for EU RoHS Compliant

- · All the products in this catalog comply with EU RoHS.
- \cdot EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment".
- · For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

CONTENTS

Part Numbering 2 Selection Guide of Chip Monolithic Ceramic Capacitors | for Automotive GCM Series -5 6 Capacitance Table — Temperature Compensating Type — High Dielectric Constant Type — 10 Specifications and Test Methods 14 ● Package -22 23 ● ①Caution (Rating) — 27 33 Notice (Rating) – 34 Notice (Soldering and Mounting) 35 ● Notice (Others) — 38 2 Medium Voltage for Automotive GCM Series Low Dissipation Factor ———— 39 Specifications and Test Methods 41 3 Medium Voltage for Automotive GCJ Series Soft Termination Type — 45 Specifications and Test Methods 46 Medium Voltage Data (Typical Example) | -50 Package 51 53 Notice 61

Part Numbering

Chip Monolithic Ceramic Capacitors

GC M 18 8 R7 1H 102 K A37 D (Part Number) 0 2 3 4 5 6 7 8 9 0

●Product ID

2Series

Product ID	Code	Series
GC	J	Soft Termination Type Power-train, Safety Equipment
GC	М	Power-train, Safety Equipment

3Dimension (LXW)

Code	Dimension (LXW)	EIA
03	0.6×0.3mm	0201
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
21	2.0×1.25mm	0805
31	3.2×1.6mm	1206
32	3.2×2.5mm	1210
43	4.5×3.2mm	1812
55	5.7×5.0mm	2220

4Dimension (T)

Code	Dimension (T)
3	0.3mm
5	0.5mm
6	0.6mm
8	0.8mm
9	0.85mm
Α	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
М	1.15mm
N	1.35mm
Q	1.5mm
R	1.8mm
Х	Depends on individual standards.

5Temperature Characteristics

Temperature Characteristic Codes				Operating		
Code	Public STD Code		Reference Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Temperature Range
5C	C0G	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C
7U	U2J	EIA	25°C	25 to 125°C	-750±120ppm/°C	-55 to 125°C
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C

•Capacitance Change from each temperature

	•							
	Capacitance Change from 25°C (%)							
Murata Code	-55	5°C	-30	0°C	-10°C			
	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0.58	-0.24	0.40	-0.17	0.25	-0.11		
7U	8.78	5.04	6.04	3.47	3.84	2.21		

6Rated Voltage

Code	Rated Voltage
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
YA	DC35V
1H	DC50V
2A	DC100V
2E	DC250V
2J	DC630V

Expressed by three-digit alphanumerics. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two

If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

x.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

Ontinued from the preceding page. 8 Capacitance Tolerance

•					
Code	Capacitance Tolerance	TC	Series	Capac	itance Step
С	±0.25pF	COG	GCM	≦5pF	E12, 1pF Step *
D	±0.5pF	COG	GCM	6.0 to 9.0pF	E12, 1pF Step *
	±5%	COG	GCM	≧10pF	E12 Step
J		U2J	GCM	E1	2 Step
K	±10%	X7S, X7R	GCJ/GCM	E6 Step	
М	±20%	X7S, X7R	GCM	E6 Step	

^{*} E24 series is also available.

9Individual Specification Code Expressed by three figures.

Package

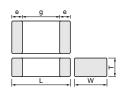
Code	Package
L	ø180mm Embossed Taping
D	ø180mm Paper Taping
K	ø330mm Embossed Taping
J	ø330mm Paper Taping
В	Bulk
С	Bulk Case

Selection Guide of Chip Monolithic Ceramic Capacitors

	Function	Type	Series
	Decoupling Smoothing	High Capacitance	GRM (X5R, X7R, Y5V etc.) 68pF-100μF
	Decoupling, Smoothing Array (2 or 4 Elements) Frequency Control/Tuning, Impedance Matching Low Inductance (Reverse Geometry) Low Inductance (Multi Termination) Low ESR (50V to 500V) ER Low ESR, Ultra Small Lowest ESR Optical Communications Medium Voltage High Frequency Snubber Medium Voltage LCD Backlight Inverter Medium Voltage Decoupling, Smoothing Medium Voltage Only for Camera Flash Circuit Medium Voltage Only for Safety Standard Certified AC Lines Noise Removal Automotive (Powertrain, Safety Equipment) Class 1 TC's Low Institute High Capacitance Low Dissipation Array (2 or 4 Elements) Low Inductance (Reverse Geometry) Low Inductance (Reverse Geometry) Low Inductance (Solv to 500V) ER 250V/630V/1kV/2kV/3.15kV LUM ESR, Ultra Small CUM Dissipation CUM Dissipation CUM Dissipation CUM Dissipation CUM Dissipation A 3.15kV Low Dissipation CUM Dissipation CUM Dissipation CUM Dissipation A 3.15kV Low Dissipation CUM Dissipation CUM Dissipation CUM Dissipation A 3.15kV Low Dissipation CUM Diss	GNM 10pF–2.2μF	
Decoupling, Smoothing Array (2 or 4 Elements) Frequency Control/Tuning, Impedance Matching High Speed Decoupling Low Inductance (Reverse Geometry) Low ESR (50V to 500V) Low ESR, Ultra Small Lowest ESR Optical Communications Medium Voltage High Frequency Snubber Medium Voltage LCD Backlight Inverter Medium Voltage Decoupling, Smoothing Medium Voltage Only for Camera Flash Circuit Medium Voltage Only for Information Devices AC Lines Noise Removal Automotive (Powertrain, Safety Equipment) Automotive (Powertrain, Safety Equipment) High Capacitance Aligh Capacitance High Capacitance Aligh Capacitance High Capacitance High Capacitance Aligh Capacitance Aligh Capacitance High Capacitance Aligh Capacitance Aligh Capacitance High Capacitance Aligh Capacitance Aligh Capacitance High Capacitance	Class 1 TCls	GRM (C0G) 0.1pF–0.1μF	
Г		Class FTC s	GRM (U2J etc.)
			LLL 2200pF–10μF
г	High Speed Decoupling		LLA/LLM (From 1GHz) 0.01μF–4.7μF
		Low ESR (50V to 500V)	ERB (1MHz to 1GHz) 0.5pF-1000pF
Н	High Frequency	Low ESR, Ultra Small	GJM (500MHz to 10GHz) 0.1pF-33pF
		Lowest ESR	GQM (500MHz to 10GHz) 0.1pF-100pF
	Optical Communications	Wire-Die-Bonding	GMA 100pF–0.47μF GMD 100pF–1μF
П-			GRM (C0G, U2J) 10pF-10000pF
ΙН			GRM (C0G) 5pF-47pF
- -			GRM (X7R) 220pF–1μF
-			GR7 10000pF–47000pF
			GR4 100pF-10000pF
г			Type GD 10pF-4700pF Type GF 10pF-4700pF
			Type GC 100pF-330pF Type GF 470pF-4700pF Type GB 10000pF-56000pF
г	AC Lines Noise Removal		GA2 470pF–0.1μF
		High Capacitance	GCM (X7R etc.) 100pF-47μF
Г		Class 1 TC's	GCM (C0G etc.) 1.0pF-56000pF
	Medium Voltage for Automotive	250V/630V Low Dissipation	GCM (U2J) 10pF-10000pF
	(Powertrain, Safety Equipment)	250V/630V Soft Termination Type	GCJ (X7R) 1000pF-0.47μF

Chip Monolithic Ceramic Capacitors for Automotive

for Automotive GCM Series


■ Features

- 1. The GCM series meet AEC-Q200 requirements.
- Higher resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GCM18/21/31 type only).
- 3. The operating temperature range of R7/C7/5C series: -55 to 125 degree C.
- 4. A wide selection of sizes is available, from miniature LxWxT:0.6x0.3x0.3mm to LxWxT: 3.2x2.5x2.5mm.
- 5. The GCM series is available in paper or embossed tape and reel packaging for automatic placement.
- 6. The GCM series is lead free product.

■ Applications

Automotive electronic equipment (Power-train, safety equipment)

Part Number	Dimensions (mm)							
rait Nullibel	Ĺ	W	T	е	g min.			
GCM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			
GCM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3			
GCM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5			
GCM216			0.6 ±0.1					
GCM219	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	0.2 to 0.7	0.7			
GCM21B			1.25 ±0.15					
GCM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1		1.5			
GCM31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8				
GCM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2					
GCM32N			1.35 ±0.15					
GCM32R	3.2 ±0.3	2.5 ±0.2	1.8 ±0.2	0.3 min.	1.0			
GCM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3 11111.	1.0			
GCM32E			2.5 ±0.2					

^{*} Bulk Case: 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)
The figure indicates typical specification.

Capacitance Table

Temperature Compensating Type C0G(5C)

6			Dime					
0								
LxW		1.0x0.5 (15)	1.6) (1		2.0x	1.25 (1)		(1.6
[mm]	<0201>	<0402>	<06	03>	<08	05>	(3 <12	06>
Rated Voltage	25	50	100		100		100	50
Capacitance [Vdc]		1	(2A)					
oupuditarios -	, ,	, ,	, ,	, ,	(=, .,	(• • •)	(=, ,	(/
1.0pF(1R0)	3	5	8	8				
2.0pF(2R0)	3	5	8	8				
3.0pF(3R0)	3	5	8	8				
4.0pF(4R0)	3	5	8	8				
5.0pF(5R0)	3	5	8	8				
6.0pF(6R0)	3	5	8	8				
7.0pF(7R0)	3	5	8	8				
8.0pF(8R0)	3	5	8	8				
9.0pF(9R0)	3	5	8	8				
10pF(100)	3	5	8	8				
12pF(120)	3	5	8	8				
15pF(150)	3	5	8	8				
18pF(180)	3	5	8	8				
22pF(220)	3	5	8	8				
27pF(270)	3	5	8	8				
33pF(330)	3	5	8	8				
39pF(390)	3	5	8	8				
47pF(470)	3	5	8	8				
56pF(560)	3	5	8	8				
68pF(680)	3	5	8	8				
82pF(820)	3	5	8	8			¦ 	
100pF(101)	3	5	8	8	6			
120pF(121)		5	8	8	6			
150pF(151)		5	8	8	6			
180pF(181)		5	8	8	6			
220pF(221)		5	8	8	6			
270pF(271)		5	8	8	6			
330pF(331)	-	5	8	8	6			
390pF(391)		5	8	8	6			
470pF(471)		5	8	8	6			
560pF(561)			8	8	6	6		
680pF(681)		! !	8	8	6	6		
820pF(821)		¦	8	8	6	6		
1000pF(102)		į	8	8	6	6		
1200pF(122)		i	8	8	6	6		
1500pF(152)		1	8	8	6	6		1
1800pF(182)		1		8	6	6	9	
2200pF(222)		1		8	6	6	9	
2700pF(272)	-	į		8	6	6	9	
3300pF(332)				8	6	6	9	
3900pF(392)	-	! !		8		6	9	
4700pF(472)	-					6	9	9
5600pF(562)						9	9	9
6800pF(682)	-					9	9	9
8200pF(822)		\ 			 	9	9	9
10000pF(103)						9	9	9
12000pF(123)		i				9		9
15000pF(153)		1				9		9
18000pF(183)		! !			1	В		9
22000pF(223)		!				В		9
27000pF(273)		i						9
33000pF(333)		 			! !			9
39000pF(393)								9
47000pF(473)								M
56000pF(563)		1			1			М

56000pF(**563**)

The part numbering code is shown in () and Unit is shown in []. <>: EIA [inch] Code

Capacitance Table

High Dielectric Constant Type X7R(R7)/X7S(C7)

																					6			ex.6	T D)imen	sion I	Part N	lumb	er Code
LxW	0.	6x0	.3		1.0x (1)	(0.5 5)			1.	6x0	.8				2.0	0x1.2	25				3	3.2x1	1.6				;	3.2x2	2.5	
[mm]	<((03) 0201	1>		<04	02>			<((18)	3>				<0	(21) 0805	>_				<	(31 :120) 6>_					(32 <121	0>_	
Rated Voltage																														6.3
		(1C)	(1 A)	(2A)	(1H)	(1E)	(1C)	(2A)	(1H)	(1E)	(1C)	(0 J)	(2A)	(1H)	(YA)	(1E)	(1C)	(1A) (0 J)	(2A)(1H) (1E) (1	IC)((1 A)	(0J)	(2A)	(1H) (1E)(1 C)(1	(0J)
100pF(101)	3							i ! !					i !						i							i ! !				
150pF(151)	3							1 1 1					1						1							1 1 1				
220pF(221)	3			5	5			! !					!						!							 				
330pF(331)	3			5	5																					1				
470pF(471)	3			5	5																									
680pF(681)	3			5	5														 							i ! :				
1000pF(102)	3			5	5			8	8										1							1 1 1				
1500pF(152)	3			5	5			8	8				1 1 1						1							1 1 1				
2200pF(222)		3		5	5			8	8										1							 				
3300pF(332)		3		5	5			8	8																	 				
4700pF(472)			3	5	5			8	8																	!				
6800pF(682)			3		5		,	8	8	l			6	L					i							i 				
10000pF(103)			3		5	5		8	8				6						1							1 1 1				
15000pF(153)					5	5		8	8				6						1							1				
22000pF(223)					5	5		8	8				6						1							-				
33000pF(333)						5	5		8	8			9	9					!							 				
47000pF(473)						5	5		8	8			В	В												 				
68000pF(683)							5		8	8			В	В																
0.10μF(104)							5	8	8	8	8		В	В						9						i i i				
0.15μF(154)								 	8	8				В		В				M						1 1 1				
0.22μF(224)									8	8		_		В		В				M						1 1 1				
0.33μF(334)											8			9		В			!		M									
0.47μF(474)								! !		8	8			В		9					M									
0.68μF(684)								į			8				В	В	9		i		M					; ! !				
1.0μF(105)								 		8	8				В	В	9				M						E			
2.2μF(225)								1 1 1				8				В	В	В	1		С	М				D				
4.7μF(475)			:					1]				В	В	1	_		С	С				Е	D		
10μF(106)																			В				С	С				Е	D	
22μF(226)								i					į												С				Е	E
47μF(476)								- - 					! !						i							1 1				E

