471KTMBP28F DE1B3KX681KTMBP28F DE1B3KX681KTMBP28F DE1E3KX102MTMBP28F	7.0 8.0 7.0 8.0 8.0 7.0 8.0 8.0 8.0 9.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6	TM TM TM TM TM TM TM TM	500 500 500 500 500 500 500 500 500
	(pF) 100 150 220 330 470 680 1000 1500 2200 3300	(pF) tol. 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 3300 ±20%	(pF) tol. Customer Part Number 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 3300 ±20%	(pF) tol. Customer Part Number Mutata Part Number 100 ±10% DE1B3KX101KA4BP04F 150 ±10% DE1B3KX151KA4BP04F 220 ±10% DE1B3KX221KA4BP04F 330 ±10% DE1B3KX331KA4BP04F 470 ±10% DE1B3KX681KA4BP04F 680 ±10% DE1B3KX681KA4BP04F 1000 ±20% DE1E3KX102MA4BP04F 1500 ±20% DE1E3KX152MA4BP04F 3300 ±20% DE1E3KX332MA4BP04F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 100 ±10% DE1B3KX101KA4BP04F 7.0 150 ±10% DE1B3KX151KA4BP04F 7.0 220 ±10% DE1B3KX221KA4BP04F 8.0 330 ±10% DE1B3KX331KA4BP04F 7.0 470 ±10% DE1B3KX471KA4BP04F 7.0 680 ±10% DE1B3KX471KA4BP04F 8.0 1000 ±20% DE1E3KX102MA4BP04F 8.0 2200 ±20% DE1E3KX152MA4BP04F 9.0 3300 ±20% DE1E3KX332MA4BP04F 9.0	Cap. (pF) Customer Part Number Murata Part Number D T 100 $\pm 10\%$ DE1B3KX101KA4BP04F 7.0 5.0 150 $\pm 10\%$ DE1B3KX151KA4BP04F 7.0 5.0 220 $\pm 10\%$ DE1B3KX221KA4BP04F 8.0 5.0 330 $\pm 10\%$ DE1B3KX331KA4BP04F 7.0 5.0 470 $\pm 10\%$ DE1B3KX471KA4BP04F 7.0 5.0 470 $\pm 10\%$ DE1B3KX471KA4BP04F 7.0 5.0 680 $\pm 10\%$ DE1B3KX471KA4BP04F 7.0 5.0 1000 $\pm 20\%$ DE1E3KX102MA4BP04F 8.0 5.0 1500 $\pm 20\%$ DE1E3KX102MA4BP04F 8.0 5.0 2200 $\pm 20\%$ DE1E3KX322MA4BP04F 8.0 5.0 3300 $\pm 20\%$ DE1E3KX332MA4BP04F 9.0 5.0	Cap. (pF) Customer Part Number Murata Part Number D T F 100 $\pm 10\%$ D T F D T F 100 $\pm 10\%$ D D T F D D T F 100 $\pm 10\%$ D D D T F D <	$ \begin{array}{c cccc} Cap. \\ (pF) \\ tol. \\ \hline Customer Part Number \\ \hline Murata Part Number \\ \hline D \\ T \\ F \\ d \\ \hline D \\ T \\ F \\ T \\ T$	$ \begin{array}{c cccc} Cap. \\ (pF) \\ tol. \\ \hline Customer Part Number \\ \hline Murata Part Number \\ \hline D \\ T \\ F \\ d \\ \hline Code \\ \hline Cod \\ \hline Cod \\ \hline Cod \\ \hline Code \\ \hline Cod \\ \hline Cod \\ \hline Code $

