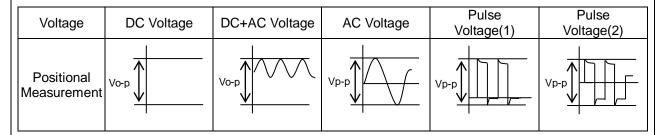


Type RB Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

\triangle CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

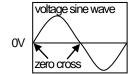
When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.


(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

$oldsymbol{\Delta}$ note

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RB used for General Electric equipment.

Type RB is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14	E37921	
ENEC (VDE)	DIN60384-14 EN60384-14 IEC60384-14	40046675	X1:760 Y1:500
CQC	IEC60384-14	CQC17001178139	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

∠ .	Rati	110

2-1. Operating temperature range $-40 \sim +125$ °C

2-2. Rated Voltage X1:AC760V(r.m.s.) Y1:AC500V(r.m.s.)

2-3. Part number configuration

ex.) <u>DE1</u>	B3	<u>_RB_</u>	471	K	<u> A4</u>	B	R01F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

• Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
1X	SL
В3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type RB.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style
A*	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type

^{*} Please refer to [Part number list]

• Packing style code

Code	Packing type		
В	Bulk type		
Α	Ammo pack taping type		

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at

the end of part number.

end of part number.	
Code	Specification
	Rated voltage : X1:AC760V(r.m.s.)
	Y1:AC500V(r.m.s.)
R01F	 Halogen free Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RB) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : RB

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

Capacitance tolerance : Code Class code and Rated voltage mark : **X1 760~**

Y1 500~

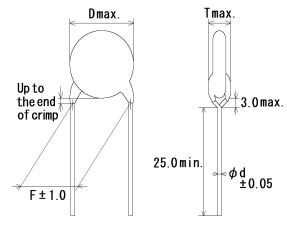
Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

Company name code : (Made in Thailand)

(Example)

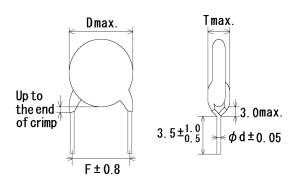
RB 471K


X1 760~

Y1 500~

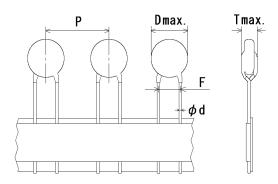
5D @15

4. Part number list


·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

-	J				ı				Offic.	
T.C.	Сар.	Cap. Customer Part Number Murata Part Number		Dimension (mm			m)	Lead	Pack qty.	
1.0.	(pF)	tol.	Gustomer i art ivamber	iviurata Fart Number		Т	F	d	code	(pcs)
SL	10	\pm 10%		DE11XRB100KA4BR01F	8.0	5.0	10.0	0.6	A4	250
SL	15	±10%		DE11XRB150KA4BR01F	6.0	6.0	10.0	0.6	A4	500
SL	22	±10%		DE11XRB220KA4BR01F	6.0	5.0	10.0	0.6	A4	500
SL	33	±10%		DE11XRB330KA4BR01F	7.0	5.0	10.0	0.6	A4	250
SL	47	±10%		DE11XRB470KA4BR01F	8.0	5.0	10.0	0.6	A4	250
SL	68	±10%		DE11XRB680KA4BR01F	9.0	5.0	10.0	0.6	A4	250
В	100	±10%		DE1B3RB101KA4BR01F	6.0	5.0	10.0	0.6	A4	500
В	150	±10%		DE1B3RB151KA4BR01F	8.0	5.0	10.0	0.6	A4	250
В	220	±10%		DE1B3RB221KA4BR01F	6.0	6.0	10.0	0.6	A4	500
В	330	±10%		DE1B3RB331KA4BR01F	7.0	6.0	10.0	0.6	A4	250
В	470	±10%		DE1B3RB471KA4BR01F	8.0	6.0	10.0	0.6	A4	250
В	680	±10%		DE1B3RB681KA4BR01F	9.0	6.0	10.0	0.6	A4	250
Е	1000	±20%		DE1E3RB102MA4BR01F	8.0	6.0	10.0	0.6	A4	250
Е	1500	±20%		DE1E3RB152MA4BR01F	9.0	6.0	10.0	0.6	A4	250
Е	2200	±20%		DE1E3RB222MA4BR01F	11.0	6.0	10.0	0.6	A4	250
Е	3300	±20%		DE1E3RB332MA4BR01F	13.0	6.0	10.0	0.6	A4	200
Е	4700	±20%		DE1E3RB472MA4BR01F	14.0	6.0	10.0	0.6	A4	200