The part numbering code is shown in () and Unit is shown in []. <>: EIA [inch] Code

Temperature Compensating Type

L x W [mm]		0.6x0.3(03)<0201>	1.0x0.5(15)<0402>	1.6x0.8(1	8)<0603>
Rated Volt. [Vdc]	25(1E)	50(1H)	100(2A)	50(1H)
TC			COC	G(5C)	
Capacitance	Tolerance		Part N	lumber	
1.0pF(1R0)	±0.25pF(C)	GCM0335C1E1R0CD03D	GCM1555C1H1R0CZ13D	GCM1885C2A1R0CZ13D	GCM1885C1H1R0CZ13D
2.0pF(2R0)	±0.25pF(C)	GCM0335C1E2R0CD03D	GCM1555C1H2R0CZ13D	GCM1885C2A2R0CZ13D	GCM1885C1H2R0CZ13D
3.0pF(3R0)	±0.25pF(C)	GCM0335C1E3R0CD03D	GCM1555C1H3R0CZ13D	GCM1885C2A3R0CZ13D	GCM1885C1H3R0CZ13D
4.0pF(4R0)	±0.25pF(C)	GCM0335C1E4R0CD03D	GCM1555C1H4R0CZ13D	GCM1885C2A4R0CZ13D	GCM1885C1H4R0CZ13D
5.0pF(5R0)	±0.25pF(C)	GCM0335C1E5R0CD03D	GCM1555C1H5R0CZ13D	GCM1885C2A5R0CZ13D	GCM1885C1H5R0CZ13D
6.0pF(6R0)	±0.5pF(D)	GCM0335C1E6R0DD03D	GCM1555C1H6R0DZ13D	GCM1885C2A6R0DZ13D	GCM1885C1H6R0DZ13D
7.0pF(7R0)	±0.5pF(D)	GCM0335C1E7R0DD03D	GCM1555C1H7R0DZ13D	GCM1885C2A7R0DZ13D	GCM1885C1H7R0DZ13D
8.0pF(8R0)	±0.5pF(D)	GCM0335C1E8R0DD03D	GCM1555C1H8R0DZ13D	GCM1885C2A8R0DZ13D	GCM1885C1H8R0DZ13D
9.0pF(9R0)	±0.5pF(D)	GCM0335C1E9R0DD03D	GCM1555C1H9R0DZ13D	GCM1885C2A9R0DZ13D	GCM1885C1H9R0DZ13D
10pF(100)	±5%(J)	GCM0335C1E100JD03D	GCM1555C1H100JZ13D	GCM1885C2A100JA16D	GCM1885C1H100JA16D
12pF(120)	±5%(J)	GCM0335C1E120JD03D	GCM1555C1H120JZ13D	GCM1885C2A120JA16D	GCM1885C1H120JA16D
15pF(150)	±5%(J)	GCM0335C1E150JD03D	GCM1555C1H150JZ13D	GCM1885C2A150JA16D	GCM1885C1H150JA16D
18pF(180)	±5%(J)	GCM0335C1E180JD03D	GCM1555C1H180JZ13D	GCM1885C2A180JA16D	GCM1885C1H180JA16D
22pF(220)	±5%(J)	GCM0335C1E220JD03D	GCM1555C1H220JZ13D	GCM1885C2A220JA16D	GCM1885C1H220JA16D
27pF(270)	±5%(J)	GCM0335C1E270JD03D	GCM1555C1H270JZ13D	GCM1885C2A270JA16D	GCM1885C1H270JA16D
33pF(330)	±5%(J)	GCM0335C1E330JD03D	GCM1555C1H330JZ13D	GCM1885C2A330JA16D	GCM1885C1H330JA16D
39pF(390)	±5%(J)	GCM0335C1E390JD03D	GCM1555C1H390JZ13D	GCM1885C2A390JA16D	GCM1885C1H390JA16D
47pF(470)	±5%(J)	GCM0335C1E470JD03D	GCM1555C1H470JZ13D	GCM1885C2A470JA16D	GCM1885C1H470JA16D
56pF(560)	±5%(J)	GCM0335C1E560JD03D	GCM1555C1H560JZ13D	GCM1885C2A560JA16D	GCM1885C1H560JA16D
68pF(680)	±5%(J)	GCM0335C1E680JD03D	GCM1555C1H680JZ13D	GCM1885C2A680JA16D	GCM1885C1H680JA16D
82pF(820)	±5%(J)	GCM0335C1E820JD03D	GCM1555C1H820JZ13D	GCM1885C2A820JA16D	GCM1885C1H820JA16D
100pF(101)	±5%(J)	GCM0335C1E101JD03D	GCM1555C1H101JZ13D	GCM1885C2A101JA16D	GCM1885C1H101JA16D
120pF(121)	±5%(J)		GCM1555C1H121JA16D	GCM1885C2A121JA16D	GCM1885C1H121JA16D
150pF(151)	±5%(J)		GCM1555C1H151JA16D	GCM1885C2A151JA16D	GCM1885C1H151JA16D
180pF(181)	±5%(J)		GCM1555C1H181JA16D	GCM1885C2A181JA16D	GCM1885C1H181JA16D
220pF(221)	±5%(J)		GCM1555C1H221JA16D	GCM1885C2A221JA16D	GCM1885C1H221JA16D
270pF(271)	±5%(J)		GCM1555C1H271JA16D	GCM1885C2A271JA16D	GCM1885C1H271JA16D
330pF(331)	±5%(J)		GCM1555C1H331JA16D	GCM1885C2A331JA16D	GCM1885C1H331JA16D
390pF(391)	±5%(J)		GCM1555C1H391JA16D	GCM1885C2A391JA16D	GCM1885C1H391JA16D
470pF(471)	±5%(J)		GCM1555C1H471JA16D	GCM1885C2A471JA16D	GCM1885C1H471JA16D
560pF(561)	±5%(J)			GCM1885C2A561JA16D	GCM1885C1H561JA16D
680pF(681)	±5%(J)			GCM1885C2A681JA16D	GCM1885C1H681JA16D
820pF(821)	±5%(J)			GCM1885C2A821JA16D	GCM1885C1H821JA16D
1000pF(102)	±5%(J)			GCM1885C2A102JA16D	GCM1885C1H102JA16D
1200pF(122)	±5%(J)			GCM1885C2A122JA16D	GCM1885C1H122JA16D
1500pF(152)	±5%(J)			GCM1885C2A152JA16D	GCM1885C1H152JA16D
1800pF(182)	±5%(J)				GCM1885C1H182JA16D
2200pF(222)	±5%(J)				GCM1885C1H222JA16D
2700pF(272)	±5%(J)				GCM1885C1H272JA16D
3300pF(332)	±5%(J)				GCM1885C1H332JA16D
3900pF(392)	±5%(J)				GCM1885C1H392JA16D

(Part Number) GC M 03 3 5C 1E 1R0 C D03 D Product ID Series Temperature Characteristics 3 Capacitance Tolerance

3Dimension (LXW) 6 Rated Voltage
 9 Individual Specification Code
 0 Package

4Dimension (T)

Temperature Compensating Type

L x W [mm]		2.0x1.25(2	21)<0805>	3.2x1.6(3	1)<1206>
Rated Volt. [Vdc	:]	100(2A)	50(1H)	100(2A)	50(1H)
TC			COG	G(5C)	
Capacitance	Tolerance		Part N	lumber	
100pF(101)	±5%(J)	GCM2165C2A101JA16D			
120pF(121)	±5%(J)	GCM2165C2A121JA16D			
150pF(151)	±5%(J)	GCM2165C2A151JA16D			
180pF(181)	±5%(J)	GCM2165C2A181JA16D			
220pF(221)	±5%(J)	GCM2165C2A221JA16D			
270pF(271)	±5%(J)	GCM2165C2A271JA16D			
330pF(331)	±5%(J)	GCM2165C2A331JA16D			
390pF(391)	±5%(J)	GCM2165C2A391JA16D			
470pF(471)	±5%(J)	GCM2165C2A471JA16D			
560pF(561)	±5%(J)	GCM2165C2A561JA16D	GCM2165C1H561JA16D		
680pF(681)	±5%(J)	GCM2165C2A681JA16D	GCM2165C1H681JA16D		
820pF(821)	±5%(J)	GCM2165C2A821JA16D	GCM2165C1H821JA16D		
1000pF(102)	±5%(J)	GCM2165C2A102JA16D	GCM2165C1H102JA16D		
1200pF(122)	±5%(J)	GCM2165C2A122JA16D	GCM2165C1H122JA16D		
1500pF(152)	±5%(J)	GCM2165C2A152JA16D	GCM2165C1H152JA16D		
1800pF(182)	±5%(J)	GCM2165C2A182JA16D	GCM2165C1H182JA16D	GCM3195C2A182JA16D	
2200pF(222)	±5%(J)	GCM2165C2A222JA16D	GCM2165C1H222JA16D	GCM3195C2A222JA16D	
2700pF(272)	±5%(J)	GCM2165C2A272JA16D	GCM2165C1H272JA16D	GCM3195C2A272JA16D	
3300pF(332)	±5%(J)	GCM2165C2A332JA16D	GCM2165C1H332JA16D	GCM3195C2A332JA16D	
3900pF(392)	±5%(J)		GCM2165C1H392JA16D	GCM3195C2A392JA16D	
4700pF(472)	±5%(J)		GCM2165C1H472JA16D	GCM3195C2A472JA16D	GCM3195C1H472JA16D
5600pF(562)	±5%(J)		GCM2195C1H562JA16D	GCM3195C2A562JA16D	GCM3195C1H562JA16D
6800pF(682)	±5%(J)		GCM2195C1H682JA16D	GCM3195C2A682JA16D	GCM3195C1H682JA16D
8200pF(822)	±5%(J)		GCM2195C1H822JA16D	GCM3195C2A822JA16D	GCM3195C1H822JA16D
10000pF(103)	±5%(J)		GCM2195C1H103JA16D	GCM3195C2A103JA16D	GCM3195C1H103JA16D
12000pF(123)	±5%(J)		GCM2195C1H123JA16D		GCM3195C1H123JA16D
15000pF(153)	±5%(J)		GCM2195C1H153JA16D		GCM3195C1H153JA16D
18000pF(183)	±5%(J)		GCM21B5C1H183JA16L		GCM3195C1H183JA16D
22000pF(223)	±5%(J)		GCM21B5C1H223JA16L		GCM3195C1H223JA16D
27000pF(273)	±5%(J)				GCM3195C1H273JA16D
33000pF(333)	±5%(J)				GCM3195C1H333JA16D
39000pF(393)	±5%(J)				GCM3195C1H393JA16D
47000pF(473)	±5%(J)				GCM31M5C1H473JA16L
56000pF(563)	±5%(J)				GCM31M5C1H563JA16L

1 \\ []			0 (v0 2/02) .0201			
L x W [mm]			0.6x0.3(03)<0201>			
Rated Volt. [Vdc]	25(1E)	16(1C)	10(1A)		
TC			X7R(R7)			
Capacitance	Tolerance					
100pF(101)	±10%(K)	GCM033R71E101KA03D				
150pF(151)	±10%(K)	GCM033R71E151KA03D				
220pF(221)	±10%(K)	GCM033R71E221KA03D				
330pF(331)	±10%(K)	GCM033R71E331KA03D				
470pF(471)	±10%(K)	GCM033R71E471KA03D				
680pF(681)	±10%(K)	GCM033R71E681KA03D				
1000pF(102)	±10%(K)	GCM033R71E102KA03D				
1500pF(152)	±10%(K)	GCM033R71E152KA03D				
2200pF(222)	±10%(K)		GCM033R71C222KA55D			
3300pF(332)	±10%(K)		GCM033R71C332KA55D			
4700pF(472)	±10%(K)			GCM033R71A472KA03D		
6800pF(682)	±10%(K)			GCM033R71A682KA03D		
10000pF(103)	±10%(K)			GCM033R71A103KA03D		

L x W [mm]			1.0x0.5(15)<0402>							
Rated Volt. [Vdc]	100(2A)	50(1H)	25(1E)	16(1C)					
TC			X7R(R7)							
Capacitance	Tolerance		Part N	umber						
220pF(221)	±10%(K)	GCM155R72A221KA37D	GCM155R71H221KA37D							
330pF(331)	±10%(K)	GCM155R72A331KA37D	GCM155R71H331KA37D							
470pF(471)	±10%(K)	GCM155R72A471KA37D	GCM155R71H471KA37D							
680pF(681)	±10%(K)	GCM155R72A681KA37D	GCM155R71H681KA37D							
1000pF(102)	±10%(K)	GCM155R72A102KA37D	GCM155R71H102KA37D							
1500pF(152)	±10%(K)	GCM155R72A152KA37D	GCM155R71H152KA37D							
2200pF(222)	±10%(K)	GCM155R72A222KA37D	GCM155R71H222KA37D							
3300pF(332)	±10%(K)	GCM155R72A332KA37D	GCM155R71H332KA37D							
4700pF(472)	±10%(K)	GCM155R72A472KA37D	GCM155R71H472KA37D							
6800pF(682)	±10%(K)		GCM155R71H682KA55D							
10000pF(103)	±10%(K)		GCM155R71H103KA55D	GCM155R71E103KA37D						
15000pF(153)	±10%(K)		GCM155R71H153KA55D	GCM155R71E153KA55D						
22000pF(223)	±10%(K)		GCM155R71H223KA55D	GCM155R71E223KA55D						
33000pF(333)	±10%(K)			GCM155R71E333KA55D	GCM155R71C333KA37D					
47000pF(473)	±10%(K)			GCM155R71E473KA55D	GCM155R71C473KA37D					
68000pF(683)	±10%(K)				GCM155R71C683KA55D					
0.10μF(104)	±10%(K)				GCM155R71C104KA55D					

