



#### **DEA Series**

High Temperature Lead Type Disc Ceramic Capacitors of Class 1 for General Purpose

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

#### **⚠** CAUTION

#### 1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

| Voltage                   | DC Voltage | DC+AC Voltage | AC Voltage | Pulse Voltage(1) | Pulse Voltage(2) |
|---------------------------|------------|---------------|------------|------------------|------------------|
| Positional<br>Measurement | Vo-p Vo-p  | Vo-p          | Vp-p       | Vp-p             | Vp-p             |

#### 2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. The allowable frequency should be in less than 300kHz in sine wave. Applied voltage should be the load such as self-generated heat is within 5 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of  $\phi$ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

#### 3. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

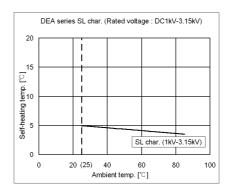
## 4. LOAD REDUCTION AND SELF-GENERATED HEAT DURING APPLICATION OF HIGH-FREQUENCY AND HIGH-VOLTAGE

Since the heat generated by the low-dissipation capacitor itself is low, its allowable power is much higher than the general B characteristic. However, in case such an applied load that the self-heating temperature

is 20 °C at the rated voltage, the allowable power may be exceeded.

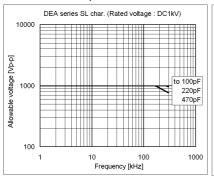
Therefore, when using the low-dissipation capacitors in a high-frequency and high-voltage circuit with a frequency of 1kHz or higher, make sure that the Vp-p values including the DC bias, do not exceed the applied voltage value specified in Table 1. Also make sure that the self-heating temperature (the difference between the capacitor's surface temperature and the capacitor's ambient temperature) at an ambient temperature of 25 °C does not exceed the value specified in Table 1.

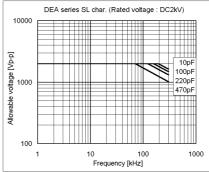
As shown in Fig. 1, the self-heating temperature depends on the ambient temperature. Therefore, if you are not able to set the ambient temperature to approximately 25 °C, please contact our sales representatives or product engineers.

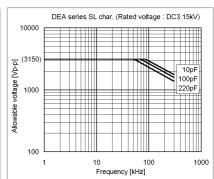

| Temp.<br>Char. | DC Rated | Allowable Cond  | ditions at High-frequency *2 | Capacitor's   |  |
|----------------|----------|-----------------|------------------------------|---------------|--|
|                | Voltage  | Applied Voltage | Self-heating Temp.           | Ambient       |  |
| Onan           | vollago  | (max.)          | (25 °C Ambient Temp.)        | Temp. *1      |  |
|                | 1kV      | 1000Vp-p        |                              |               |  |
| SL             | 2kV      | 2000Vp-p        | 5 °C max.                    | -25 to +85 °C |  |
|                | 3.15kV   | 3150Vp-p        |                              |               |  |

<sup>\*1</sup> When the ambient temperature is 85 to 125 °C, the applied voltage needs to be further reduced.

If the low-dissipation capacitors needs to be used at an ambient temperature of 85 to 125 °C, please contact our sales representatives or product engineers.


<sup>\*2</sup> Fig. 2 shows reference data on the allowable voltage-frequency characteristic for a sine ave voltage.


#### <Fig. 1> Dependence of Self-heating Temperature on Ambient Temperature




<Fig. 2> Allowable Voltage (Sine Wave Voltage) – Frequency Characteristic [At Ambient Temperature of 85 °C or less]

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency. Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms. Therefore, you are requested to make sure that the self-heating temperature is not higher than the value specified in Table 1.







#### 5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### 6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5 s max.

#### 7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

#### 8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### 9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded

or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

#### 10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

#### **NOTICE**

#### 1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

#### 2. CAPACITANCE CHANGE OF CAPACITORS

- Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

- Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

#### **⚠** NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD20E

#### 1. Application

This specification is applied to High Temperature Lead Type Disc Ceramic Capacitors of DC1kV ratings and Class 1 of DEA series used for General Electric equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

#### 2. Rating

2-1. Operating temperature range

-25 ~ +125°C

2-2. Part number configuration

ex.) DEA 1X 3A 561 J B3 B Series Temperature Rated Capacitance Capacitance tolerance code style code specification

•Temperature characteristic

| Code | Temperature characteristic |
|------|----------------------------|
| 1X   | SL                         |

Please confirm detailed specification on [ Specification and test methods ].

Rated voltage

| Code | Rated voltage |
|------|---------------|
| 3A   | DC1kV         |

#### Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 561.

$$56 \times 10^1 = 560 pF$$

#### Capacitance tolerance

Please refer to [ Part number list ].

#### • Lead code

| Code | Lead style                 |
|------|----------------------------|
| A*   | Vertical crimp long type   |
| C*   | Straight long type         |
| B*   | Vertical crimp short type  |
| D*   | Straight short type        |
| N*   | Vertical crimp taping type |
| P*   | Straight taping type       |

<sup>\*</sup> Please refer to [ Part number list ].