-	Vartic (Lead	al crim code:N*)	p taping type)									
		P	$Dmax.$ F ϕd	Tmax.								
		lead dia	ameter(d) and pitch	of comp	rom lead spacing(F) onent(P). aping specification		ut d	etai	ls.			
		lead dia	ameter(d) and pitch	of comp	onent(P).	abou					Unit :	
T.C.		lead dia	ameter(d) and pitch	of comp ist or t	onent(P).	abou			∣s. (mm d		Unit : Lead code	mm Pacl qty. (pcs
Г.С. В	Cap.	lead dia Please s Cap .	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification	abou C)imer T	nsion	(mm d)	Lead code	Pacl qty.
	Cap. (pF)	lead dia Please s Cap . tol.	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number	abou D)imer T 5.0	nsion F	(mm d 0.6) P	Lead code N4	Pacl qty. (pcs
В	Cap. (pF) 100	lead dia Please s Cap. tol. ±10%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F	abou D 7.0	0imer T 5.0 5.0	rsion F 10.0	(mm d 0.6 0.6) P 25.4	Lead code N4 N4	Pacl qty. (pcs 500
B B	Cap. (pF) 100 150	lead dia Please s Cap. tol. ±10% ±10%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F	abou D 7.0 7.0	0imer T 5.0 5.0 5.0	F 10.0 10.0	(mm d 0.6 0.6) P 25.4 25.4	Lead code N4 N4 N4	Pacl qty. (pcs 500 500
B B B	Cap. (pF) 100 150 220	lead dia Please s Cap. tol. ±10% ±10%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F DE1B3KX221KN4AP04F	abou D 7.0 7.0 8.0	Dimer T 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0	(mm d 0.6 0.6 0.6) 25.4 25.4 25.4	Lead code N4 N4 N4 N4	Pacl qty. (pcs 500 500
B B B	Cap. (pF) 100 150 220 330	lead dia Please s Cap. tol. ±10% ±10% ±10%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F DE1B3KX221KN4AP04F DE1B3KX331KN4AP04F	abou D 7.0 7.0 8.0 7.0	Dimer T 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0	(mm d 0.6 0.6 0.6 0.6) 25.4 25.4 25.4 25.4	Lead code N4 N4 N4 N4 N4	Pacl qty. (pcs 500 500 500 500
B B B B	Cap. (pF) 100 150 220 330 470	lead dia Please s Cap. tol. ±10% ±10% ±10% ±10%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F DE1B3KX221KN4AP04F DE1B3KX331KN4AP04F DE1B3KX471KN4AP04F	abou D 7.0 7.0 8.0 7.0 7.0	Dimer T 5.0 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0	(mm d 0.6 0.6 0.6 0.6 0.6) 25.4 25.4 25.4 25.4 25.4	Lead code N4 N4 N4 N4 N4 N4	Pacl qty. (pcs 500 500 500
B B B B B	Cap. (pF) 100 150 220 330 470 680	lead dia Please s Cap. tol. ±10% ±10% ±10% ±10%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F DE1B3KX221KN4AP04F DE1B3KX331KN4AP04F DE1B3KX471KN4AP04F	abou D 7.0 7.0 7.0 7.0 8.0 7.0 8.0	Dimer T 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0 10.0	(mm d 0.6 0.6 0.6 0.6 0.6 0.6) P 25.4 25.4 25.4 25.4 25.4 25.4	Lead code N4 N4 N4 N4 N4 N4 N4	Pacl qty. (pcs 500 500 500 500
B B B B B E	Cap. (pF) 100 150 220 330 470 680 1000	lead dia Please s Cap. tol. ±10% ±10% ±10% ±10% ±10% ±20%	ameter(d) and pitch see the following l	of comp ist or t	onent(P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F DE1B3KX221KN4AP04F DE1B3KX331KN4AP04F DE1B3KX471KN4AP04F DE1B3KX681KN4AP04F DE1E3KX102MN4AP04F	abou D 7.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0	Dimer T 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0	(mm d 0.6 0.6 0.6 0.6 0.6 0.6) 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	Lead code N4 N4 N4 N4 N4 N4 N4	Pacl qty. (pcs 500 500 500 500 500
B B B B B E E	Cap. (pF) 100 150 220 330 470 680 1000 1500	lead dia Please s Cap. tol. ±10% ±10% ±10% ±10% ±10% ±20% ±20%	ameter(d) and pitch see the following l	of comp ist or t	onent (P). aping specification Murata Part Number DE1B3KX101KN4AP04F DE1B3KX151KN4AP04F DE1B3KX221KN4AP04F DE1B3KX331KN4AP04F DE1B3KX681KN4AP04F DE1B3KX681KN4AP04F DE1E3KX102MN4AP04F	abou D 7.0 7.0 8.0 7.0 8.0 7.0 8.0 8.0	Dimer T 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0	(mm d 0.6 0.6 0.6 0.6 0.6 0.6 0.6) 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	Lead code N4 N4 N4 N4 N4 N4 N4 N4 N4	Pacl qty. (pcs 500 500 500 500 500 500 500