·Vertical crimp short type
(Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Office, filling									
T.C.	Cap.	Cap.	Customer Part Number	mer Part Number Murata Part Number Dimension (on (m	m)	Lead	Pack	
1.0.	(pF)	tol.	Customer Fait Number	Wurata i art ivumber	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE11XRB100KJ4BR01F	8.0	5.0	10.0	0.6	J4	500
SL	15	±10%		DE11XRB150KJ4BR01F	6.0	6.0	10.0	0.6	J4	500
SL	22	±10%		DE11XRB220KJ4BR01F	6.0	5.0	10.0	0.6	J4	500
SL	33	±10%		DE11XRB330KJ4BR01F	7.0	5.0	10.0	0.6	J4	500
SL	47	±10%		DE11XRB470KJ4BR01F	8.0	5.0	10.0	0.6	J4	500
SL	68	±10%		DE11XRB680KJ4BR01F	9.0	5.0	10.0	0.6	J4	500
В	100	±10%		DE1B3RB101KJ4BR01F	6.0	5.0	10.0	0.6	J4	500
В	150	±10%		DE1B3RB151KJ4BR01F	8.0	5.0	10.0	0.6	J4	500
В	220	±10%		DE1B3RB221KJ4BR01F	6.0	6.0	10.0	0.6	J4	500
В	330	\pm 10%		DE1B3RB331KJ4BR01F	7.0	6.0	10.0	0.6	J4	500
В	470	\pm 10%		DE1B3RB471KJ4BR01F	8.0	6.0	10.0	0.6	J4	500
В	680	\pm 10%		DE1B3RB681KJ4BR01F	9.0	6.0	10.0	0.6	J4	500
Е	1000	±20%		DE1E3RB102MJ4BR01F	8.0	6.0	10.0	0.6	J4	500
Е	1500	±20%		DE1E3RB152MJ4BR01F	9.0	6.0	10.0	0.6	J4	500
Е	2200	±20%		DE1E3RB222MJ4BR01F	11.0	6.0	10.0	0.6	J4	500
Е	3300	±20%		DE1E3RB332MJ4BR01F	13.0	6.0	10.0	0.6	J4	250
Е	4700	±20%		DE1E3RB472MJ4BR01F	14.0	6.0	10.0	0.6	J4	250

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

	Onit . min										
T.C.	Cap.	Сар.	Customer Part Number	Murata Part Number	Dimension (mm)	Lead	Pack	
1.0.	(pF)	tol.	Customer Fait Number	Murata i art Number	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±10%		DE11XRB100KN4AR01F	8.0	5.0	10.0	0.6	25.4	N4	500
SL	15	±10%		DE11XRB150KN4AR01F	6.0	6.0	10.0	0.6	25.4	N4	500
SL	22	±10%		DE11XRB220KN4AR01F	6.0	5.0	10.0	0.6	25.4	N4	500
SL	33	±10%		DE11XRB330KN4AR01F	7.0	5.0	10.0	0.6	25.4	N4	500
SL	47	±10%		DE11XRB470KN4AR01F	8.0	5.0	10.0	0.6	25.4	N4	500
SL	68	±10%		DE11XRB680KN4AR01F	9.0	5.0	10.0	0.6	25.4	N4	500
В	100	±10%		DE1B3RB101KN4AR01F	6.0	5.0	10.0	0.6	25.4	N4	500
В	150	±10%		DE1B3RB151KN4AR01F	8.0	5.0	10.0	0.6	25.4	N4	500
В	220	±10%		DE1B3RB221KN4AR01F	6.0	6.0	10.0	0.6	25.4	N4	500
В	330	±10%		DE1B3RB331KN4AR01F	7.0	6.0	10.0	0.6	25.4	N4	500
В	470	±10%		DE1B3RB471KN4AR01F	8.0	6.0	10.0	0.6	25.4	N4	500
В	680	±10%		DE1B3RB681KN4AR01F	9.0	6.0	10.0	0.6	25.4	N4	500
Е	1000	±20%		DE1E3RB102MN4AR01F	8.0	6.0	10.0	0.6	25.4	N4	500
Е	1500	±20%		DE1E3RB152MN4AR01F	9.0	6.0	10.0	0.6	25.4	N4	500
Е	2200	±20%		DE1E3RB222MN4AR01F	11.0	6.0	10.0	0.6	25.4	N4	500
Е	3300	±20%		DE1E3RB332MN4AR01F	13.0	6.0	10.0	0.6	25.4	N4	500
Е	4700	±20%		DE1E3RB472MN4AR01F	14.0	6.0	10.0	0.6	25.4	N4	500