Solder coated copper wire is applied for termination.

Packing style code

| Code | Packing type          |
|------|-----------------------|
| В    | Bulk type             |
| Α    | Ammo pack taping type |

#### • Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

#### 3. Marking

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

Capacitance tolerance : Code

Manufacturing year

Manufacturing month

(Omitted for maximum body diameter  $\phi$  6mm and under)

Rated voltage : Letter code

Company name code : Abbreviation (

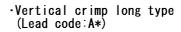
(Omitted for maximum body diameter φ 9mm and under)

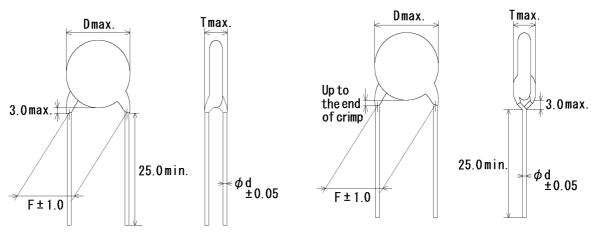
: Letter code(The last digit of A.D. year.)

(Omitted for maximum body diameter  $\phi$  5mm and under)

: Code

(Omitted for maximum body diameter  $\phi$  5mm and under)

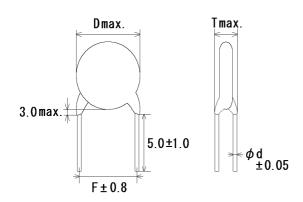

Feb./Mar.  $\rightarrow$  2 Aug./Sep.  $\rightarrow$  8 Apr./May  $\rightarrow$  4 Oct./Nov.  $\rightarrow$  O Dec./Jan.  $\rightarrow$  D

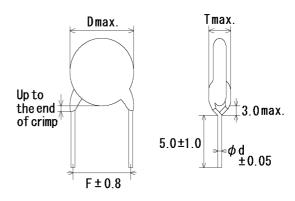

(Example)

561 J 1KV (M 0D

#### 4. Part number list

·Straight long type
(Lead code:C\*)



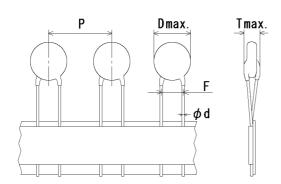



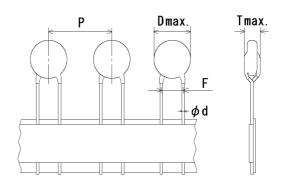

Note) The mark '\*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

|      |      |                |                               |                      |                   |                |     |     |     | <i>/</i> /////////////////////////////////// |               |
|------|------|----------------|-------------------------------|----------------------|-------------------|----------------|-----|-----|-----|----------------------------------------------|---------------|
| T.C. | Сар. | Cap. Cap. tol. | Customer Dert Number          | Murata Dart Number   | DC<br>Rated Volt. | Dimension (mm) |     |     |     | Lead                                         | Pack          |
| 1.0. | (pF) | Сар. ю.        | ap. tol. Customer Part Number | Murata Part Number F | (V)               | D              | Т   | F   | d   | Code                                         | qty.<br>(pcs) |
| SL   | 10   | ±5%            |                               | DEA1X3A100JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 12   | ±5%            |                               | DEA1X3A120JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 15   | ±5%            |                               | DEA1X3A150JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 18   | ±5%            |                               | DEA1X3A180JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 22   | ±5%            |                               | DEA1X3A220JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 27   | ±5%            |                               | DEA1X3A270JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 33   | ±5%            |                               | DEA1X3A330JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 39   | ±5%            |                               | DEA1X3A390JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 47   | ±5%            |                               | DEA1X3A470JC1B       | 1000              | 4.5            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 56   | ±5%            |                               | DEA1X3A560JC1B       | 1000              | 5.0            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 68   | ±5%            |                               | DEA1X3A680JC1B       | 1000              | 5.0            | 4.0 | 5.0 | 0.5 | C1                                           | 500           |
| SL   | 82   | ±5%            |                               | DEA1X3A820JA2B       | 1000              | 6.0            | 4.0 | 5.0 | 0.6 | A2                                           | 500           |
| SL   | 100  | ±5%            |                               | DEA1X3A101JA2B       | 1000              | 6.0            | 4.0 | 5.0 | 0.6 | A2                                           | 500           |
| SL   | 120  | ±5%            |                               | DEA1X3A121JA2B       | 1000              | 6.0            | 4.0 | 5.0 | 0.6 | A2                                           | 500           |
| SL   | 150  | ±5%            |                               | DEA1X3A151JA2B       | 1000              | 7.0            | 4.0 | 5.0 | 0.6 | A2                                           | 500           |
| SL   | 180  | ±5%            |                               | DEA1X3A181JA2B       | 1000              | 7.0            | 4.0 | 5.0 | 0.6 | A2                                           | 500           |
| SL   | 220  | ±5%            |                               | DEA1X3A221JA2B       | 1000              | 8.0            | 4.0 | 5.0 | 0.6 | A2                                           | 250           |
| SL   | 270  | ±5%            |                               | DEA1X3A271JA2B       | 1000              | 9.0            | 4.0 | 5.0 | 0.6 | A2                                           | 250           |
| SL   | 330  | ±5%            |                               | DEA1X3A331JA2B       | 1000              | 10.0           | 4.0 | 5.0 | 0.6 | A2                                           | 250           |
| SL   | 390  | ±5%            |                               | DEA1X3A391JA2B       | 1000              | 10.0           | 4.0 | 5.0 | 0.6 | A2                                           | 250           |
| SL   | 470  | ±5%            |                               | DEA1X3A471JA2B       | 1000              | 11.0           | 4.0 | 5.0 | 0.6 | A2                                           | 250           |
| SL   | 560  | ±5%            |                               | DEA1X3A561JA3B       | 1000              | 12.0           | 4.0 | 7.5 | 0.6 | А3                                           | 200           |