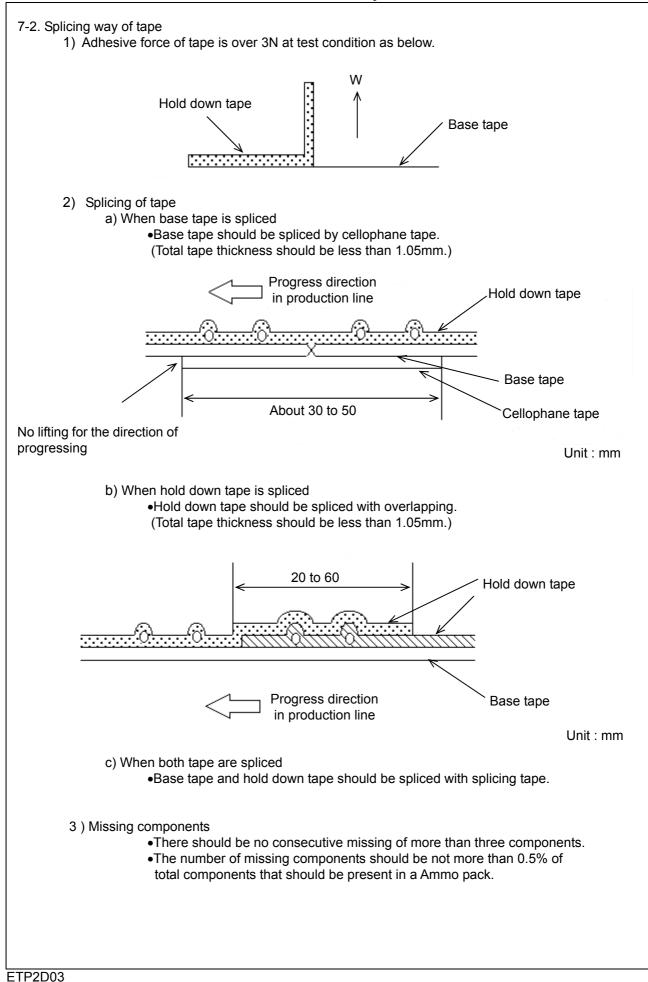
5.8	pecification and	test methods		for the only					
No.	Ite			cification		Test me	ethod		
1	Appearance and c		No marked def	ect on appearance		acitor should be ins	pected by naked eye	s	
			form and dime			le evidence of defec			
- ^	Marking			[Part number list].			sured with slide calip		
2	Marking Dielectric	Between lead	To be easily leg No failure.	Jine.		pacitor should be inspection should not be	pected by naked eye	5.	
5	strength	wires	No fallare.		AC4 000)V(r.m.s.)<50/60Hz>	> is applied between t	the	
	C C				lead wire	es for 60 s.			
						/Discharge current			
		Body insulation	No failure.			e terminals of the ca ed together.	apacitor should be		
		Insulation				metal foil should be	e Y		
					closely v	wrapped around	X		
						y of the capacitor	Metal Abo		
						istance of	01	6 mm	
					from each terminal.				
					Then, th	ne capacitor should	be inserted into a		
					containe diamete	er filled with metal b	alls of about 1mm		
							0/60Hz> is applied fo	or	
							lead wires and metal		
			ļ			Charge/Discharge cu			
4	Insulation Resistance (I.R.)		10000MΩ min.				hould be measured w	rith	
						50V within 60±5 s c tage should be appli			
						a resistor of $1M\Omega$.			
5	Capacitance		Within specifie	d tolerance.	The cap	acitance should be	measured at 20°C w	ith	
	Diasta († 5. ć							~	
6	Dissipation Factor	(U.F.)	2.5% max.		1±0.1kHz and AC5V(r.m.s.) max The dissipation factor should be measured at 2 with 1±0.1kHz and AC5V(r.m.s.) max				
					with 1±0	J. IK⊟Z ahu ACSV(f.I			
7	Temperature chara	actoristic	Char. B : With	hip ±10.9/	The can	acitance measurem	nent should be made	at	
l '			Char. E : With			ep specified in Table			
			(Temp. range :						
					4				
				Step	1	2 3	4 5		
				Temp.(°C)	-	-25±2 20±2	85±2 20±2		
8	Active flammability	y		oth should not be			idividually wrapped in	n at	
			on fire.				o complete layers of r should be subjected		
							al between successi		
					discharg	ges should be 5 s. T	he UAc should be		
					maintain	ned for 2min after th	e last discharge.		
					S1				
								1.1+	
					<u>_</u> N	$ s_2 U^{AC} \underline{L3} \underline{L4}$		UL	
							÷		
							Osciloscope		
						: 1µF±10%, C3:0	•		
						: 1.5mH±20% 16A			
					R UAc	: 100Ω±2%, Ct : 3μ : UR +5% UR : F	Rated voltage		
						: Capacitor under te			
					F	: Fuse, Rated 10A			
					Ut	: Voltage applied to	o Ct		
						Ux			
						SEV T			
							\bigcirc		
						L	time		
L									