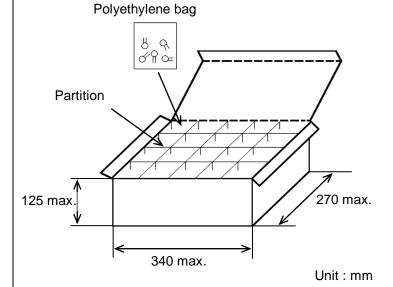
	161										
	pecification and					ı					
No.	Iter	Specification No marked defect on appearance			Test method The capacitor should be inspected by naked eyes						
1	Appearance and dimensions		form. Please refer to [Part number list] on		for visible evidence of defect.				·		
			dimensions.								
2	Marking		To be easily leg	ible.						naked eyes.	
3	Dielectric strength	Between lead wires	No failure.			AC4	capacitor sh 000V(r.m.s wires for 60	.)<50/60Hz		d when d between the	
		Body insulation	No failure.			First, conn	the terminated toget a metal for	als of the c her.	•	nould be	
							the b to the abou from	ely wrapped lody of the ce e distance ce tt 3 to 6mm each termin the capace	around capacitor of nal.	Metal (foil	About 3 to 6 mm
						conta diam Final 60 s balls.	einer filled veter. ly, AC4000' between the	vith metal b V (r.m.s.) <t e capacitor</t 	oalls of abo 50/60Hz> it lead wires	ut 1mm s applied for and metal	
4	Insulation Resistan	ce (I.R.)	10 000M Ω min.			DC50 The v	insulation re 00±50V wit voltage sho igh a resisto	hin 60±5 s uld be appl	of charging		
5	Capacitance		Within specified tolerance.			The 0.1	capacitance 1kHz and A	should be C1±0.2V(r	.m.s.) max.		
6	Dissipation Factor	(D.F.)	2.5% max.			The dissipation factor should be measured at 20°C with 1±0.1kHz and AC1±0.2V(r.m.s.) max					
7	Temperature chara	cteristic	Char. SL: +350 to -1000 ppm/°C (Temp. range: +20 to +85°C) Char. B: Within ±10 % Char. E: Within +20/-55% (Temp. range: -25 to +85°C)		;		capacitance step specil			d be made at	
ı				Step		1	2	3	4	5	
				Temp.(°C)	2	0±2	-25±2	20±2	85±2	20±2	
8	Active flammability		The cheese-clo	oth should not be		least chee to 20 disch main	one but mo se-cloth. The discharges should tained for 2 triples of the second	ore than two ne capacitos. The inter uld be 5 s. min after the capacitos of the capacitos o	o complete or should be val between The UAc sine last disconditions of the UAc sine conditions of	e subjected in successive hould be harge. R ct ut Discilloscope 1% 10kV choke kV	
			<u> </u>								

			Reference only	
No.	Item	·	Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
		Bending		capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of approximately 90° in the vertical plane and then
				returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.
11	Solderability of leads	-	Lead wire should be soldered	The lead wire of a capacitor should be dipped into a
	, , , , , , , , , , , , , , , , , , , ,		With uniformly coated on the	ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the	molten solder for 2±0.5 s. In both cases the depth of
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder:
40	0-1-1		No seemled defect	245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change	4.000140	(In case of 260±5°C : 10±1 s)
		I.R.	1000MΩ min.	The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal insulating Capacitor 1.5 to 2.0mm Molten solder
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.
		change		Then, as in figure, the lead wires should be
		I.R.	1000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm from
		Dielectric strength	Per item 3	the root of terminal for 7.5+0/-1 s.
		ou onigui		Thermal Capacitor I.5
				Pre-treatment: Capacitor should be stored at
				125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1 room condition for 24±2 h before initial measurements. (Do not apply to Char. SL)
*1 "	om condition" Tompor	atura: 15 to 25°C	Relative humidity: 45 to 75%, Atmosp	Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.
1 100	om condition rempera		, relative numbrity. 45 to 75%, Atmost	σποπο ρισσομία. Ου το Τυυκη α