·Straight short type (Lead code:D\*) Vertical crimp short type (Lead code: B\*)







Note) The mark '\*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

|      |      |           |                           |                    |                    |      |       |       | 1   | Unit : | mm            |
|------|------|-----------|---------------------------|--------------------|--------------------|------|-------|-------|-----|--------|---------------|
| т.   | Cap. | C 4-1     | Curataman Dant Number     | Museus Dout Number | DC<br>DC           | Dir  | nensi | on (m | m)  | Lead   | Pack          |
| T.C. | (pF) | Cap. tol. | tol. Customer Part Number | Murata Part Number | Rated Volt.<br>(V) | D    | Т     | F     | d   | Code   | qty.<br>(pcs) |
| SL   | 10   | ±5%       |                           | DEA1X3A100JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 12   | ±5%       |                           | DEA1X3A120JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 15   | ±5%       |                           | DEA1X3A150JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 18   | ±5%       |                           | DEA1X3A180JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 22   | ±5%       |                           | DEA1X3A220JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 27   | ±5%       |                           | DEA1X3A270JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 33   | ±5%       |                           | DEA1X3A330JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 39   | ±5%       |                           | DEA1X3A390JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 47   | ±5%       |                           | DEA1X3A470JD1B     | 1000               | 4.5  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 56   | ±5%       |                           | DEA1X3A560JD1B     | 1000               | 5.0  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 68   | ±5%       |                           | DEA1X3A680JD1B     | 1000               | 5.0  | 4.0   | 5.0   | 0.5 | D1     | 500           |
| SL   | 82   | ±5%       |                           | DEA1X3A820JB2B     | 1000               | 6.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 100  | ±5%       |                           | DEA1X3A101JB2B     | 1000               | 6.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 120  | ±5%       |                           | DEA1X3A121JB2B     | 1000               | 6.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 150  | ±5%       |                           | DEA1X3A151JB2B     | 1000               | 7.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 180  | ±5%       |                           | DEA1X3A181JB2B     | 1000               | 7.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 220  | ±5%       |                           | DEA1X3A221JB2B     | 1000               | 8.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 270  | ±5%       |                           | DEA1X3A271JB2B     | 1000               | 9.0  | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 330  | ±5%       |                           | DEA1X3A331JB2B     | 1000               | 10.0 | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 390  | ±5%       |                           | DEA1X3A391JB2B     | 1000               | 10.0 | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 470  | ±5%       |                           | DEA1X3A471JB2B     | 1000               | 11.0 | 4.0   | 5.0   | 0.6 | B2     | 500           |
| SL   | 560  | ±5%       |                           | DEA1X3A561JB3B     | 1000               | 12.0 | 4.0   | 7.5   | 0.6 | В3     | 250           |