3Dimension (LXW) 6 Rated Voltage9 Individual Specification Code0 Package

4 Dimension (T)

L x W [mm]			1.6x0.8(1	8)<0603>					
Rated Volt. [Vdc		100(2A)	50(1H)	25(1E)	16(1C)				
TC			X7R(R7)/X7S(C7)						
Capacitance	Tolerance		Part Number						
1000pF(102)	±10%(K)	GCM188R72A102KA37D	GCM188R71H102KA37D						
1500pF(152)	±10%(K)	GCM188R72A152KA37D	GCM188R71H152KA37D						
2200pF(222)	±10%(K)	GCM188R72A222KA37D	GCM188R71H222KA37D						
3300pF(332)	±10%(K)	GCM188R72A332KA37D	GCM188R71H332KA37D						
4700pF(472)	±10%(K)	GCM188R72A472KA37D	GCM188R71H472KA37D						
6800pF(682)	±10%(K)	GCM188R72A682KA37D	GCM188R71H682KA37D						
10000pF(103)	±10%(K)	GCM188R72A103KA37D	GCM188R71H103KA37D						
15000pF(153)	±10%(K)	GCM188R72A153KA37D	GCM188R71H153KA37D						
22000pF(223)	±10%(K)	GCM188R72A223KA37D	GCM188R71H223KA37D						
33000pF(333)	±10%(K)		GCM188R71H333KA55D	GCM188R71E333KA37D					
47000pF(473)	±10%(K)		GCM188R71H473KA55D	GCM188R71E473KA37D					
68000pF(683)	±10%(K)		GCM188R71H683KA57D	GCM188R71E683KA57D					
0.10μF(104)	±10%(K)	GCM188R72A104KA64D	GCM188R71H104KA57D	GCM188R71E104KA57D	GCM188R71C104KA37D				
0.15μF(154)	±10%(K)		GCM188R71H154KA64D	GCM188R71E154KA37D					
0.22μF(224)	±10%(K)		GCM188R71H224KA64D	GCM188R71E224KA55D					
0.33μF(334)	±10%(K)				GCM188R71C334KA37D				
0.47μF(474)	±10%(K)			GCM188R71E474KA64D	GCM188R71C474KA55D				
1.0μF(105)	±10%(K)			GCM188R71E105KA64D	GCM188R71C105KA64D				

L x W [mm]		1.6x0.8(18)<0603>		
Rated Volt. [Vdc	l	6.3 (0J)		
TC		X7R(R7)		
Capacitance Tolerance		Part Number		
2.2μF(225)	±10%(K)	GCM188R70J225KE22D		

The part numbering code is shown in () and Unit is shown in []. <>: EIA [inch] Code

L x W [mm]			2.0x1.25(2	21)<0805>	
Rated Volt. [Vdc]	100(2A)	50(1H)	35(YA)	25(1E)
TC			X7R	P(R7)	
Capacitance	Tolerance		Part N	lumber	
6800pF(682)	±10%(K)	GCM216R72A682KA37D			
10000pF(103)	±10%(K)	GCM216R72A103KA37D			
15000pF(153)	±10%(K)	GCM216R72A153KA37D			
22000pF(223)	±10%(K)	GCM216R72A223KA37D			
33000pF(333)	±10%(K)	GCM219R72A333KA37D	GCM219R71H333KA37D		
47000pF(473)	±10%(K)	GCM21BR72A473KA37L	GCM21BR71H473KA37L		
68000pF(683)	±10%(K)	GCM21BR72A683KA37L	GCM21BR71H683KA37L		
0.10μF(104)	±10%(K)	GCM21BR72A104KA37L	GCM21BR71H104KA37L		
0.15μF(154)	±10%(K)		GCM21BR71H154KA37L		GCM21BR71E154KA37L
0.22μF(224)	±10%(K)		GCM21BR71H224KA37L		GCM21BR71E224KA37L
0.33μF(334)	±10%(K)		GCM219R71H334KA55D		GCM21BR71E334KA37L
0.47μF(474)	±10%(K)		GCM21BR71H474KA55L		GCM219R71E474KA55D
0.68μF(684)	±10%(K)			GCM21BR7YA684KA55L	GCM21BR71E684KA55L
1.0μF(105)	±10%(K)			GCM21BR7YA105KA55L	GCM21BR71E105KA56L
2.2μF(225)	±10%(K)				GCM21BR71E225KA73L

L x W [mm]			2.0x1.25(21)<0805>		
Rated Volt. [Vdc]	16(1C)	6.3(0J)		
TC					
Capacitance	Tolerance	Part N			
0.68μF(684)	±10%(K)	GCM219R71C684KA37D			
1.0μF(105)	±10%(K)	GCM219R71C105KA37D			
2.2μF(225)	±10%(K)	GCM21BR71C225KA64L	GCM21BR71A225KA37L		
4.7μF(475)	±10%(K)	GCM21BR71C475KA73L	GCM21BC71A475KA73L		
10μF(106)	±10%(K)			GCM21BR70J106KE22L	

L x W [mm]	n] 3.2x1.6(31)<1206>							
Rated Volt. [Vdc]	100(2A)	50(1H)	25(1E)	16(1C)			
TC		X7R(R7)						
Capacitance	Tolerance		Part Number					
0.10μF(104)	±10%(K)	GCM319R72A104KA37D						
0.15μF(154)	±10%(K)	GCM31MR72A154KA37L						
0.22μF(224)	±10%(K)	GCM31MR72A224KA37L						
0.33μF(334)	±10%(K)		GCM31MR71H334KA37L					
0.47μF(474)	±10%(K)		GCM31MR71H474KA37L					
0.68μF(684)	±10%(K)		GCM31MR71H684KA55L					
1.0μF(105)	±10%(K)		GCM31MR71H105KA55L					
2.2μF(225)	±10%(K)		GCM31CR71H225KA55L	GCM31MR71E225KA57L				
4.7μF(475)	±10%(K)			GCM31CR71E475KA55L	GCM31CR71C475KA37L			
10μF(106)	±10%(K)				GCM31CR71C106KA64L			

L x W [mm]		3.2x1.6(31)<1206>			
Rated Volt. [Vdc		10(1A)	6.3(0J)		
TC		X7R(R7)			
Capacitance	Tolerance	Part N	umber		
10μF(106)	±10%(K)	GCM31CR71A106KA64L			
22μF(226)	±20%(M)		GCM31CR70J226ME23L		

The part numbering code is shown in () and Unit is shown in []. <>: EIA [inch] Code

(Part Number) GC M 21 6 R7 2A 682 K A37 D Temperature Characteristics 3 Capacitance Tolerance

3Dimension (LXW) 6 Rated Voltage 7 Capacitance
9 Individual Specification Code Package

4Dimension (T)

Packaging Code in Part Number is a code shows STD 180mm Reel Taping.

L x W [mm]		3.2x2.5(32)<1210>					
Rated Volt. [Vdc	:]	100(2A)	50(1H)	25(1E)	16(1C)		
тс			X7R(R7)				
Capacitance	Tolerance		Part Number				
1.0μF(105)	±10%(K)		GCM32ER71H105KA37L				
2.2μF(225)	±10%(K)	GCM32DR72A225KA64L					
4.7μF(475)	±10%(K)		GCM32ER71H475KA55L	GCM32DR71E475KA55L			
10μF(106)	±10%(K)			GCM32ER71E106KA57L	GCM32DR71C106KA37L		
22μF(226)	±20%(M)				GCM32ER71C226ME19L		

L x W [mm]		3.2x2.5(3	2)<1210>	
Rated Volt. [Vdc]	10(1A) 6.3(0J)		
TC		X7R(R7)		
Capacitance	Tolerance	Part N	umber	
22μF(226)	±20%(M)	GCM32ER71A226ME12L		
47μF(476)	±20%(M)		GCM32ER70J476ME19L	

The part numbering code is shown in () and Unit is shown in []. <>: EIA [inch] Code

	AEC-Q200 o. Test Item		Specifi	cations				
No.			Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method			
1	Pre-and Po				-			
	High Tem Exposure		The measured and observed ch specifications in the following tal	•				
		Appearance	No marking defects					
2		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2			
		Q/D.F.	30pFmin.: Q≥1000 30pFmax.: Q≥400+20C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.03 max. W.V.: 16V: 0.05 max.	hours at room temperature, then measure.			
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1				
	Temperat Cycle	ure	The measured and observed ch specifications in the following ta	-	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (18). Perform the 1000 cycles			
		Appearance	No marking defects		according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Step 1 2 3 4			
3		Q/D.F.	30pFmin.: Q≧1000 30pFmax.: Q≥400+20C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.03 max. W.V.: 16V: 0.05 max.	Temp. (°C) -55+0/-3 ROUTH Temp. 125+3/-0 (ΔC/R7/C7) Temp. Time (min.) 15±3 1 15±3 1 • Initial measurement for high dielectric constant type			
	I.R.		More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	Perform a heat treatment at 150^{+0}_{-10} °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.			
4	Destructive Physical A		No defects or abnormalities		Per EIA-469			
	Moisture Resistance	e	The measured and observed ch specifications in the following ta	-	Apply the 24-hour heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.			
		Appearance	No marking defects		Let sit for 24±2 hours at room temperature, then measure.			
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	Humidity Humidity Humidity Humidity °C 90-98% 80-98% 90-98% 80-98% 90-98% 70 95 96 96 96 96 96 96 96 96 96 96 96 96 96			
5		Q/D.F.	30pFmin.: Q≥350 10pF and over, 30pF and below: Q≥275+½C 10pFmax.: Q≥200+10C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.03 max. W.V.: 16V: 0.05 max.	60 65 50 9 44 15 33 10 33 10 25			
		I.R.	$$^{\star}1$$ More than 10,000M Ω or 500 Ω · F (Whichever is smaller)		0 1 2 3 4 5 6 7 8 9 1011 12 1314 15 1617 18 19 20 21 22 23 24 → Hours			
	Biased Hu	umidity	The measured and observed ch specifications in the following ta	-				
		Appearance	No marking defects		Application and advantage of the Control of the Con			
6		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	Apply the rated voltage and 1.3+0.2/-0Vdc (add 6.8k Ω resistor) at 85±3°C and 80 to 85% humidity for 1000±12 hours. Remove and let sit for 24±2 hours at room temperature, then			
		Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+ ¹⁰ / ₃ C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.035 max. W.V.: 16V: 0.05 max.	measure. The charge/discharge current is less than 50mA.			
		I.R.	More than 1,000M Ω or $50\Omega \cdot F$ (Whichever is smaller)	*1				

^{*1:} The figure indicates typical specification. Please refer to individual specifications.

	No. AEC-Q200 Test Item		Specifi	cations				
No.			Temperature Compensating Type High Dielectric Type			AEC-Q200 Test Method		
	Operational Life		The measured and observed ch specifications in the following ta	•	ie			
		Appearance	No marking defects			Apply 200% of the rated voltage for 1000±12 hours at		
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%		125±3°C. Let sit for 24±2 hours at room temperature, then measure. *2 The charge/discharge current is less than 50mA.		
7		Q/D.F.	30pFmin.: Q≧350 10pF and over, 30pF and below: Q≥275+½C 10pFmax.: Q≥200+10C C: Nominal Capacitance (pF)	W.V.: 25Vmin.: 0.035 max. W.V.: 16V: 0.05 max.	*1	Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement. *2		
		I.R.	More than 1,000M Ω or $50\Omega \cdot F$ (Whichever is smaller)		*1			
8	External '	Visual	No defects or abnormalities			Visual inspection		
9	Physical Dimension		Within the specified dimensions			Using calipers		
		Appearance	No marking defects			Per MIL-STD-202 Method 215		
		Capacitance Change	Within the specified tolerance			Solvent 1: 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits		
10	Resistance to Solvents	Q/D.F.	30pFmin.: Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance (pF)	W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	*1	Solvent 2: Terpene defluxer Solvent 3: 42 parts (by volume) of water 1 part (by volume) of propylene glycol		
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	· F		monomethyl ether 1 part (by volume) of monoethanolamine		
		Appearance	No marking defects					
		Capacitance Change	Within the specified tolerance			Three shocks in each direction should be applied along 3		
11	Mechanical Shock	Q/D.F.	30pFmin.: Q≥1000 30pFmax.: Q≥400+20C C: Nominal Capacitance (pF)	W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	*1	mutually perpendicular axes of the test specimen (18 shocks). The specified test pulse should be Half-sine and should have a duration: 0.5ms, peak value: 1500g and velocity change: 4.7m/s.		
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F	*1			
		Appearance	No defects or abnormalities			Solder the capacitor to the test jig (glass epoxy board) in the		
		Capacitance Change	Within the specified tolerance			same manner and under the same conditions as (19). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
12	Vibration	Q/D.F.	30pFmin.: Q≥1000 30pFmax.: Q≥400+20C C: Nominal Capacitance (pF)	W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	*1	uniformly between the approximate limits of 10 and 2000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should be traversed in approximately 20 minutes. This motion should be		
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F	*1	applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).		

specifications in the following table.

Within the specified tolerance

C: Nominal Capacitance (pF)

No marking defects

30pFmin.: Q≥1000

30pFmax.: Q≥400+20C

Resistance to

Soldering Heat

13

Appearance

Capacitance

Change

Q/D.F.

I.R.

The measured and observed characteristics should satisfy the

Continued on the following page.

Immerse the capacitor in a eutectic solder solution at 260 $\pm5^{\circ}$ C for

10±1 seconds. Let sit at room temperature for 24±2 hours, then

• Initial measurement for high dielectric constant type Perform a heat treatment at 150^{+9}_{-10} °C for one hour and then let

sit for 24±2 hours at room temperature.

Perform the initial measurement.

measure.

W.V.: 25Vmin.: 0.025 max.

W.V.: 16V: 0.035 max.

More than 10,000M Ω or 500 Ω · F (Whichever is smaller)

^{*1:} The figure indicates typical specification. Please refer to individual specifications.
*2: Some of the parts are applicable in rated voltage x 150%. Please refer to individual specifications.