			Reference only	_			
No.	Item	r	Specification	Test method			
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of			
				capacitor up to 10N and keep it for 10±1 s.			
		Bending		With the termination in its normal position, the			
				capacitor is held by its body in such a manner that the axis of the termination is vertical: a mass			
				applying a force of 5N is then suspended from the			
				end of the termination.			
				The body of the capacitor is then inclined,			
				within a period of 2 to 3 s, through an angle of			
				approximately 90° in the vertical plane and then			
				returned to its initial position over the same period of time; this operation constitutes one bend.			
				One bend immediately followed by a second bend			
				in the opposite direction.			
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the			
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to			
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of			
				vibration change from 10Hz to 55Hz and back to			
				10Hz is applied for a total of 6 h; 2 h each in			
				3 mutually perpendicular directions.			
11	Solderability of lead	s	Lead wire should be soldered	The lead wire of a capacitor should be dipped into a			
			With uniformly coated on the axial direction over 3/4 of the	ethanol solution of 25wt% rosin and then into			
			circumferential direction.	molten solder for 2 ± 0.5 s. In both cases the depth of diapage is up to obset 1.5 to 2.0mm from the root of			
				dipping is up to about 1.5 to 2.0mm from the root of lead wires.			
				Temp. of solder :			
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)			
		1 -		235±5°C H63 Eutectic Solder			
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C			
	(Non-preheat)	Capacitance change	Within ±10%	Immersion time : 3.5 ± 0.5 s			
		I.R.	1000MΩ min.	(In case of 260±5°C : 10±1 s) The depth of immersion is up to about			
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.			
		strength		Thermal Capacitor			
				Thermal Capacitor			
				☐ T = \ to 2.0mm			
				└────────────────────────────────────			
				Pre-treatment : Capacitor should be stored at			
				85±2°C for 1 h, then placed at * ¹ room condition for 24±2 h			
				before initial measurements.			
				Post-treatment : Capacitor should be stored for 1 to			
				2 h at * ¹ room condition.			
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C			
	(On-preheat)	Capacitance change	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be			
		I.R.	1 000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm			
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.			
		strength		Thermal Capacitor			
				Thermal Capacitor			
				1.5 to 2.0mm			
				- === -			
				Molten solder			
				Pre-treatment : Capacitor should be stored at			
				85±2°C for 1 h, then placed at			
				* ¹ room condition for 24 ± 2 h			
				before initial measurements.			
				Post-treatment : Capacitor should be stored for 1 to $2 h$ at t^{1} and $r = 0$			
*1 "roo	* ¹ "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa						
100	an condition remper	ature. 15 10 35°C	2, Relative numbuly. 43 to 75%, Atm	Noprienc pressure. 00 10 IUUNFa			