#### ·Straight taping type (Lead code:P\*)

#### ·Vartical crimp taping type (Lead code:N\*)





Note) The mark '\*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

|      |      |           |                           |                      |                                         |                    |                |     |     |      | JI IIIC . I |               |      |
|------|------|-----------|---------------------------|----------------------|-----------------------------------------|--------------------|----------------|-----|-----|------|-------------|---------------|------|
| T.C. | Cap. | Cap. Cap. | Cap. Cap.                 | Customer Bort Number | Customer Part Number Murata Part Number | DC<br>Data di valt | Dimension (mm) |     |     |      |             | Lead          | Pack |
| 1.0. | (pF) | tol.      | tol. Customer Part Number | Murata Part Number   | Rated volt.<br>(V)                      | D                  | Т              | F   | d   | Р    | code        | qty.<br>(pcs) |      |
| SL   | 10   | ±5%       |                           | DEA1X3A100JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 12   | ±5%       |                           | DEA1X3A120JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 15   | ±5%       |                           | DEA1X3A150JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 18   | ±5%       |                           | DEA1X3A180JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 22   | ±5%       |                           | DEA1X3A220JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 27   | ±5%       |                           | DEA1X3A270JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 33   | ±5%       |                           | DEA1X3A330JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 39   | ±5%       |                           | DEA1X3A390JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 47   | ±5%       |                           | DEA1X3A470JP2A       | 1000                                    | 4.5                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 56   | ±5%       |                           | DEA1X3A560JP2A       | 1000                                    | 5.0                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 68   | ±5%       |                           | DEA1X3A680JP2A       | 1000                                    | 5.0                | 4.0            | 5.0 | 0.6 | 12.7 | P2          | 1500          |      |
| SL   | 82   | ±5%       |                           | DEA1X3A820JN2A       | 1000                                    | 6.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 100  | ±5%       |                           | DEA1X3A101JN2A       | 1000                                    | 6.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 120  | ±5%       |                           | DEA1X3A121JN2A       | 1000                                    | 6.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 150  | ±5%       |                           | DEA1X3A151JN2A       | 1000                                    | 7.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 180  | ±5%       |                           | DEA1X3A181JN2A       | 1000                                    | 7.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 220  | ±5%       |                           | DEA1X3A221JN2A       | 1000                                    | 8.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 270  | ±5%       |                           | DEA1X3A271JN2A       | 1000                                    | 9.0                | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 330  | ±5%       |                           | DEA1X3A331JN2A       | 1000                                    | 10.0               | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 390  | ±5%       |                           | DEA1X3A391JN2A       | 1000                                    | 10.0               | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 470  | ±5%       |                           | DEA1X3A471JN2A       | 1000                                    | 11.0               | 4.0            | 5.0 | 0.6 | 12.7 | N2          | 1500          |      |
| SL   | 560  | ±5%       |                           | DEA1X3A561JN3A       | 1000                                    | 12.0               | 4.0            | 7.5 | 0.6 | 15.0 | N3          | 1000          |      |

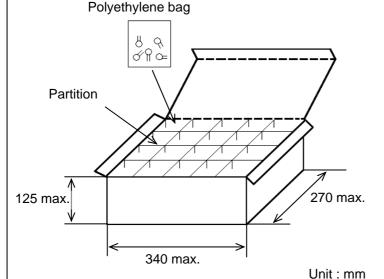
| 5 Sn | ecification and test            | mathods                        |                                                                                                                      | ixererence                                                 | · · · · · · ·                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                               |                                        |           |  |
|------|---------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------|--|
| No.  | Ite                             |                                |                                                                                                                      | Specification                                              |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test                                                          | method                                        |                                        |           |  |
| 1    | Appearance and o                |                                | No marked form and d                                                                                                 | defect on app                                              |                                                                                       | The capacitor should be inspected by for visible evidence of defect.  Dimensions should be measured with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                               |                                        |           |  |
| 2    | Marking                         |                                | To be easil                                                                                                          | y legible.                                                 |                                                                                       | Dimensions should be measured with slide caliper The capacitor should be inspected by naked eyes. The capacitor should not be damaged when DC voltage of 200% of the rated voltage are applied between the lead wires for 1 to 5 s. (Charge/Discharge current≤50mA.)  The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, shortcircuited, is kept about 2mm off the balls as shown in the figure, and AC1250V (r.m.s.)<50/60Hz> is applied for 1 to 5 s between capacitor lead wires and small metals. (Charge/Discharge current≤50mA.)  The insulation resistance should be measured with DC500±50V within 60±5 s of charging.  The capacitance should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max  The Q should be measured at 20°C with 1±0.2MH and AC5V(r.m.s.) max  The capacitance measurement should be made at each step specified in Table.  2 3 4 5  -25±3 20±2 85±2 20±2  As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1 s.  Each lead wire should be subjected to 5N (2.5N felead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to iroriginal position, and bent 90° in the opposite |                                                               |                                               |                                        |           |  |
| 3    | Dielectric<br>strength          |                                |                                                                                                                      |                                                            | voltage of 200% of the rated voltage are applied between the lead wires for 1 to 5 s. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                               |                                        |           |  |
|      |                                 | Body<br>insulation             | No failure.                                                                                                          |                                                            |                                                                                       | The capacitor is placed in the container with balls of diameter 1mm so that each lead wire shortcircuited, is kept about 2mm off the balls as shown in the figure, and AC1250V (r.m.s.)<50/60Hz> is applied for 1 to 5 s between capacitor lead wires and small metals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |                                               | ead wire,                              | ut 2m     |  |
| 4    | Insulation<br>Resistance (I.R.) | Between lead wires             | 10000ΜΩ                                                                                                              | min.                                                       |                                                                                       | The insulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n resistance                                                  | should be n                                   |                                        | ith       |  |
| 5    | Capacitance                     |                                | Within spe                                                                                                           | cified tolerance                                           | Э.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                               | d at 20°C wi                           | th        |  |
| 6    | Q                               |                                | 400+20C*2min. (30pF under)<br>1 000 min. (30pF min.)                                                                 |                                                            |                                                                                       | The Q should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                               |                                        | Hz        |  |
| 7    | 7 Temperature characteristic    |                                | +350 to -1 000ppm/°C<br>(Temp. range: +20 to +85°C)                                                                  |                                                            |                                                                                       | each step specified in Table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                               |                                        |           |  |
|      |                                 |                                |                                                                                                                      | Step<br>Temp.(°C)                                          | 1<br>20±2                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                               |                                        |           |  |
| 8    | Strength of lead                | Pull                           |                                                                                                                      | should not cut<br>should not be t                          |                                                                                       | body of the c<br>weight gradu<br>radial direction<br>10N (5N for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | apacitor and<br>ally to each<br>on of the cap<br>lead diamete | I apply a ten<br>lead wire in<br>acitor up to | sile ////<br>the                       | <u>//</u> |  |
|      |                                 | Bending                        |                                                                                                                      |                                                            |                                                                                       | Each lead wire should be subjected to 5 lead diameter 0.5mm) of weight and be point of egress, in one direction, then re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                               | bent 90° at<br>returned to<br>opposite | the       |  |
| 9    | Vibration resistance            | Appearance<br>Capacitance<br>Q | 400+20C*2                                                                                                            | defect.<br>cified tolerance<br>min. (30pF und<br>(30pF min | der)                                                                                  | The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1min rate of vibration change from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 h; 2 h each in 3 mutually perpendicular directions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                               | vith                                   |           |  |
| 10   | Solderability of lea            | ads                            | Lead wire should be soldered with uniformly coated on the axial direction over 3/4 of the circumferential direction. |                                                            |                                                                                       | The lead wire of a capacitor should be dipped into a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                               |                                        |           |  |