7	Continued fr	om the pred	eding page.					
No	AEC-Q200 Test Item		Specifi	cations	AFC	-Q200 Test Metho	.d	
No.	Test	Item	Temperature Compensating Type	1.25 4250 1551 11501150				
	Thermal :	Shock	The measured and observed characteristics should satisfy the specifications in the following table.		Fix the capacitor to the supporting jig in the same manner and under the same conditions as (18). Perform the 300 cycles			
		Appearance	No marking defects		according to the two head (Maximum transfer time		•	
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	room temperature, then Step 1	,	2	
14		Q/D.F.	30pF min.: Q≧1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	Temp. (°C) -55+0 Time (min.) 15±3	3 1	(5C, C7, R7) 15±3	
	I.R.		More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	Perform a heat treatment let sit for 24±2 hours at	 Initial measurement for high dielectric constant type Perform a heat treatment at 150[±]O₀°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. 		
		Appearance	No marking defects					
		Capacitance Change	Within the specified tolerance					
15	ESD	Q/D.F.	30pF min.: Q≧1000 30pF max.: Q≧400+20C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	Per AEC-Q200-002			
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1				
16	5 Solderability		95% of the terminations is to be continuously.	soldered evenly and	 (a) Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. (b) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. 			
					(c) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 120 ±5 seconds at 260±5°C.			
		Appearance	No defects or abnormalities		Visual inspection.			
		Capacitance Change	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 25°C at the frequency and voltage shown in the table. (1) Temperature Compensating Type			
					Capacitance	Frequency	Voltage	
			00.5 : 00.:	*1	C≦1000pF	1±0.1MHz	0.5 to 5Vrms	
		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C	W.V.: 25V min.: 0.025 max.	C>1000pF	1±0.1kHz	1±0.2Vrms	
		Q/D	C: Nominal Capacitance (pF)	W.V.: 16V: 0.035 max	(2) High Dielectric Type Capacitance	Frequency	Voltage	
	Electrical				C≦10μF	1±0.1kHz	1±0.2Vrms	
17	Characteri-				C>10μF	120±24Hz	0.5±0.1Vrms	
	zation	I.R.	25°C More than 100,000M Ω or 1,000 Ω · F (Whichever is smaller) Max. Operating Temperature125°C More than 10,000M Ω or 100 Ω · F (Whichever is smaller)	*1 25°C More than 10,000M Ω or 500 Ω · F (Whichever is smaller) Max. Operating Temperature…125°C More than 1,000M Ω or 10 Ω · F (Whichever is smaller)	The insulation resistanc not exceeding the rated minutes of charging.		-	
		Dielectric Strength	(Whichever is smaller) No failure		No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			

 $^{^{\}star}1:$ The figure indicates typical specification. Please refer to individual specifications.

ì						
	$ \mathcal{M} $	Continued	from	the	preceding	page.

\overline{A}	Continued fr	om the prec	eding page.					
No.	AEC-		Specifi	cations	AEC-Q200 Test Method			
140.	Test	Item	Temperature Compensating Type	High Dielectric Type	ALO QZ		cst wethou	
	Appearance		No marking defects	Solder the capacitor on the test jig (glass epoxy board) shown in			board) shown in	
		Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Within ±10.0%	Fig. 1 using a eutectic solder. Then apply a force in the dire shown in Fig. 2 for 5±1sec. The soldering should be done be reflow method and should be conducted with care so that the soldering should be conducted with care so that the soldering should be conducted with care so that the soldering should be conducted with care so that the soldering should be conducted with care soldering should be conduct			d be done by the
		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C	*1 W.V.: 25Vmin.: 0.025 max.	soldering is uniform and free of defects such as heat shock.			
			C: Nominal Capacitance (pF)	W.V.: 16V: 0.035 max.	Type GCM03	0.3	0.9	0.3
					GCM15 GCM18 GCM21	0.5 0.6 0.8	1.5 2.2 3.0	0.6 0.9 1.3
18	Board Flex	I.R.	*1 More than 10,000M Ω or 500 Ω · F (Whichever is smaller)	Ç	GCM31 GCM32	2.0 2.0	4.4 4.4 Pressunzing speed: 1.0mm/s Pressurize	1.7 2.6 (in mm)
			(willchever is smaller)	t: 1.6mm (GCM03/15: 0.8mm) Fig. 1	C:	apacitance meter	Flexure: ≤2 (High Dielectric Flexure: ≤3 (Temperature Compensating	
		Appearance	No marking defects		Solder the capacito			board) shown in
		Capacitance Change	Within the specified tolerance		Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 3 using a eutectic solder. Then apply *18N force in parallel with the test jig for 60sec.			force in parallel
		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock *2N (GCM03/15)			
19	Terminal Strength	l.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	*1 F	Type GCM03 GCM15 GCM18 GCM21 GCM31	a 0.3 0.4 1.0 1.2 2.2 2.2	b 0.9 1.5 3.0 4.0 5.0 5.0 5.0 Solder resi	trode or
20	0 Beam Load Test		The chip endure following force. < Chip L dimension: 2.5mm max. > Chip thickness > 0.5mm rank: 20N Chip thickness ≤ 0.5mm rank: 8N < Chip L dimension: 3.2mm min. > Chip thickness < 1.25mm rank: 15N Chip thickness ≥ 1.25mm rank: 54.5N			mm max. > e Stress Load: mm min. > e Stress Load: Fig. 4		Fig. 4.

^{*1:} The figure indicates typical specification. Please refer to individual specifications.

	Continued fr	om the prec	eding page.			
No.	AEC-	Q200	Specifi	cations	AFO COOR To A Markey I	
INO.	Test Item		Temperature Compensating Type High Dielectric Type		AEC-Q200 Test Method	
		Capacitance Change	Within the specified tolerance (Table A)	C7: Within ±22% (-55°C to +125°C) R7: Within ±15% (-55°C to +125°C)	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance	
		Temperature Coefficient	Within the specified tolerance (Table A)		measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5 (ΔC: +25°C to +125°C: other temp. coeffs.: +25°C to +85°C) the capacitance	
21	Capacitance Temperature Character- istics	Capacitance Drift	Within ±0.2% or ±0.05 pF (Whichever is larger) * Do not apply to 1X/25V		should be within the specified tolerance for the temperature coefficient and capacitance change as shown in Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. Step	
					should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	

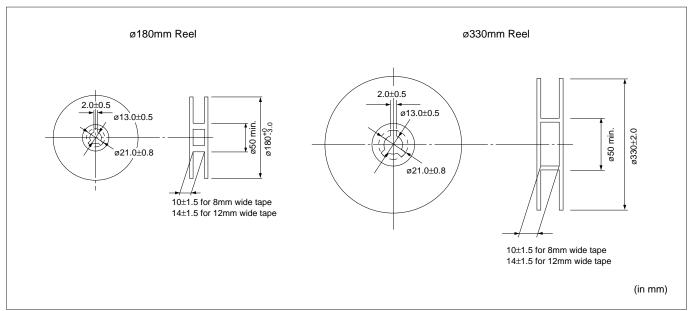
^{*1:} The figure indicates typical specification. Please refer to individual specifications.

Table A

			Capacitance Change from 25°C (%)					
Char.	Nominal Values (ppm/°C) Note1	-55		-30		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

Note 1: Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for 5C).

Package

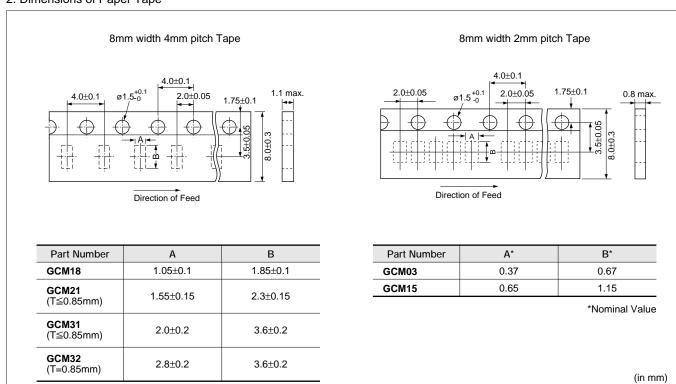

■ Minimum Quantity Guide

<u> </u>	Dimensions (mm)			Quantity (pcs.)						
Part Number	Dim	Difficusions (min)		ø180m	nm reel	ø330mm reel		Delle Con-	Delle Desi	
Part Number	L	W	Т	Paper Tape Packaging Code: D	Embossed Tape Packaging Code: L	Paper Tape Packaging Code: J	Embossed Tape Packaging Code: K	Bulk Case Packaging Code: C	Bulk Bag Packaging Code: B	
GCM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000	
GCM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000	
GCM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000 ¹⁾	1,000	
		0 1.25	0.6	4,000	-	10,000	-	10,000	1,000	
GCM21	2.0		0.85	4,000	-	10,000	-	-	1,000	
			1.25	-	3,000	-	10,000	5,000 ¹⁾	1,000	
			0.85	4,000	-	10,000	-	-	1,000	
GCM31	3.2	1.6	1.15	-	3,000	-	10,000	-	1,000	
			1.6	-	2,000	-	6,000	-	1,000	
			1.15	-	3,000	-	10,000	-	1,000	
CCM22		2.5	1.35	-	2,000	-	8,000	-	1,000	
GCM32	3.2	2 2.5	1.6	-	2,000	-	6,000	-	1,000	
			1.8/2.0/2.5	-	1,000	-	4,000	-	1,000	

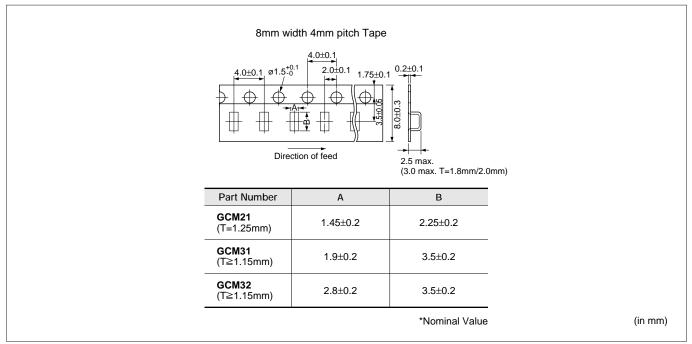
¹⁾ There are parts number without bulk case.

■ Tape Carrier Packaging

1. Dimensions of Reel



Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$


Package

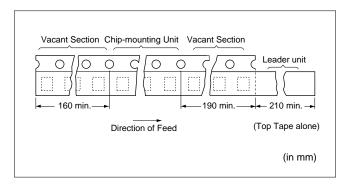
Continued from the preceding page.

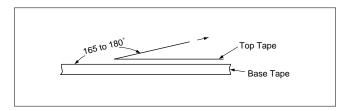
2. Dimensions of Paper Tape

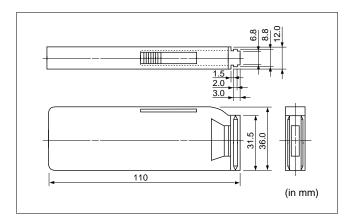
3. Dimensions of Embossed Tape

Package

Continued from the preceding page.


4. Taping Method


- (1) Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- (2) Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- (3) The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- (4) Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- (5) The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- (6) Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- (7) Peeling off force: 0.1 to $0.6N^*$ in the direction shown below.


*GCM03: 0.05 to 0.5N

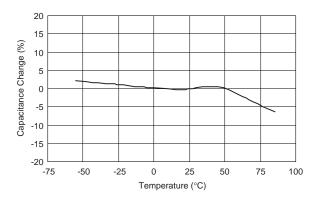
■ Dimensions of Bulk Case Packaging

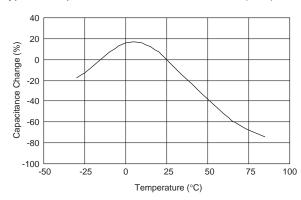
The bulk case uses antistatic materials. Please contact Murata for details.

sales representatives or product engineers before ordering.

*This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

■ Storage and Operation condition

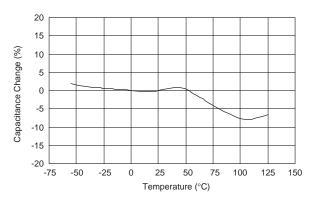

- 1. The performance of chip monolithic ceramic capacitors may be affected by the storage conditions.
 - 1-1. Store capacitors in the following conditions: Temperature of +5°C to +40°C and a Relative Humidity of 20% to 70%.
 - (1) Sunlight, dust, rapid temperature changes, corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance. Please use product within six months of receipt.
 - (2) Please confirm solderability before using after six months. Store the capacitors without opening the original bag. Even if the storage period is short, do not exceed the specified atmospheric conditions.
- 1-2. Corrosive gas can react with the termination (external) electrodes or lead wires of capacitors, and result in poor solderability. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas, etc.).
- 1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.


■ Rating

- 1. Temperature Dependent Characteristics
- 1. The electrical characteristics of the capacitor can change with temperature.
 - 1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes.
 - The following actions are recommended in order to insure suitable capacitance values.
 - (1) Select a suitable capacitance for the operating temperature range.

Typical Temperature Characteristics Char. R6(X5R)

Typical Temperature Characteristics Char. F5(Y5V)



- 2. Measurement of Capacitance
- 1. Measure capacitance with the voltage and the frequency specified in the product specifications.
 - 1-1. The output voltage of the measuring equipment may decrease when capacitance is high occasionally. Please confirm whether a prescribed measured voltage is impressed to the capacitor.
 - 1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

(2) The capacitance may change within the rated temperature.

When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions.

Typical Temperature Characteristics Char. R7(X7R)

⚠Caution (Rating)

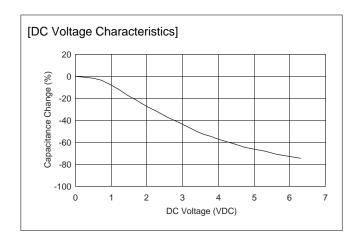
- Continued from the preceding page.
- 3. Applied Voltage
- 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called-out in the specifications.
 - 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
 - (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage.
 - When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
 - (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

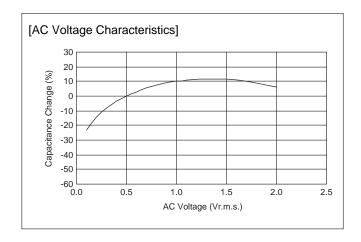
Typical Voltage Applied to the DC Capacitor

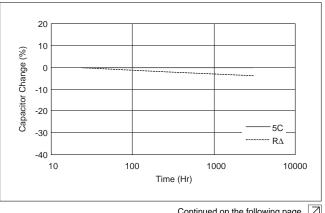
DC Voltage	DC Voltage+AC	AC Voltage	Pulse Voltage
E	E	E 0	E

(E: Maximum possible applied voltage.)