JEED41W2-0731

			Reference only		
No.	Item		Specification	Test method	
14	Flame test		The capacitor flame discontinue	The capacitor should be subjected to applied flame	
			as follows.	for 15 s. and then removed for 15 s until 5 cycle.	
				Capacitor	
			Cycle Time	16 Flame	
			1 to 4 30 s max.	×2>	
			5 60 s max.		
			0 00 0 max.		
				Gas Burner	
15	Passive flammability	у	The burning time should not be	The capacitor under test should be held in the flame	
			exceeded the time 30 s. The tissue paper should not ignite.	in the position which best promotes burning.	
				Time of exposure to flame is for 30 s.	
				Length of flame : 12±1mm	
				Gas burner : Length 35mm min.	
				Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max.	
				Gas : Butane gas Purity 95% min.	
				2	
				√/ (``) ← Capacitor	
				About 8mm	
				Gas burner → Flame 200±5mm	
				45°	
1					
				Tissue	
				About 10mm thick board	
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to	
10	(Under steady	Capacitance	Char. B : Within ±10%	95% relative humidity.	
	state)	change	Char. E : Within $\pm 15\%$	33 /0 Telative humidity.	
		onango		Post-treatment : Capacitor should be stored for 1 to	
		D.F.	5.0% max.	2 h at * ¹ room condition.	
		I.R.	3000MΩ min.	1	
		Dielectric	Per item 3	1	
		strength			
17	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500±12 h at 40±2°C in	
	, ,	Capacitance	Char. B : Within ±10%	90 to 95% relative humidity.	
		change	Char. E : Within ±15%		
		D.F.	5.0% max.	Post-treatment : Capacitor should be stored for 1 to	
				2 h at * ¹ room condition.	
		I.R.	3000MΩ min.		
		Dielectric	Per item 3		
		strength			
*1 "ro	om condition" Temper	rature: 15 to 35°0	C, Relative humidity: 45 to 75%, Atm	ospheric pressure: 86 to 106kPa	
1					