			Reference only					
No.	Item		Specification	Test method				
14	Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.				
15	Passive flammability		The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm About 8mm About 8mm About 10mm thick board				
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to				
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. 3000M Ω min. Per item 3 Relative humidity: 45 to 75%, Atmos	2 h at *1room condition. Apply AC760V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.				

lo.	Item	1	Reference o Specification				Test n	nethod		
8	Life	Appearance	No marked defect.	Ir	npulse	e voltag		.5.100		
-	•	Capacitance	Within ±20%	Each individual capacitor should be subject					ubjected to a	
		change			12kV impulses for three times. Then the capacit are applied to life test.					
		I.R.	3000 Μ Ω min.							
		Dielectric	Per item 3		• •					
		strength			Front time (T1) = 1.7 μ s=1.67T					
						ŏ/	\rightarrow 1	īme to half-val	ue (T2) = 50μ s	
					3	o_/				
					0 T t					
						T1	т2			
				т	he ca	oacitors	are placed i	n a circula	iting air oven	
					The capacitors are placed in a circulating air oven for a period of 1 000 h.					
				Т	he air	in the c	oven is mainta	ained at a	temperature	
				0	f 125+	-2/-0 °C	, and relative	humidity	of 50% max	
					Throughout the test, the capacitors are subjected to a AC950V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour					
				th	the voltage is increased to AC1 000V(r.m.s.) for 0.1 s					
					Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the					
				'						
									Os then placed	
								ondition fo		
								tial measu		
					(Do not apply to Char. SL)					
				F	ost-tre	eatment	: Capacito			
_	Tomporoture	Appearance	No marked defeat	-	he er	000:4		*1room co		
9	Temperature and immersion cycle	Appearance Capacitance	No marked defect. Char. SL: Within ±5%						500 temperatu	
	inimersion cycle	change	Char. B: Within ±10%		cycles, then consecutively to 2 immersion cycles.					
			Char. E: Within ±20%	<	Tempe	erature	cycle>			
		D.F.	Char. SL : 2.5% max.		İ	Step	Temperatu	ıre(°C)	Time	
			Char. B, E : 5.0% max.			1	-40+0		30 min	
		I.R.	3000 Μ Ω min.			2	Room to		3 min	
		Dielectric	Per item 3			3	+125+3		30 min	
		strength				4	Room te	emp.	3 min	
					Cycle time:500 cycles					
				<	Imme	rsion cy	rcle>			
					Step	Tomr	perature(°C)	Time	Immersion	
					Siep	rem	berature(C)	Time	water	
					1	+65+5/-0		15 min	Clean	
									water	
					2		0 <u>±</u> 3	15 min	Salt water	
					1	<u> </u>		Cycle tir		
					Cycle time:2 cycles Pre-treatment : Capacitor should be stored at					
				F						
					125±2°C for 1 h, and apply the					
					AC4000V(r.m.s.) 60s then placed * 1 room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for					
				-						
					บรเ-เเ	auneni		r snould b at *1room c		
"ro	om condition" Temper	ature: 15 to 35°C	, Relative humidity: 45 to 75%, At	tmosphe	ric pre	ssure: 5			C. IGIGIOTI.	
			,		6.0					

6. Packing specification

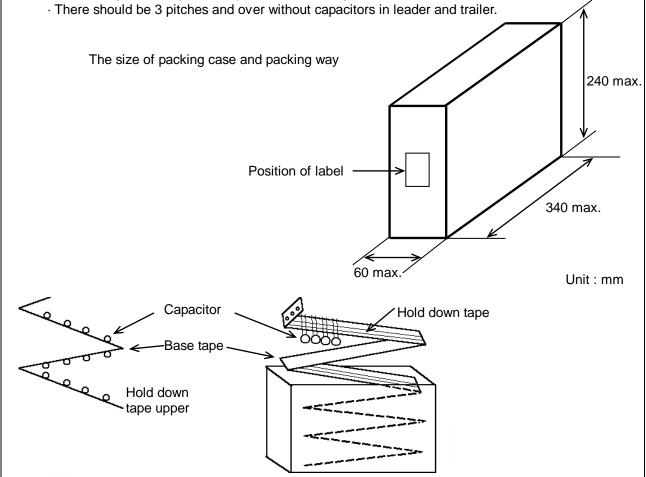

•Bulk type (Packing style code : B)

The size of packing case and packing way

 $\begin{tabular}{ll} *1 \\ \text{The number of packing = } \begin{tabular}{ll} *2 \\ \text{Packing quantity} \times \ n \\ \end{tabular}$

*1 : Please refer to [Part number list].