1-2. Influence of overvoltage

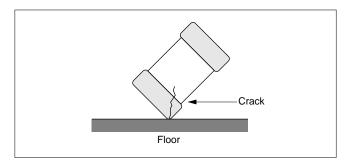

Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers . The time duration until breakdown depends on the applied voltage and the ambient temperature.


- 4. Applied Voltage and Self-heating Temperature
- 1. When the capacitor is used in a high-frequency voltage, pulse voltage, application, be sure to take into account self-heating may be caused by resistant factors of the capacitor.
 - 1-1. The load should be contained to the level such that when measuring at atmospheric temperature of 25°C, the product's self-heating remains below 20°C and surface temperature of the capacitor in the actual circuit remains within the maximum operating temperature.


- Continued from the preceding page.
- 5. DC Voltage and AC Voltage Characteristic
- 1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.
 - 1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure)
 - Please confirm the following in order to secure the capacitance.
 - (1) Whether the capacitance change caused by the applied voltage is within the range allowed or not.
 - (2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases. Even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions.
- 2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

- 6. Capacitance Aging
- 1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with passage of time.

When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions.

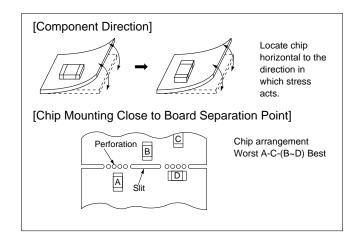



∴Caution (Rating)

Continued from the preceding page.

7. Vibration and Shock

- 1. The capacitors mechanical actress (vibration and shock) shall be specified for the use environment. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance. Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals.
- 2. Mechanical shock due to falling may cause damage or a crack in the dielectric material of the capacitor. Do not use a fallen capacitor because the quality and reliability may be deteriorated.
- 3. When printed circuit boards are piled up or handled, the corners of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor.

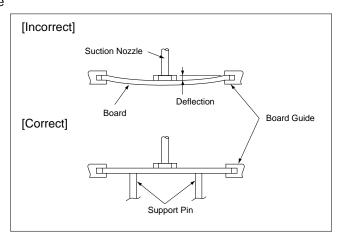


Caution (Soldering and Mounting)

■ Soldering and Mounting

1. Mounting Position

- 1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board.
 - 1-1. Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.



2. Information before Mounting

- 1. Do not re-use capacitors that were removed from the equipment.
- 2. Confirm capacitance characteristics under actual applied voltage.
- 3. Confirm the mechanical stress under actual process and equipment use.
- 4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly.
- 5. Prior to use, confirm the Solderability for the capacitors that were in long-term storage.
- 6. Prior to measuring capacitance, carry out a heat treatment for capacitors that were in long-term storage.
- 7. The use of Sn-Zn based solder will deteriorate the reliability of the MLCC.
 - Please contact our sales representative or product engineers on the use of Sn-Zn based solder in advance.

3. Maintenance of the Mounting (pick and place) Machine

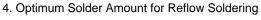
- 1. Make sure that the following excessive forces are not applied to the capacitors.
 - 1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking. Please take into account the following precautions and recommendations for use in your process.
 - (1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board.
 - (2) Adjust the nozzle pressure within a static load of 1N to 3N during mounting.
- 2. Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

⚠Caution (Soldering and Mounting)

Continued from the preceding page.

4-1. Reflow Soldering

- 1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep the temperature differential between the solder and the components surface (ΔT) as small as possible.
- 2. Solderability of Tin plating termination chips might be deteriorated when a low temperature soldering profile where the peak solder temperature is below the melting point of Tin is used. Please confirm the Solderability of Tin plated termination chips before use.
- 3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference ($\Delta T)$ between the component and the solvent within the range shown in the table 1.

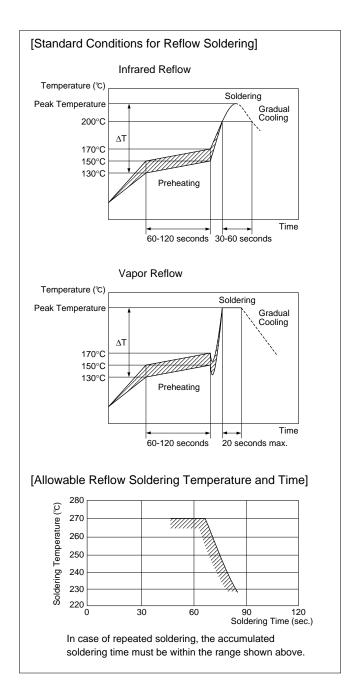

Table 1

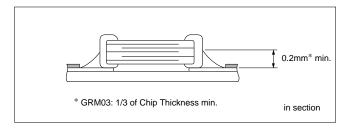
Part Number	Temperature Differential
GRM03/15/18/21/31	ΔT≦190°C
GCM32	ΔT≦130°C

Recommended Conditions

	Pb-Sn S	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230 to 250°C	230 to 240°C	240 to 260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu




- 4-1. Overly thick application of solder paste results in a excessive solder fillet height.
 - This makes the chip more susceptible to mechanical and thermal stress on the board and may cause the chips to crack.
- 4-2. Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- 4-3. Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm* min.

Inverting the PCB

Make sure not to impose any abnormal mechanical shocks to the PCB.

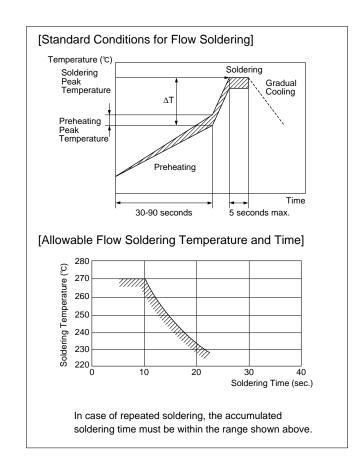
muRata

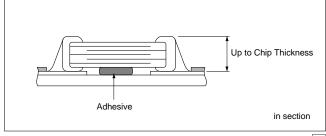
Continued from the preceding page.

4-2. Flow Soldering

- 1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board.
 - Preheating conditions are shown in table 2. It is required to keep temperature differential between the solder and the components surface ($\Delta T)$ as small as possible.
- 2. Excessively long soldering time or high soldering temperature can result in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end
- 3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 2.
- 4. Do not apply flow soldering to chips not listed in table 2.

Table 2


Part Number	Temperature Differential
GCM18/21/31	ΔT≦150°C


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Preheating Peak Temperature	90 to 110°C	100 to 120°C
Soldering Peak Temperature	240 to 250°C	250 to 260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

- 5. Optimum Solder Amount for Flow Soldering
 - 5-1. The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessive, the risk of cracking is higher during board bending or any other stressful condition.

Continued from the preceding page.

4-3. Correction with a Soldering Iron

1. When sudden heat is applied to the components when using a soldering iron, the mechanical strength of the components will decrease because the extreme temperature change can cause deformations inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions, (The "Temperature of the Soldering Iron Tip", "Preheating Temperature", "Temperature Differential" between the iron tip and the components and the PCB), should be within the conditions of table 3. It is required to keep the temperature differential between the soldering iron and the component surfaces (ΔT) as small as possible.

⚠ Caution (Soldering and Mounting)

- 2. After soldering, do not allow the component/PCB to rapidly cool down.
- 3. The operating time for the re-working should be as short as possible. When re-working time is too long, it may cause solder leaching, and that will cause a reduction in the adhesive strength of the terminations.
- 4. Optimum Solder amount when re-working with a Soldering Iron
 - 4-1. In case of sizes smaller than 0603, (GCM03/15/18), the top of the solder fillet should be lower than 2/3's of the thickness of the component or 0.5mm whichever is smaller. In case of 0805 and larger sizes, (GCM21/31/32), the top of the solder fillet should be lower than 2/3's of the thickness of the component. If the solder amount is excessive, the risk of cracking is higher during board bending or under any other stressful condition.
 - 4-2. A soldering iron with a tip of ø3mm or smaller should be used. It is also necessary to keep the soldering iron from touching the components during the
 - 4-3. Solder wire with Ø0.5mm or smaller is required for soldering.

4-4. Leaded Component Insertion

1. If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break. Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

5. Washing

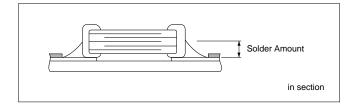

Excessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken solder joints. Take note not to vibrate PCBs.

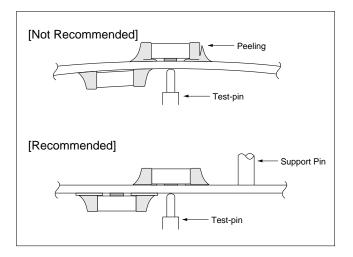
Table 3

-							
	Part Number	Temperature of Soldering Iron Tip Preheating Temperature		Temperature Differential (∆T)	Atmosphere		
	GCM03/15/18/21/31	350°C max.	150°C min.	ΔT≦190°C	Air		
	GCM32	280°C max.	150°C min.	ΔT≦130°C	Air		

*Applicable for both Pb-Sn and Lead Free Solder

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

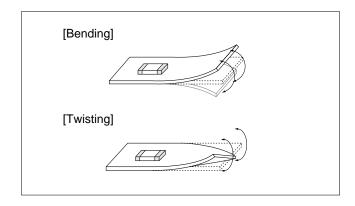
(Caution (Soldering and Mounting)


Ontinued from the preceding page.

6. Electrical Test on Printed Circuit Board

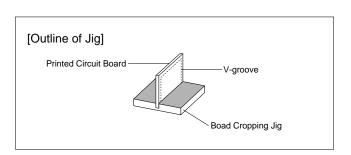
- Confirm position of the support pin or specific jig, when inspecting the electrical performance of a capacitor after mounting on the printed circuit board.
 - 1-1. Avoid bending printed circuit board by the pressure of a test pin, etc.

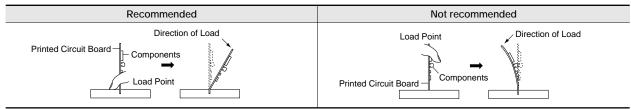
The thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.


1-2. Avoid vibration of the board by shock when a test pin contacts a printed circuit board.

7. Printed Circuit Board Cropping

- After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that is caused by bending or twisting the board.
 - 1-1. In cropping the board, the stress as shown right may cause the capacitor to crack.

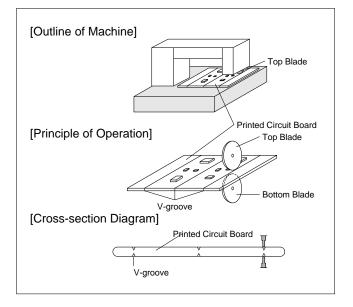

Try not to apply this type of stress to a capacitor.



- 2. Check of the cropping method for the printed circuit board in advance.
 - 2-1. Printed circuit board cropping shall be carried out by using a jig or an apparatus to prevent the mechanical stress which can occur to the board.
 - (1) Example of a suitable jig

Recommended example: the board should be pushed as close to the near the cropping jig as possible and from the back side of board in order to minimize the compressive stress applied to capacitor.

Not recommended example* when the board is pushed at a point far from the cropping jig and from the front side of board as below, the capacitor may form a crack caused by the tensile stress applied to capacitor.


⚠Caution (Soldering and Mounting)

Continued from the preceding page.

(2) Example of a suitable machine

An outline of a printed circuit board cropping machine is shown as follows. Along the lines with the V-grooves on printed circuit board, the top and bottom blades are aligned to one another when cropping the board.

The misalignment of the position between top and bottom blades may cause the capacitor to crack.

Recommended		Not Recommended						
		Top-bottom Misalignment		Left-right Misalignment		Front-rear Misalignment		
		Top Blade		Top Blade		Top Blade		Top Blade
		Bottom Blade		Bottom Blade		Bottom Blade		Bottom Blade

⚠Caution (Others)

■ Others

- 1. Under Operation of Equipment
 - 1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of a electric shock.
 - 1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions.
 - 1-3. Confirm the environment in which the equipment will operation is under the specified conditions. Do not use the equipment under the following environment.
 - (1) Being spattered with water or oil.
 - (2) Being exposed to direct sunlight.
 - (3) Being exposed to Ozone, ultraviolet rays or radiation.
 - (4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas, etc.)
 - (5) Any vibrations or mechanical shocks exceeding the specified limits.
 - (6) Moisture condensing environments.
 - 1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.

2. Others

- 2-1. In an Emergency
 - (1) If the equipment should generate smoke, fire or smell, immediately turn off or unplug the equipment.

- If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power.
- (2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitors high temperature.
- 2-2. Disposal of Waste

When capacitors are disposed, they must be burned or buried by the industrial waste vender with the appropriate licenses.

- 2-3. Circuit Design GRM, GCM, GMA/D, LLL/A/M, ERB, GQM, GJM, GNM Series capacitors in this catalog are not safety certified products.
- 2-4. Remarks

Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions.

Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

Notice (Rating)

■ Rating

- 1. Operating Temperature
 - 1. The operating temperature limit depends on the capacitor.
 - 1-1. Do not apply temperatures exceeding the upper operating temperature.
 - It is necessary to select a capacitor with a suitable rated temperature which will cover the operating temperature range.
 - Also it is necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor.
 - 1-2. Consider the self-heating of the capacitor The surface temperature of the capacitor shall be the upper operating temperature or less when including the self-heating factors.
- 2. Atmosphere Surroundings (gaseous and liquid)
 - 1. Restriction on the operating environment of capacitors.
 - 1-1. The capacitor, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor.

- 1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation.
- 1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time.
- 3. Piezo-electric Phenomenon
 - When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

Notice (Soldering and Mounting)

■ Soldering and Mounting

- 1. PCB Design
- 1. Notice for Pattern Forms
 - 1-1. Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate. They are also more sensitive to mechanical and thermal stresses than leaded components. Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.
 - 1-2. It is possible for the chip to crack by the expansion and shrinkage of a metal board. Please contact us if you want to use our ceramic capacitors on a metal board such as Aluminum.

Pattern Forms

	Prohibited	Correct
Placing Close to Chassis	Chassis Solder (ground) Electrode Pattern	Solder Resist
Placing of Chip Components and Leaded Components	Lead Wire	Solder Resist
Placing of Leaded Components after Chip Component	Soldering Iron Lead Wire	Solder Resist
Lateral Mounting		Solder Resist

Continued on the following page. $\boxed{\ \ }$

Notice (Soldering and Mounting)

Continued from the preceding page.