JEED41W2-0731


			Reference onl			
No.	Item		Specification	Test method		
18	Life	Appearance	No marked defect.	Each individual capacitor should be subjected to		
		Capacitance change	Within ±20%	8kV impulses for three times. Then the capacito		
		I.R.	3000MΩ min.	are applied to life test.		
		Dielectric	Per item 3			
		strength	Fei item 5	100 $\frac{(\%)}{90}$ Front time (T1) = 1.2 μ s=1.67T Time to hat finally μ (T2) = 50 μ s		
		Suchgan		50 50		
				T1		
				T2		
				The capacitors are placed in a circulating air over	on	
				for a period of 1 000 h. The air in the oven is maintained at a temperature		
				of 125+2/-0 °C, and relative humidity of 50% ma		
				Throughout the test, the capacitors are subjecte	ed	
				to a AC510V(r.m.s.)<50/60Hz> alternating voltage		
				of mains frequency, except that once each hour		
				the voltage is increased to AC1000V(r.m.s.) for	0.15	
				Post-treatment : Capacitor should be stored for	r 1 to	
				$2 \text{ h at } *^1 \text{room condition.}$	110	
19	Temperature and	Appearance	No marked defect.	The capacitor should be subjected to 5 tempera	ture	
-	immersion cycle	Capacitance	Char. B : Within ±10%	cycles, then consecutively to 2 immersion cycles	s.	
	,	change	Char. E : Within ±20%			
				<temperature cycle=""></temperature>		
		D.F.	5.0% max.	Step Temperature(°C) Time		
				1 -25+0/-3 30 min		
		I.R.	3000MΩ min.	2 Room temp. 3 min		
		Dielectric	Per item 3	3 +125+3/-0 30 min		
		strength		4 Room temp. 3 min		
				Cycle time : 5	cycle	
				<immersion cycle=""></immersion>		
				Other The (application of the Immersion	on	
				Step Temperature(°C) Time water		
				1 +65+5/-0 15 min Clean	1	
				water		
				2 0±3 15 min Salt		
				Water		
				Cycle time : 2	cycle	
				Pre-treatment : Capacitor should be stored at 85±2°C for 1 h, then placed at * ¹ room condition for 24±2 h.		
				Post-treatment : Capacitor should be stored for 4 to 24 h at * ¹ room condition.		
* ¹ "roo	om condition" Temper	ature: 15 to 35º	C Relative humidity: 45 to 75% At	tmospheric pressure: 86 to 106kPa		
100	on condition remper					

Unit : mm

			Unit . mini	
Item	Code	Dimensions	Remarks	
Pitch of component	Р	25.4±2.0		
Pitch of sprocket hole	P0	12.7±0.3		
Lead spacing	F	10.0±1.0		
Length from hole center to lead	P1	7.7±1.5		
Body diameter	D	Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and bottom planes	H0	$18.0\pm^{2.0}_{0}$		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φD0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	0.0		
Deviation across tape, rear	∆h2	2.0 max.		
Portion to cut in case of defect	L	11.0 ± ⁰ _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead		Up to the end of crimp		
Body thickness T		Please refer to [Part number list].		

8. Standard of Outgoing Inspection Please refer to Appendix : "OUTGOING INSPECTION AQL STANDARD / DISC CERAMIC CAPACITORS HIGH VOLTAGE"(SKMKE01).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Safety Capacitors category:

Click to view products by Murata manufacturer:

Other Similar products are found below :

 103MKP275K
 103MKP275KE
 104MKP275K
 104MKP275KC
 104MKP275KD
 105MKP275K
 105MKP275KE
 105MKP275KE
 105MKP275KG

 1210YA250223KXT
 125LD10-R
 125LD20-R
 125LD22-R
 125LD50-R
 125LS10-R
 125LS20-R
 125LS50-R
 154MKP275KE
 155MKP275K

 1808JA250102JXTSPU
 1808JA250102KXTSPU
 20VLP10-R
 20VLS10-R
 20VLSS10-R
 2211YA250102KETSPU
 2211YA25022KETSPU

 2220JA250102KXTB16
 2220JA250102MXTB16
 2220JA250103KXTB17
 2220JA25022KXTB16
 2220JA250472KXTB16

 2220JA250472MXBB16
 2220YA250102KETB16
 2220YA250103KETB16
 2220YA250472KETB16
 2220YA250472KXTB16
 2220YA250472KXTB16

 2220YA250471KXTB16
 2220YA250472KETB16
 2220YA250472KXTB16
 2220YA250472KXTB16
 2220YA250472KXTB16

 222233820103
 222233820104
 222233820332
 222233820472
 222233820473
 223MKP275K
 223MKP275KC
 224MKP275KB

 224MKP275KB
 224MKP275KD
 224MKP275KD
 224MKP275KD
 224MKP275KD
 224MKP275KD