| *2 "C " | expresses | nominal | capacitance | value | (pF) |
|---------|-----------|---------|-------------|-------|------|
|---------|-----------|---------|-------------|-------|------|

| No.    | Ite                           | m                      | Specification                                       | Test method                                                        |  |
|--------|-------------------------------|------------------------|-----------------------------------------------------|--------------------------------------------------------------------|--|
| 11     | Soldering effect              | Appearance             | No marked defect.                                   | The lead wire should be immersed into the melted                   |  |
|        | (Non-preheat)                 | Capacitance            | Within ± 2.5%                                       | solder of 350±10°C (Body of \$\phi 5\$ and under:                  |  |
|        |                               | change                 |                                                     | 270±5°C ) up to about 1.5 to 2.0mm from the                        |  |
|        |                               | Dielectric             | Per item 3.                                         | main body for 3.5±0.5 s. ( Body of φ5 and under:                   |  |
|        |                               | strength               |                                                     | 5±0.5 s. )                                                         |  |
|        |                               | (Between lead          |                                                     | Post-treatment :                                                   |  |
|        |                               | wires)                 |                                                     | Capacitor should be stored for 1 to 2 h at *1room condition.       |  |
| 12     | Soldering effect (On-preheat) | Appearance             | No marked defect.                                   | First the capacitor should be stored at 120+0/-5°C                 |  |
|        |                               | Capacitance            | Within ± 2.5%                                       | for 60+0/-5 s. Then, as in figure, the lead wires should be        |  |
|        |                               | change<br>Dielectric   | Per item 3.                                         | immersed solder of 260+0/-5°C up to 1.5 to 2.0mm                   |  |
|        |                               | strength               | Per item 3.                                         | from the root of terminal for 7.5+0/-1 s.                          |  |
|        |                               | (Between lead          |                                                     |                                                                    |  |
|        |                               | wires)                 |                                                     | Thermal Capacitor insulating                                       |  |
|        |                               |                        |                                                     | 1.5                                                                |  |
|        |                               |                        |                                                     | 1 to 2.0mm                                                         |  |
|        |                               |                        |                                                     | Molten<br>solder                                                   |  |
|        |                               |                        |                                                     | Post-treatment :                                                   |  |
|        |                               |                        |                                                     | Capacitor should be stored for 1 to 2 h at *1room                  |  |
|        |                               |                        |                                                     | condition.                                                         |  |
| 13     | Humidity<br>(Under steady     | Appearance             | No marked defect.                                   | Set the capacitor for 500 +24/-0 h at 40±2°C in 90                 |  |
|        |                               | Capacitance            | Within ± 5%                                         | to 95% relative humidity.                                          |  |
|        | state)                        | change                 |                                                     | 4_                                                                 |  |
|        |                               | Q                      | 275+5/2C*2min. (30pF under)                         | Post-treatment:                                                    |  |
|        |                               |                        | 350 min. (30pF min.)                                | Capacitor should be stored for 1 to 2 h at *1room condition.       |  |
|        |                               | I.R.                   | 1 000MΩ min.                                        |                                                                    |  |
| 14     | Humidity loading              | Appearance             | No marked defect.                                   | Apply the rated voltage for 500 +24/-0 h at 40±2°C                 |  |
|        |                               | Capacitance            | Within ± 5%                                         | in 90 to 95% relative humidity.                                    |  |
|        |                               | change<br>Q            | 275 : 5/20*2 (20-5 : do n)                          | _ (Charge/Discharge current≤50mA.) Post-treatment :                |  |
|        |                               | Q                      | 275+5/2C*2min. (30pF under)<br>350 min. (30pF min.) | Capacitor should be stored for 1 to 2 h at *1room                  |  |
|        |                               | I.R.                   | 1 000MΩ min.                                        | condition.                                                         |  |
| 15     | Life                          | Appearance             | No marked defect.                                   | Apply a DC voltage of 150% of the rated voltage                    |  |
| 10     | LIIC                          | Capacitance            | Within ± 3%                                         | for 1000 +48/-0 h at 125±2°C, and relative humidity                |  |
|        |                               | change                 | VVIIIII1 = 070                                      | of 50% max                                                         |  |
|        |                               | Q                      | 275+5/2C*2min. (30pF under)                         | (Charge/Discharge current≤50mA.)                                   |  |
|        |                               |                        | 350 min. (30pF min.)                                | Post-treatment :                                                   |  |
|        |                               | I.R.                   | 2000M $Ω$ min.                                      | Capacitor should be stored for 1 to 2 h at *1room condition.       |  |
| 16     | Temperature                   | Appearance             | No marked defect.                                   | The capacitor should be subjected to 5 temperature                 |  |
|        | cycle                         | Capacitance            | Within ± 5%                                         | cycles.                                                            |  |
|        |                               | change                 |                                                     | <temperature cycle=""></temperature>                               |  |
|        |                               | Q                      | 275+5/2C*2min. (30pF under)                         | Step Temperature(°C) Time                                          |  |
|        |                               | 1.5                    | 350 min. (30pF min.)                                | 1 -25±3 30 min                                                     |  |
|        |                               | I.R.                   | 1 000M $\Omega$ min. Per item 3.                    | 2 Room Temp. 3 min<br>3 +125+3 30 min                              |  |
|        |                               | Dielectric<br>strength | Per item 3.                                         | 1.222                                                              |  |
|        |                               | (Between lead          |                                                     |                                                                    |  |
|        |                               | wires)                 |                                                     | Cycle time : 5 cycle                                               |  |
|        |                               | <b>'</b>               |                                                     | Post-treatment : Capacitor should be stored for 1 to 2 h at *1room |  |
|        |                               |                        |                                                     | condition.                                                         |  |
| *1 "ro | om condition" Temp            | erature: 15 to 35°     | C, Relative humidity: 45 to 75%, Atn                |                                                                    |  |