2. Land Dimensions

2-1. Chip capacitor can be cracked due to the stress of PCB bending / etc if the land area is larger than needed and has an excess amount of solder. Please refer to the land dimensions in table 1 for flow soldering, table 2 for reflow soldering. Please confirm the suitable land dimension by evaluating of the actual SET / PCB.

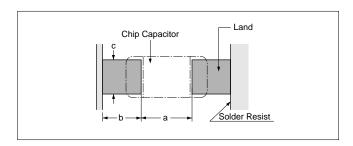


Table 1 Flow Soldering Method

Dimensions Part Number	Chip (LXW)	a	b	С
GCM18	1.6×0.8	0.6 to 1.0	0.8 to 0.9	0.6 to 0.8
GCM21	2.0×1.25	1.0 to 1.2	0.9 to 1.0	0.8 to 1.1
GCM31	3.2×1.6	2.2 to 2.6	1.0 to 1.1	1.0 to 1.4

(in mm)

Table 2 Reflow Soldering Method

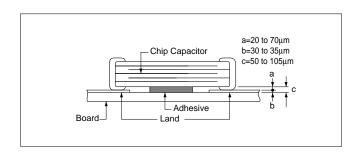
	3				
Dimensions Part Number	Chip (L×W)	а	b	С	
GCM03	0.6×0.3	0.2 to 0.3	0.2 to 0.35	0.2 to 0.4	
GCM15	1.0×0.5 0.3 to 0.5 0.35 to 0.45		0.35 to 0.45	0.4 to 0.6	
GCM18	1.6×0.8	0.6 to 0.8	0.6 to 0.7	0.6 to 0.8	
GCM21	2.0×1.25	1.0 to 1.2	0.6 to 0.7	0.8 to 1.1	
GCM31	3.2×1.6	2.2 to 2.4	0.8 to 0.9	1.0 to 1.4	
GCM32	3.2×2.5	2.0 to 2.4	1.0 to 1.2	1.8 to 2.3	

(in mm)

2. Adhesive Application

1. Thin or insufficient adhesive can cause the chips to loosen or become disconnected during flow soldering. The amount of adhesive must be more than dimension c, shown in the drawing at right, to obtain the correct bonding strength.

The chip's electrode thickness and land thickness must also be taken into consideration.


2. Low viscosity adhesive can cause chips to slip after mounting. The adhesive must have a viscosity of 5000Pa • s (500ps) min. (at 25°C).

Part Number	Adhesive Coverage*		
GCM18	0.05mg min.		
GCM21	0.1mg min.		
GCM31	0.15mg min.		

*Nominal Value

muRata

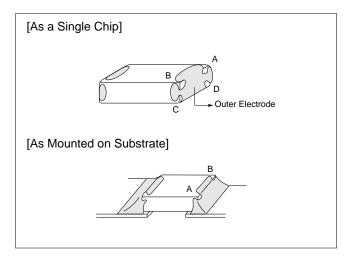
3. Adhesive Curing

1. Insufficient curing of the adhesive can cause chips to disconnect during flow soldering and causes deterioration in the insulation resistance between the outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Notice (Soldering and Mounting)

Continued from the preceding page.


4. Flux Application

- 1. An excessive amount of flux generates a large quantity of flux gas, which can cause a deterioration of Solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- 2. Flux containing too a high percentage of halide may cause corrosion of the outer electrodes unless there is sufficient cleaning. Use flux with a halide content of 0.1%
- 3. Do not use strong acidic flux.
- 4. Do not use water-soluble flux.

(*Water-soluble flux can be defined as non rosin type flux including wash-type flux and non-wash-type flux.)

5. Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown right) and 25% of the length A-B shown below as mounted on substrate.

6. Washing

- 1. Please evaluate a capacitor by actual cleaning equipment and condition surely for confirming the quality and select the applicable solvent.
- 2. Unsuitable cleaning solvent may leave residual flux, other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 3. Select the proper cleaning conditions.
 - 3-1. Improper cleaning conditions (excessive or insufficient) may result in the deterioration of the performance of the capacitors.

7. Coating

1. A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during curing process.

The stress is affected by the amount of resin and curing contraction.

Select a resin with small curing contraction.

The difference in the thermal expansion coefficient between a coating resin or a molding resin and capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown.

Select a resin for which the thermal expansion coefficient is as close to that of capacitor as possible.

A silicone resin can be used as an under-coating to buffer against the stress.

2. Select a resin that is less hygroscopic.

Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor.

An epoxy resin can be used as a less hygroscopic resin.

This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before order

■ Others

1. Transportation

Notice (Others)

- 1. The performance of a capacitor may be affected by the conditions during transportation.
 - 1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation.
 - (1) Climatic condition
 - low air temperature: -40°C
 - \bullet change of temperature air/air: -25°C/+25°C
 - low air pressure: 30 kPa
 - change of air pressure: 6 kPa/min.
 - (2) Mechanical condition

Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging.

- 1-2. Do not apply excessive vibration, shock, and pressure to the capacitor.
 - (1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor.
 - (2) When a sharp edge of an air driver, a soldering iron, tweezers, a chassis, etc. impacts strongly on the surface of capacitor, the capacitor may crack and short-circuit.
- 1-3. Do not use a capacitor to which excessive shock was applied by dropping, etc.
 - The capacitor dropped accidentally during processing may be damaged.

Chip Monolithic Ceramic Capacitors for Automotive

Medium Voltage for Automotive GCM Series Low Dissipation Factor

■ Features

- 1. The GCM series meet AEC-Q200 requirements.
- 2. Low-loss and suitable for high frequency circuits
- 3. Murata's original internal electrode structure realizes high flash-over voltage.
- 4. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 5. Sn-plated external electrodes realize good solderability.
- 6. Use the GCM21/31 type with flow or reflow soldering, and other types with reflow soldering only.

				•••	
Part Number					
Part Number	L	W	Т	e min.	g min.
GCM21A	20403	1.25 ±0.2	1.0 +0,-0.3		0.7
GCM21B	2.0 ±0.2		1.25 ±0.2		
GCM31A	3.2 ±0.2	1.6 ±0.2	1.0 +0,-0.3	0.3	
GCM31B	3.2 ±0.2	1.0 ±0.2	1.25 +0,-0.3		
GCM32A	3.2 ±0.2	2.5 ±0.2	1.0 +0,-0.3		

■ Applications

Ideal for use on high frequency pulse circuits such as snubber circuits for DC-DC converters.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GCM21A7U2E101JX01D	DC250	U2J (EIA)	100 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E121JX01D	DC250	U2J (EIA)	120 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E151JX01D	DC250	U2J (EIA)	150 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E181JX01D	DC250	U2J (EIA)	180 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E221JX01D	DC250	U2J (EIA)	220 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E271JX01D	DC250	U2J (EIA)	270 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E331JX01D	DC250	U2J (EIA)	330 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E391JX01D	DC250	U2J (EIA)	390 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E471JX01D	DC250	U2J (EIA)	470 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E561JX01D	DC250	U2J (EIA)	560 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E681JX01D	DC250	U2J (EIA)	680 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E821JX01D	DC250	U2J (EIA)	820 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E102JX01D	DC250	U2J (EIA)	1000 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E122JX01D	DC250	U2J (EIA)	1200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E152JX01D	DC250	U2J (EIA)	1500 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E182JX01D	DC250	U2J (EIA)	1800 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21A7U2E222JX01D	DC250	U2J (EIA)	2200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GCM21B7U2E272JX03L	DC250	U2J (EIA)	2700 ±5%	2.0	1.25	1.25	0.7	0.3 min.
GCM31A7U2E272JX01D	DC250	U2J (EIA)	2700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM21B7U2E332JX03L	DC250	U2J (EIA)	3300 ±5%	2.0	1.25	1.25	0.7	0.3 min.
GCM31A7U2E332JX01D	DC250	U2J (EIA)	3300 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM21B7U2E392JX03L	DC250	U2J (EIA)	3900 ±5%	2.0	1.25	1.25	0.7	0.3 min.
GCM31A7U2E392JX01D	DC250	U2J (EIA)	3900 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM21B7U2E472JX03L	DC250	U2J (EIA)	4700 ±5%	2.0	1.25	1.25	0.7	0.3 min.
GCM31A7U2E472JX01D	DC250	U2J (EIA)	4700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM21B7U2E562JX03L	DC250	U2J (EIA)	5600 ±5%	2.0	1.25	1.25	0.7	0.3 min.
GCM31A7U2E562JX01D	DC250	U2J (EIA)	5600 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31B7U2E682JX01L	DC250	U2J (EIA)	6800 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GCM31B7U2E822JX01L	DC250	U2J (EIA)	8200 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GCM31B7U2E103JX01L	DC250	U2J (EIA)	10000 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GCM31A7U2J100JX01D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J120JX01D	DC630	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J150JX01D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GCM31A7U2J180JX01D	DC630	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J220JX01D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J270JX01D	DC630	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J330JX01D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J390JX01D	DC630	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J470JX01D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J560JX01D	DC630	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J680JX01D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J820JX01D	DC630	U2J (EIA)	82 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J101JX01D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J121JX01D	DC630	U2J (EIA)	120 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J151JX01D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J181JX01D	DC630	U2J (EIA)	180 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J221JX01D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J271JX01D	DC630	U2J (EIA)	270 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J331JX01D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J391JX01D	DC630	U2J (EIA)	390 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J471JX01D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J561JX01D	DC630	U2J (EIA)	560 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J681JX01D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J821JX01D	DC630	U2J (EIA)	820 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM31A7U2J102JX01D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GCM32A7U2J122JX01D	DC630	U2J (EIA)	1200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GCM32A7U2J152JX01D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GCM32A7U2J182JX01D	DC630	U2J (EIA)	1800 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GCM32A7U2J222JX01D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.

No.	o. AEC-Q200 Test Item		Specifications	AEC-Q200 Test Method		
1	Pre-and Post-Stress Electrical Test			-		
	High Tem Exposure	perature (Storage)	The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
2		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2 hours at room temperature, then measure.		
		Q	Q≥1000			
		I.R.	More than 10,000M Ω or $500M\Omega \cdot \mu F$ (Whichever is smaller)			
	Temperat Cycle	ture	The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and		
		Appearance	No marking defects	under the same conditions as (19). Perform the 1000 cycles		
3		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the 4 heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4		
		Q	Q≥1000	Temp. (°C) -55+0/-3 Room Temp. 125+3/-0 Room Temp.		
		I.R.	More than 10,000M Ω or 500M $\Omega \cdot \mu F$ (Whichever is smaller)	Time (min.) 15±3 1 15±3 1		
4	Destructive Physical A		No defects or abnormalities	Per EIA-469		
	Moisture Resistance	ce	The measured and observed characteristics should satisfy the specifications in the following table.	Apply the 24 hour heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.		
		Appearance	No marking defects	Let sit for 24±2 hours at room temperature, then measure.		
		Capacitance Change	Within ±3.0% or ±0.3pF (Whichever is larger)	Humidity Humidity Humidity Humidity C 90-98% 80-98% 90-98% 80-98% 90-98% 65		
		Q	Q≧350	60 60 60		
5		I.R.	More than 10,000M Ω or 500M Ω · μ F (Whichever is smaller)	0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 → Hours		
	Biased Hu	umidity	The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects	Apply the rated voltage and DC1.3+0.2/-0V (add 6.8kΩ		
6		Capacitance	Within ±3.0% or ±0.3pF (Whichever is larger)	resistor) at 85±3°C and 80 to 85% humidity for 1000±12 hours. Remove and let sit for 24±2 hours at room temperature, then		
		Change	· · · · · · · · · · · · · · · · · · ·	measure.		
		Q I.R.	Q≧200 More than 1,000MΩ or 50MΩ · μF (Whichever is smaller)	The charge/discharge current is less than 50mA.		
	Operation	nal Life	The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects	 Apply voltage as Table for 1000±12 hours at 125±3°C. Let sit for 24±2 hours at room temperature, then measure. 		
7		Capacitance Change	Within ±3.0% or ±0.3pF (Whichever is larger)	Rated Voltage Applied Voltage DC250V 150% of the rated voltage		
		Q	Q≥350	DC630V 120% of the rated voltage		
		I.R.	More than 1,000M Ω or 50M Ω \cdot μ F (Whichever is smaller)	The charge/discharge current is less than 50mA.		
8	External \	/isual	No defects or abnormalities	Visual inspection		
9	Physical D	Dimension	Within the specified dimensions	Using calipers and micrometers		

Ontinued from the preceding page.

No.	AEC- Test		Specifications	AEC-Q200 Test Method				
		Appearance No marking defects		Per MIL-STD-202 Method 215				
	Decistance	Capacitance Change	Within the specified tolerance	Solvent 1: 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2: Terpene defluxer				
10	Resistance to Solvents	Q	Q≥1000	Solvent 2: Terpene defluxer Solvent 3: 42 parts (by volume) of water				
		I.R.	More than 10,000M Ω or 500M Ω · μ F (Whichever is smaller)	part (by volume) of propylene glycol monomethyl ether part (by volume) of monoethanolomine				
		Appearance	No marking defects					
11	Mechanical	Capacitance Change	Within the specified tolerance	Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks).				
• •	Shock	Q	Q≥1000	The specified test pulse should be Half-sine and should have a				
		I.R.	More than 10,000M Ω or $500M\Omega \cdot \mu F$ (Whichever is smaller)	 duration: 0.5ms, peak value: 1500g and velocity change: 4.7m 				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
		Capacitance Change	Within the specified tolerance	same manner and under the same conditions as (19). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied				
12	Vibration	Q	Q≥1000	uniformly between the approximate limits of 10 and 2000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should be traversed in approximately 20 minutes. This motion should be applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).				
		I.R.	More than 10,000M Ω or $500M\Omega \cdot \mu F$ (Whichever is smaller)					
	Resistance Soldering		The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
13		Capacitance Change	Within the specified tolerance	Immerse the capacitor in a eutectic solder solution at 260±5°C for 10±1 seconds. Let sit at room temperature for 24±2 hours, then measure.				
		Q	Q≥1000					
		I.R.	More than 10,000M Ω or $500M\Omega \cdot \mu F$ (Whichever is smaller)					
	Thermal Shock		The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (19). Perform the 300 cycles				
		Appearance	No marking defects	according to the two heat treatments listed in the following table				
14		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	(Maximum transfer time is 20 seconds). Let sit for 24±2 hours room temperature, then measure.				
		Q	Q≥1000	Step 1 2				
		LD	More than $10{,}000M\Omega$ or $500M\Omega \cdot \mu F$	Temp. (°C) -55+0/-3 125+3/-0 Time (min.) 15±3 15±3				
		I.R.	(Whichever is smaller)					
		Appearance	No marking defects					
15	ESD	Capacitance Change	Within the specified tolerance	Per AEC-Q200-002				
		Q	Q≥1000					
		I.R.	More than 10,000M Ω or 500M $\Omega \cdot \mu F$ (Whichever is smaller)					
				(a) Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C.				
16	Solderabi	lity	95% of the terminations is to be soldered evenly and continuously.	(b) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C.				
				(c) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 120 ±5 seconds at 260±5°C.				