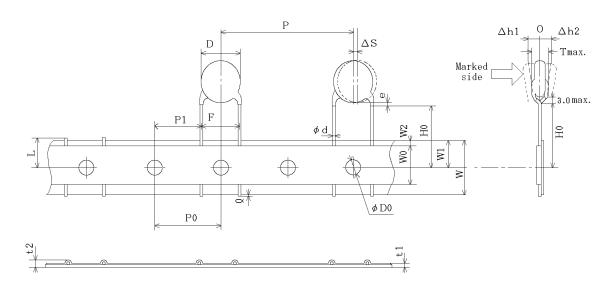
*2 : Standard n = 20 (bag)



Note)

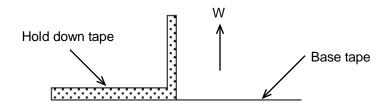
The outer package and the number of outer packing be changed by the order getting amount.

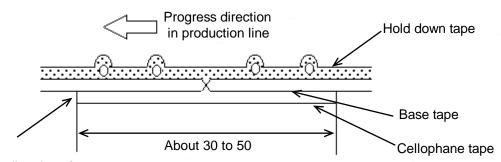
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- · When body of the capacitor is piled on other body under it.

7. Taping specification

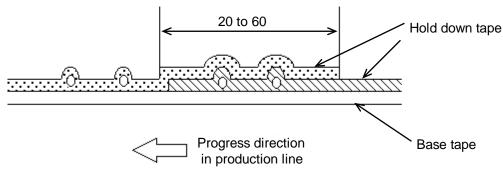
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 > Pitch of component 25.4mm / Lead spacing 10.0mm


Item	Code	Dimensions	Remarks		
Pitch of component		25.4±2.0	710.110.110		
Pitch of sprocket hole	P0	12.7±0.3			
Lead spacing	F	10.0±1.0			
Length from hole center to lead	P1	7.7±1.5			
Body diameter		Please refer to [Part number list].			
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .		
Carrier tape width	W	18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction		
Lead distance between reference and	110	$18.0\pm_0^{2.0}$			
bottom planes	H0	18.0± ₀			
Protrusion length	Q	+0.5~-1.0			
Diameter of sprocket hole	φD0	4.0±0.1			
Lead diameter	φd	0.60±0.05			
Total tape thickness	t1	0.6±0.3	The control of the left decree 4 to 1 to		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.		
Deviation across tape, front	∆h1	2.0			
Deviation across tape, rear	∆h2	2.0 max.			
Portion to cut in case of defect	L	11.0± _{1.0}			
Hold down tape width	W0	11.5 min.			
Hold down tape position	W2	1.5±1.5			
Coating extension on lead		Up to the end of crimp			
Body thickness		Please refer to [Part number list].			

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Safety Capacitors category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

R49AN347000A1K B32022B3223K026 B32912A3104K026 46KI3470DQM1K B32913A3154K MKPY2-.02230020P15 46KN333000M1M

DE1E3KX222MJ4BN01F 46KR422000M1K B32924C3824K189 46KI3100DQM1M HUB2200-S BFC2 33910103 46KN3330JBM1K

463I333000M1K 46KF2470JBN0M 46KF268000M1M 46KI22205001M 46KI24705201K 46KI2470CK01M 46KI2470ND01K

46KI2680JH01M 46KI315000M2K 46KI3150CKM2K 46KI3150CKM2M 46KI3150NDM2M 46KI3220JLM1M 46KN3150JH01K

46KN34705001K 46KN347050N0K 46KN3470JHP0M 46KN410040H1M 46KN415000P1M 46KW510050M1K 474I24700003K

PHE840MD6220MD13R30 PHE840MY6470MD14R06 PHE845VD5470MR06 R463N4100ZAM1K 46KR410050M1K

YV500103Z060B20X5P MKPX2R-1/400/10P27 YU0AH222M090DAMD0B LS1808N102K302NX080TM R463F210000N0K

R463I26800001K R463I315000M2K F861AO224K310A F861KJ223K310A DE21XSA470KA3BT02F