\*1 "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa \*2 "C" expresses nominal capacitance value (pF)

#### 6.Packing specification

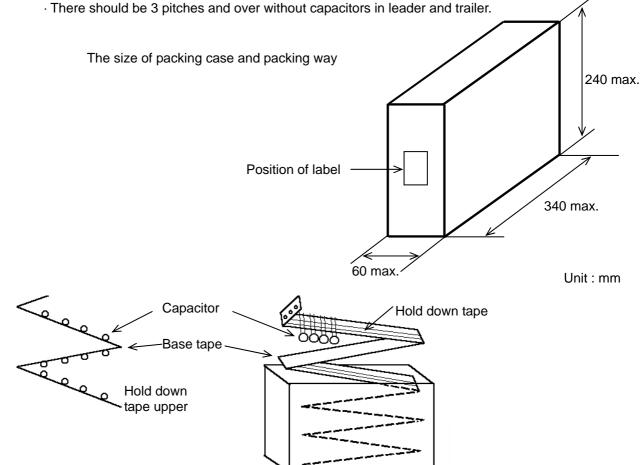

•Bulk type (Packing style code : B)

The number of packing =  $^{*1}$  Packing quantity  $^{*2}$  n

The size of packing case and packing way

\*1 : Please refer to [Part number list].

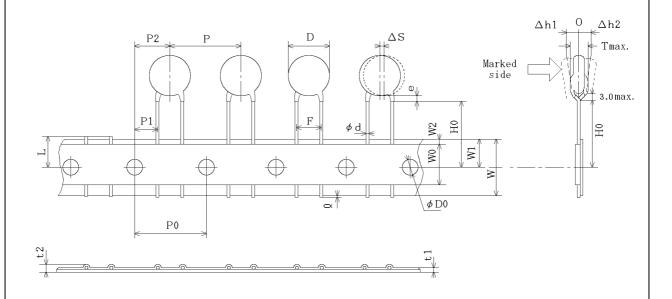
\*2 : Standard n = 20 (bag)




Note)

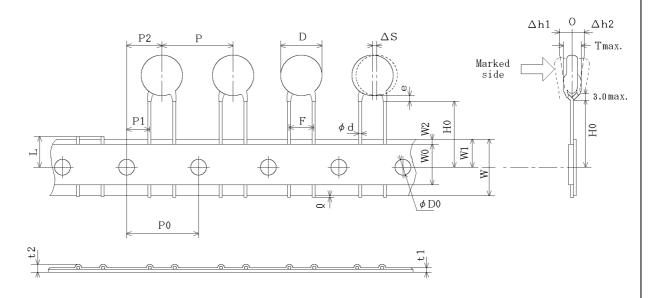
The outer package and the number of outer packing be changed by the order getting amount.

•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- $\cdot$  When body of the capacitor is piled on other body under it.