\square	Continued fr	om the prec	eding page.					
No		Q200 Item	Specifications		AEC-Q200 Te	est Method		
		Appearance	No defects or abnormalities	Visual inspection.				
		Capacitance Change	Within the specified tolerance	The capacitance/Q should be measured at 25°C at the frequency and voltage shown in the table.				
		Q	Q≥1000	Capacitance C<1000pF C≥1000pF	Frequency 1±0.2MHz 1±0.2kHz	AC0.5 to	Itage 5 5V(r.m.s.) 2V(r.m.s.)	
17	Electrical Characteri- zation	I.R.	25°C More than 100,000M Ω or 1,000M $\Omega \cdot \mu$ F (Whichever is smaller) Max. Operating Temperature125°C More than 10,000M Ω or 100M $\Omega \cdot \mu$ F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 125°C and within 2 minutes of charging.				
		Dielectric	No failure	No failure should be between the termin charge/discharge care Rated Voltage	ations for 1 to urrent is less t	5 seconds, pr han 50mA.	ovided the	
		Strength		DC250V		Test Voltag % of the rated		
				DC630V	150	% of the rated	voltage	
		Appearance	No marking defects	Solder the capacito	r on the test jiç	g (glass epoxy	board) shown in	
		Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Fig. 1 using a eutectic solder. Then apply a force in the direction shown in Fig. 2 for 5±1 seconds. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock				
				Type	a a	b b	C C	
				GCM21	0.8	3.0	1.3	
				GCM31 GCM32	2.0	4.4 4.4	2.6	
18	Board Flex		t: 1.6mm Fig. 1		Capacitance meter 45 45 Fig.		nm/s	
		Appearance	No marking defects	Solder the capacito				
		Capacitance Change	Within the specified tolerance	Fig. 3 using a euted with the test jig for the soldering shou	60 seconds.	,	·	
		Q	Q≥1000	be conducted with	care so that th			
				of defects such as				
				Type GCM21	1.2	4.0	1.65	
				GCM31	2.2	5.0	2.0	
	Tamainal			GCM32	2.2	5.0	2.9	
19	Terminal Strength	I.R.	More than 10,000M Ω or 500M Ω · μ F (Whichever is smaller)	a a		Solder resi Baked eler copper foil	ctrode or	

Continued on the following page.

Fig. 3

Continued from the preceding page.

No.	AEC-		Specifications	AEC-Q200 Test Method		
20	20 Beam Load Test		The chip endure following force. < Chip L dimension: 2.5mm max. > Chip thickness > 0.5mm rank: 20N Chip thickness ≤ 0.5mm rank: 8N < Chip L dimension: 3.2mm min. > Chip thickness < 1.25mm rank: 15N Chip thickness ≥ 1.25mm rank: 54.5N	Place the capacitor in the beam load fixture as Fig. 4. Apply a force. < Chip L dimension: 2.5mm max. > Iron Board < Chip L dimension: 3.2mm min. > Fig. 4 Speed supplied the Stress Load: 2.5mm / s		
21	Capacitance Temperature Character-	Capacitance Change	-750±120 ppm/°C (Temp. Range: +25 to +125°C) -750±120, -347 ppm/°C (Temp. Range: -55 to +25°C)	at each spi The temporate measured temperate should be coefficien difference	itance change should be measured after 5 minutes ecified temperature stage. erature coefficient is determined using the capacitance d in step 3 as a reference. When cycling the ure sequentially from step1 through 5 the capacitance within the specified tolerance for the temperature t. The capacitance drift is calculated by dividing the se between the maximum and minimum measured	
	istics -	Capacitance Drift	Within ±0.5% or ±0.05 pF (Whichever is larger)	Step	teps 1, 3 and 5 by the capacitance value in step 3. Temperature (°C) 25±2 -55±3 25±2 125±3 25±2	

Chip Monolithic Ceramic Capacitors for Automotive

Medium Voltage for Automotive GCJ Series Soft Termination Type

■ Features

- 1. The GCJ series meet AEC-Q200 requirements.
- 2. Improve the endurance against Board Bending Stress.
- 3. Reduce the board bending stress by the conductive polymer termination.
- 4. Use the GCJ31 type with flow or reflow soldering, and other types with reflow soldering only.

■ Applications

Automotive electronic equipment (Power-train, safety equipment)

Part Number		Dimensions (mm)						
Part Number	L	L W T		е	g min.			
GCJ31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3					
GCJ31C	3.2 ±0.2	1.0 ±0.2	1.6 ±0.2	0.3 min.	1.2			
GCJ32Q	3.2 ±0.3	2.5 ±0.2	1.5 +0,-0.3					
GCJ32D	3.2 ±0.3		2.0 +0,-0.3					
GCJ43Q	4.5 ±0.4	3.2 ±0.3	1.5 +0,-0.3		22			
GCJ43D	4.5 ±0.4	3.2 ±0.3	2.0 +0,-0.3		2.2			
GCJ55D	5.7 ±0.4	5.0 ±0.4	2.0 +0,-0.3		3.2			

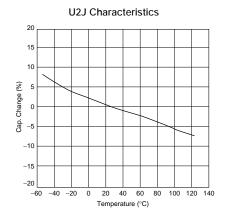
Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GCJ31BR72E153KXJ1L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ31BR72E223KXJ1L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ31CR72E333KXJ3L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GCJ31CR72E473KXJ3L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GCJ32QR72E683KXJ1L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GCJ32DR72E104KXJ1L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GCJ43QR72E154KXJ1L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GCJ43DR72E224KXJ1L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GCJ55DR72E334KXJ1L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GCJ55DR72E474KXJ1L	DC250	X7R (EIA)	0.47μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GCJ31BR72J102KXJ1L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ31BR72J152KXJ1L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ31BR72J222KXJ1L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ31BR72J332KXJ1L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ31BR72J472KXJ1L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GCJ32QR72J682KXJ1L	DC630	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GCJ32QR72J103KXJ1L	DC630	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GCJ32DR72J153KXJ1L	DC630	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GCJ32DR72J223KXJ1L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GCJ43DR72J333KXJ1L	DC630	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GCJ43DR72J473KXJ1L	DC630	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GCJ55DR72J104KXJ1L	DC630	X7R (EIA)	0.10µF ±10%	5.7	5.0	2.0	3.2	0.3 min.

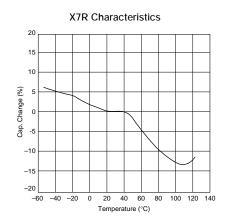
No.	AEC- Test		Specifications	AEC-Q200 Test Method		
1	Pre-and Po			_		
	High Tem Exposure	perature (Storage)	The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
2		Capacitance Change	Within ±10%	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2 hours at room temperature, then measure.		
		D.F.	0.05 max.			
		I.R.	More than 10,000M Ω or 100M $\Omega \cdot \mu F$ (Whichever is smaller)			
	Temperat Cycle	ture	The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (19). Perform the 1000 cycles		
		Appearance	No marking defects	according to the 4 heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.		
3		Capacitance Change	Within ±10%	Step 1 2 3 4 Temp. (°C) -55+0/-3 Room Temp. 125+3/-0 Room Temp.		
		D.F.	0.05 max.	Time (min.) 15±3 1 15±3 1		
		I.R.	More than 10,000M Ω or 100M $\Omega \cdot \mu F$ (Whichever is smaller)	Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 minutes and then let sit for 24±2 hours at room temperature.		
4	Destructive Physical A		No defects or abnormalities	Per EIA-469		
	Moisture Resistance	ce	The measured and observed characteristics should satisfy the specifications in the following table.	Apply the 24 hour heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.		
		Appearance	No marking defects	Let sit for 24±2 hours at room temperature, then measure.		
		Capacitance Change	Within ±12.5%	C 90-98% 80-98% 90-98% 80-98% 90-98% 90-98%		
		D.F.	0.05 max.	60 55		
5		I.R.	More than 10,000M Ω or 100M Ω · μ F (Whichever is smaller)	50 9 40 9 35 9 30 9		
	Biased Hu	umidity	The measured and observed characteristics should satisfy the specifications in the following table.	Apply the rated voltage and DC1.3+0.2/-0V (add $6.8 k\Omega$		
		Appearance	No marking defects	resistor) at 85±3°C and 80 to 85% humidity for 1000±12 hours. Remove and let sit for 24±2 hours at room temperature, then		
6		Capacitance Change	Within ±12.5%	measure. The charge/discharge current is less than 50mA.		
		D.F.	0.05 max.	Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 minutes		
		I.R.	More than 1,000M Ω or 10M $\Omega \cdot \mu F$ (Whichever is smaller)	and then let sit for 24±2 hours at room temperature.		
	Operation	nal Life	The measured and observed characteristics should satisfy the specifications in the following table.	Apply voltage in Table for 1000±12 hours at 125±3°C. Let sit for 24±2 hours at room temperature, then measure.		
		Appearance	No marking defects	The charge/discharge current is less than 50mA. Rated Voltage Applied Voltage		
7		Capacitance Change	Within ±12.5%	Rated Voltage Applied Voltage DC250V 150% of the rated voltage DC630V 120% of the rated voltage		
		D.F.	0.05 max.	•Pretreatment		
		I.R.	More than 1,000M Ω or 10M $\Omega \cdot \mu$ F (Whichever is smaller)	Apply test voltage for 60±5 minutes at test temperature. Remove and let sit for 24±2 hours at room temperature.		
8	External \	/isual	No defects or abnormalities	Visual inspection		
9	Physical D	Dimension	Within the specified dimensions	Using calipers and micrometers		

	Continued	from	tho	preceding pa	nne.
1 \11	Conunuea	HOIII	me	preceding ba	me.

	Continued fr	om the prec	eding page.				
No.	AEC- Test	Q200 Item	Specifications	AE	C-Q200 Test Meth	od	
10	Resistance to Solvents	Appearance Capacitance Change D.F.	No marking defects Within the specified tolerance 0.025 max.	Per MIL-STD-202 Method 215 Solvent 1: 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2: Terpene defluxer Solvent 3: 42 parts (by volume) of water 1 part (by volume) of propylene glycol			
		I.R.	More than 10,000M Ω or 100M $\Omega \cdot \mu F$ (Whichever is smaller)	monometh			
		Appearance	No marking defects				
11	Mechanical	Capacitance Change	Within the specified tolerance	Three shocks in each mutually perpendicula	r axes of the test sp	pecimen (18 shocks).	
• •	Shock	D.F.	0.025 max.	The specified test puls		ne and should have a elocity change: 4.7m/s.	
		I.R. More than 10,000M Ω or 500M $\Omega \cdot \mu F$ (Whichever is smaller)		duration. 0.5ms, peak	value. 1000g and ve	stocky change. 4.711/3.	
		Appearance	No defects or abnormalities	Solder the capacitor to			
		Capacitance Change	Within the specified tolerance	same manner and und capacitor should be su having a total amplitude	ubjected to a simple	harmonic motion	
12	Vibration			having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 2000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should be traversed in approximately 20 minutes. This motion should be applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).			
	Resistance Soldering		The measured and observed characteristics should satisfy the specifications in the following table.	Immerse the capacitor in a eutectic solder solution at 260±5°C for 10±1 seconds. Let sit at room temperature for 24±2 hours, then			
		Appearance	No marking defects				
13		Capacitance Change	Within ±10%	measure. •Pretreatment			
		D.F.	0.025 max.	Perform the heat treat and then let sit for 24			
	I.R. More than $10{,}000M\Omega$ or $100M\Omega \cdot \mu F$ (Whichever is smaller)		·				
	Thermal Shock		The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (19). Perform the 300 cycles according to the two heat treatments listed in the following table			
		Appearance	No marking defects	according to the two heat treatments listed in the following table (Maximum transfer time is 20 seconds). Let sit for 24±2 hours at			
		Capacitance Change	Within ±10%	room temperature, the	en measure.		
14		D.F.	0.025 max.	Step Temp. (°C)	-55+0/-3	2 125+3/-0	
		D.1 .	0.023 max.	Time (min.)	15±3	15±3	
		I.R.	More than 10,000M Ω or 100M Ω \cdot μ F (Whichever is smaller)	 Pretreatment Perform the heat trea and then let sit for 24 			
		Appearance	No marking defects				
15	ESD	Capacitance Change	Within the specified tolerance	Per AFC-0200-002	Per AEC-Q200-002		
13	LJD	D.F.	0.025 max.	1 61 ALO-Q200-002			
		I.R.	More than 10,000M Ω or 100M $\Omega \cdot \mu F$ (Whichever is smaller)				
16	6 Solderability		95% of the terminations is to be soldered evenly and continuously.	 (a) Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JI K-5902) (25% rosin in weight proportion). Immerse in eutect solder solution for 5+0/-0.5 seconds at 235±5°C. (b) Should be placed into steam aging for 8 hours±15 minutes After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 		K-8101) and rosin (JIS-n). Immerse in eutectic t 235±5°C. 8 hours±15 minutes. or in a solution of 5902) (25% rosin in	
				ethanol (JIS-K-810	nto steam aging for mmerse the capacito 11) and rosin (JIS-K- Immerse in eutectic		