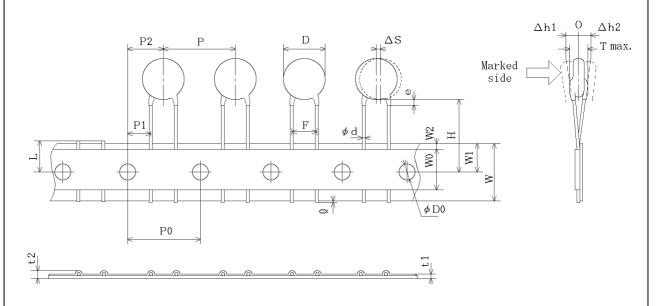


#### 7. Taping specification


### 7-1. Dimension of capacitors on tape

Vertical crimp taping type < Lead code : N2 > Pitch of component 12.7mm / Lead spacing 5.0mm

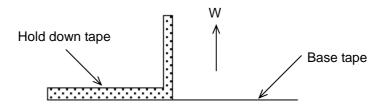



| Item                                              |              | Dimensions                           | Remarks                                |
|---------------------------------------------------|--------------|--------------------------------------|----------------------------------------|
| Pitch of component                                | Р            | 12.7±1.0                             |                                        |
| Pitch of sprocket hole                            | P0           | 12.7±0.3                             |                                        |
| Lead spacing                                      | F            | 5.0±0.2                              |                                        |
| Length from hole center to component center       | P2           | 6.35±1.3                             | Deviation of progress direction        |
| Length from hole center to lead                   | P1           | 3.85±0.7                             |                                        |
| Body diameter                                     | D            | Please refer to [Part number list ]. |                                        |
| Deviation along tape, left or right               | ΔS           | 0±1.0                                | They include deviation by lead bend .  |
| Carrier tape width                                | W            | 18.0±0.5                             |                                        |
| Position of sprocket hole                         | W1           | 9.0±0.5                              | Deviation of tape width direction      |
| Lead distance between reference and bottom planes | Н0           | 18.0± <sup>2.0</sup>                 |                                        |
| Protrusion length                                 | Q            | +0.5~-1.0                            |                                        |
| Diameter of sprocket hole                         | φ <b>D</b> 0 | 4.0±0.1                              |                                        |
| Lead diameter                                     | φd           | 0.60±0.05                            |                                        |
| Total tape thickness                              | t1           | 0.6±0.3                              | They include hold down tape thickness. |
| Total thickness, tape and lead wire               | t2           | 1.5 max.                             |                                        |
| Deviation across tape, front                      | ∆h1          | 1.0 max.                             |                                        |
| Deviation across tape, rear                       | ∆h2          |                                      |                                        |
| Portion to cut in case of defect                  | L            | 11.0± <sup>0</sup> <sub>1.0</sub>    |                                        |
| Hold down tape width                              | W0           | 11.5 min.                            |                                        |
| Hold down tape position                           | W2           | 1.5±1.5                              |                                        |
| Coating extension on lead                         | е            | Up to the end of crimp               |                                        |
| Body thickness                                    | Т            | Please refer to [Part number list ]. |                                        |

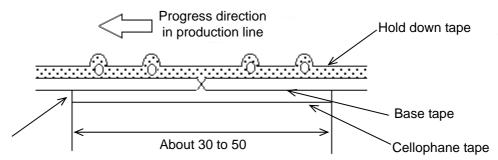
Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm



| Item                                              | Code         | Dimensions                            | Remarks                                |
|---------------------------------------------------|--------------|---------------------------------------|----------------------------------------|
| Pitch of component                                | Р            | 15.0±2.0                              |                                        |
| Pitch of sprocket hole                            | P0           | 15.0±0.3                              |                                        |
| Lead spacing                                      | F            | 7.5±1.0                               |                                        |
| Length from hole center to component center       | P2           | 7.5±1.5                               | Deviation of progress direction        |
| Length from hole center to lead                   | P1           | 3.75±1.0                              |                                        |
| Body diameter                                     | D            | Please refer to [ Part number list ]. |                                        |
| Deviation along tape, left or right               | ΔS           | 0±2.0                                 | They include deviation by lead bend .  |
| Carrier tape width                                | W            | 18.0±0.5                              |                                        |
| Position of sprocket hole                         | W1           | 9.0±0.5                               | Deviation of tape width direction      |
| Lead distance between reference and bottom planes | H0           | 18.0±2.0                              |                                        |
| Protrusion length                                 | Q            | +0.5~-1.0                             |                                        |
| Diameter of sprocket hole                         | φ <b>D</b> 0 | 4.0±0.1                               |                                        |
| Lead diameter                                     | φd           | 0.60±0.05                             |                                        |
| Total tape thickness                              | t1           | 0.6±0.3                               | They include hold down tape thickness. |
| Total thickness, tape and lead wire               | t2           | 1.5 max.                              |                                        |
| Deviation across tape, front                      | ∆h1          | 2.0                                   |                                        |
| Deviation across tape, rear                       | ∆h2          | 2.0 max.                              |                                        |
| Portion to cut in case of defect                  | L            | 11.0± <sup>0</sup> <sub>1.0</sub>     |                                        |
| Hold down tape width                              | W0           | 11.5 min.                             |                                        |
| Hold down tape position                           | W2           | 1.5±1.5                               |                                        |
| Coating extension on lead                         | е            | Up to the end of crimp                |                                        |
| Body thickness                                    | Т            | Please refer to [ Part number list ]. |                                        |


# Straight taping type < Lead code: P2 > Pitch of component 12.7mm / Lead spacing 5.0mm

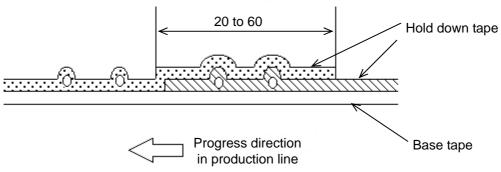



| Item                                        | Code         | Dimensions                            | Remarks                                |
|---------------------------------------------|--------------|---------------------------------------|----------------------------------------|
| Pitch of component                          | Р            | 12.7±1.0                              |                                        |
| Pitch of sprocket hole                      | P0           | 12.7±0.3                              |                                        |
| Lead spacing                                | F            | $5.0\pm^{0.8}_{0.2}$                  |                                        |
| Length from hole center to component center | P2           | 6.35±1.3                              | Deviation of progress direction        |
| Length from hole center to lead             | P1           | 3.85±0.7                              |                                        |
| Body diameter                               | D            | Please refer to [ Part number list ]. |                                        |
| Deviation along tape, left or right         | ΔS           | 0±1.0                                 | They include deviation by lead bend .  |
| Carrier tape width                          | W            | 18.0±0.5                              |                                        |
| Position of sprocket hole                   | W1           | 9.0±0.5                               | Deviation of tape width direction      |
| Lead distance between reference and bottom  | Н            | 20.0±1.5                              |                                        |
| planes                                      |              |                                       |                                        |
| Protrusion length                           | Q            | +0.5~-1.0                             |                                        |
| Diameter of sprocket hole                   | φ <b>D</b> 0 | 4.0±0.1                               |                                        |
| Lead diameter                               | φd           | 0.60±0.05                             |                                        |
| Total tape thickness                        | t1           | 0.6±0.3                               | They include hold down tape thickness. |
| Total thickness, tape and lead wire         | t2           | 1.5 max.                              |                                        |
| Deviation across tape, front                | ∆h1          | 4.0                                   |                                        |
| Deviation across tape, rear                 | ∆h2          | 1.0 max.                              |                                        |
| Portion to cut in case of defect            | L            | 11.0± <sup>0</sup> 1.0                |                                        |
| Hold down tape width                        | WO           | 11.5 min.                             |                                        |
| Hold down tape position                     | W2           | 1.5±1.5                               |                                        |
| Coating extension on lead                   | е            | 3.0 max.                              |                                        |
| Body thickness                              | Т            | Please refer to [ F                   | Part number list ].                    |

#### 7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.




- 2) Splicing of tape
  - a) When base tape is spliced
    - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)



No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
  - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)



- c) When both tape are spliced
  - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
  - •There should be no consecutive missing of more than three components.
  - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

#### EU RoHS RoHS指令への対応

This products of the following crresponds to EU RoHS 当製品は以下の欧州RoHSに対応しています。

#### (1) RoHS

EU RoHs 2011/65/EC compliance 2011/65/EC(改正RoHS指令)に対応

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

鉛:1000ppm以下 水銀:1000ppm以下 カドミウム:100ppm以下 六価クロム:1000ppm以下

ポリ臭化ビフェニル(PBB): 1000ppm以下

ポリ臭化ジフェニルエーテル(PBDE): 1000ppm以下

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Ceramic Disc Capacitors category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

5AU100JCECA 5AU220JCGCA 5AU560JCJCA DEF2CLH020CA3B NCD103M500Z5UF DEF2CLH030CJ3B 101GHR102K
NCD101K1KVY5FF NCD103Z50Z5VTRF NCD220K1KVSLF F471K39S3NR63K7R DEF2CLH040CN3A DEF2CLH080DA3B
564R3DF0T22 C1210N561J102T CD70ZU2GA102MYAKA 8903D0 90410-10 0838-040-X7R0-220K SL102101J060BAND5P
JN102MQ35FAAAAKPLP 0841-040-X5U0-103M ZU501103M090B20C6P SL102181J070HAND5P SL102151J070HAND5P
ZU501102M050B20C6P SL500180J040B20C2P ZU102103M100B20C0P F121K25S3NN63J5R F121K25S3NP63K7R
F121K25S3NR63K7R F122K47S3NP63K7R F151K29S3NR63K7R F222K47S3NN63J7R F681K43S3NR63K7R HVCC103Y6P152MEAX
F681K29S3NN63J5R S103Z43Y5VN6TJ5R TCC0805X7R472K501FT C947U392MZVDBA7317 CCK-22N CCK-2P2 CCK-4P7
RDE5C1H102J0ZAH03P CCK-470P 564R30GAD10KA 25YD22-R DHS4E4G141MCXB DEJF3E2472ZB3B DEA1X3F390JC3B