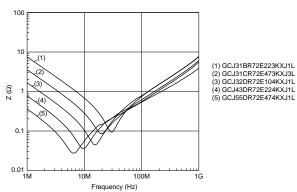
 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

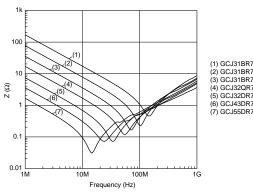

No.	No. AEC-Q200 Test Item		Specifications	AEC-Q200 Test Method		
		Appearance	No defects or abnormalities	Visual inspection.		
		Capacitance Change	Within the specified tolerance	The capacitance/Q should be measured at 25°C at the frequency and voltage shown in the table.		
		D.F.	0.025 max.	Capacitance Frequency Voltage C<1000pF		
17	Electrical Characteri- zation	I.R.	25°C More than 10,000MΩ or 100MΩ \cdot μF (Whichever is smaller) Max. Operating Temperature…125°C More than 1,000MΩ or 10MΩ \cdot μF (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 125°C and within 2 minutes of charging.		
		Dielectric Strength	No failure	No failure should be observed when voltage in Table is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. Rated Voltage		
		Appearance	No marking defects	Solder the capacitor on the test jig (glass epoxy board) shown in		
		Capacitance Change	Within ±12.5%	Fig. 1 using a eutectic solder. Then apply a force in the direction shown in Fig. 2 for 5±1 seconds. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
18 Board Flex			t: 1.6mm Fig. 1	Type a b c GCJ31 2.0 4.4 1.7 GCJ32 2.0 4.4 2.6 GCJ43 3.0 6.0 3.3 GCJ55 4.2 7.2 5.1 (in mm) Pressunzing speed: 1.0mm/s Pressurize Capacitance meter 45 Fig. 2		
		Appearance	No marking defects	Solder the capacitor to the test jig (glass epoxy board) shown in		
		Capacitance Change	Within the specified tolerance	Fig. 3 using a eutectic solder. Then apply 18N force in parallel with the test jig for 60 seconds. The soldering should be done by the reflow method and should		
		D.F.	0.025 max.	be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
19	Terminal Strength	I.R.	More than $10,000M\Omega$ or $100M\Omega \cdot \mu F$ (Whichever is smaller)	Type a b c GCJ31 2.2 5.0 2.0 GCJ32 2.2 5.0 2.9 GCJ43 3.5 7.0 3.7 GCJ55 4.5 8.0 5.6 (in mm)		
				Solder resist Baked electrode or copper foil Fig. 3		


	1				
$ \setminus $	Continued	from	the	preceding	page.

	AEC-Q200				
No.	Test Item	Specifications	AEC-Q200 Test Method		
20	Beam Load Test	The chip endure following force. Chip thickness < 1.25mm rank: 15N Chip thickness ≥ 1.25mm rank: 54.5N	Place the capacitor in the beam load fixture as Fig. 4. Apply a force. Fig. 4 Speed supplied the Stress Load: 2.5mm/s		
21	Capacitance Temperature Character- istics Capacitance Change	Within ±15%	The capacitance change should be measured after 5 minutes at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 minutes and then let sit for 24±2 hours at room temperature. Perform the initial measurement.		

Medium Voltage Data (Typical Example)


■ Capacitance - Temperature Characteristics

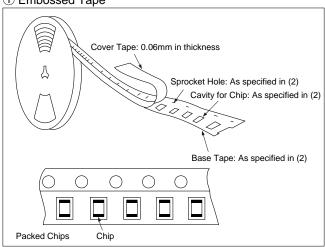


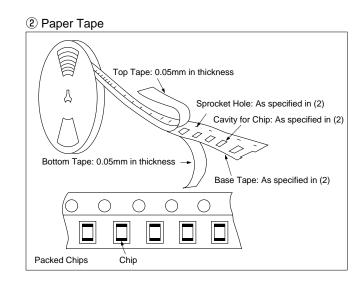
■ Impedance - Frequency Characteristics

X7R Characteristics DC630V

Package

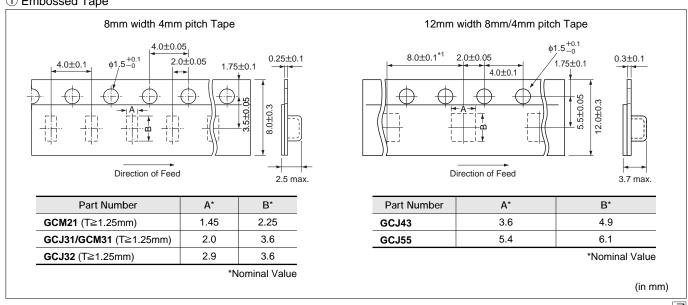
Taping is standard packaging method.


■ Minimum Quantity Guide

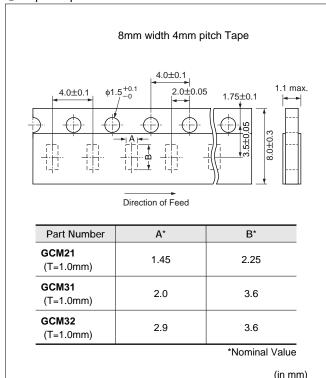

Part Number		Dimensions (mm)			Quantity (pcs.)		
					ø180mm Reel		
		L	W	Т	Paper Tape	Embossed Tape	
	CCM24	2.0		1.0	4,000	-	
	GCM21	2.0	1.25	1.25	-	3,000	
	GCJ31/GCM31	3.2	1.6	1.0	4,000	-	
				1.25	-	3,000	
				1.6	-	2,000	
Medium Voltage	GCJ32/GCM32	3.2	2.5	1.0	4,000	-	
				1.5	-	2,000	
-				2.0	-	1,000	
	00.142	4.5	2.2	1.5	-	1,000	
	GCJ43		3.2	2.0	-	1,000	
	GCJ55	5.7	5.0	2.0	-	1,000	

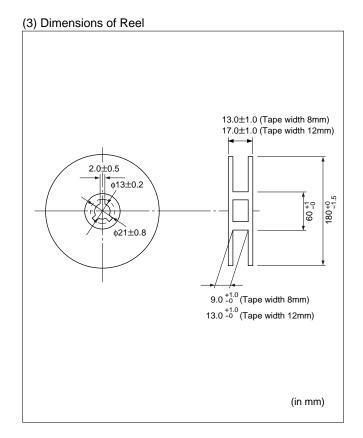
■ Tape Carrier Packaging

(1) Appearance of Taping


① Embossed Tape

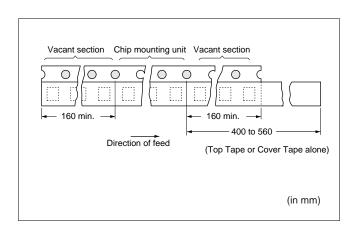
(2) Dimensions of Tape

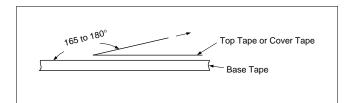

① Embossed Tape



Package

Continued from the preceding page.


2 Paper Tape



(4) Taping Method

- 1 Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as shown at right.
- 3 The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- $\ensuremath{\mathfrak{D}}$ The top tape or cover tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- 7 Peeling off force: 0.1 to 0.6N in the direction shown at right.

■ Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

- 1. Vibration and impact Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Rating

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

- 2. Operating Temperature, Self-generated Heat, and Load Reduction at High-frequency Voltage Condition Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency voltage, pulse voltage, it may self-generate heat due to dielectric loss.
- (1) In case of X7R char.

Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity -K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page.

(2) In case of U2J char.

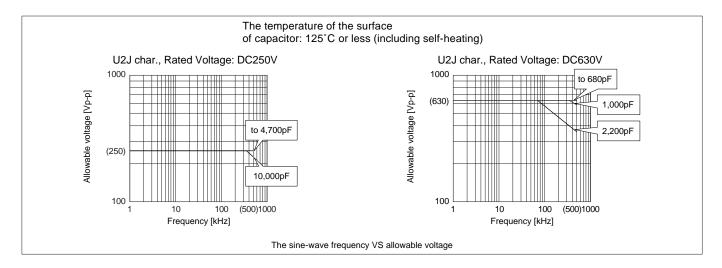
Due to the low self-heating characteristics of lowdissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of X7R characteristic capacitors.

When a high frequency voltage which cause 20°C self heating to the capacitor is applied, it will exceed capacitor's allowable electric power.

The frequency of the applied sine wave voltage should be less than 500kHz. The applied voltage should be less than the value shown in figure below.

In case of non-sine wave which includes a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

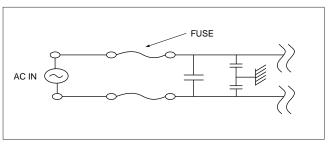
Otherwise, accurate measurement cannot be ensured.)


<Capacitor Selection Tool>

We are also offering free software the "capacitor selection tool: Murata Medium Voltage Capacitors Selection Tool by Voltage Form (*)" which will assist you in selecting a suitable capacitor.

The software can be downloaded from Murata's Internet Web site.

(http://www.murata.com/designlib/mmcsv_e.html)
By inputting capacitance values and applied voltage
waveform of the specific capacitor series, this software
will calculate the capacitor's power consumption and list
suitable capacitors. (non-sine wave is also available).


- * Subject series are below.
- · Temperature Characteristics U2J

3. Fail-safe

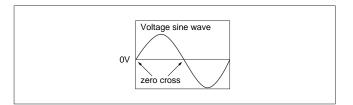
Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

- Continued from the preceding page.
- 4. Test Condition for AC Withstanding Voltage
- (1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.


(2) Voltage Applied Method

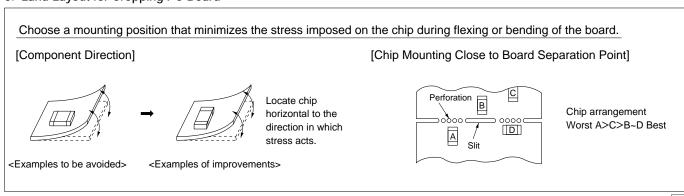
The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the zero cross*. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Solder and Mounting


1. Vibration and Impact

Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

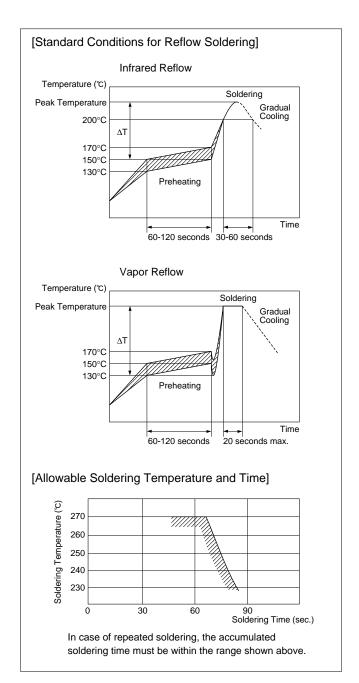
In case that ceramic chip capacitor is soldered on the metal board, such as Aluminum board, the stress of heat expansion and contraction might cause the crack of ceramic capacitor, due to the difference of thermal expansion coefficient between metal board and ceramic chip.

3. Land Layout for Cropping PC Board

Continued from the preceding page.

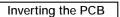
4. Reflow Soldering

- When the sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the Table 1.

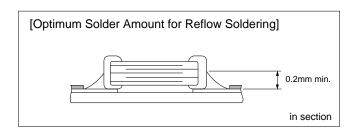

Table 1

Part Number	Temperature Differential	
G□□21/31	ΔΤ≦190℃	
G□□32/43/55	ΔΤ≦130℃	

Recommended Conditions


	Pb-Sn S	Lead Free Solder		
	Infrared Reflow	Vapor Reflow	Lead Free Solder	
Peak Temperature	230-250°C	230-240°C	240-260°C	
Atmosphere	Air	Air	Air or N2	

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu


Optimum Solder Amount for Reflow Soldering

- Overly thick application of solder paste results in excessive fillet height solder.
 - This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

Make sure not to impose an abnormal mechanical shock on the PCB.

muRata

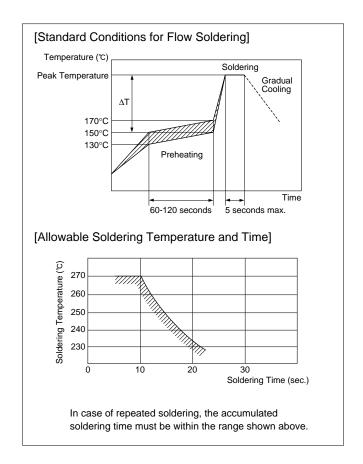
Continued from the preceding page.

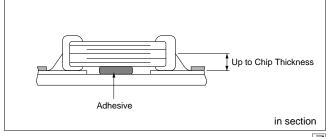
5. Flow Soldering

- When the sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. And an excessively long soldering time or high soldering temperature results in leaching by the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2


Part Number	Temperature Differential
G□□21/31	ΔT≦150°C


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount for Flow Soldering The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.

Continued from the preceding page.

6. Correction with a Soldering Iron

 When sudden heat is applied to the components by use of a soldering iron, the mechanical strength of the components will go down because the extreme temperature change causes deformations inside the components

In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board.

Preheating conditions, (The "Temperature of the Soldering Iron tip", "Preheating Temperature",

"Temperature Differential" between iron tip and the

Table 3

Part Number	Temperature of Soldering Iron tip	Preheating Temperature	Temperature Differential (∆T)	Atmosphere
G□□21/31	350°C max.	150°C min.	ΔΤ≦190℃	air
G 32/43/55	280°C max.	150°C min.	ΔT≦130℃	air

*Applicable for both Pb-Sn and Lead Free Solder.

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount when re-working Using a Soldering Iron

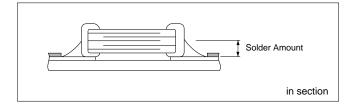
In case of larger sizes than $G \square \square 21$, the top of the solder fillet should be lower than 2/3's of the thickness of the component.

If the solder amount is excessive, the risk of cracking is higher during board bending or under any other stressful conditions.

A Soldering iron ø3mm or smaller should be used. It is also necessary to keep the soldering iron from touching the components during the re-work. Solder wire with ø0.5mm or smaller is required for soldering.

7. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

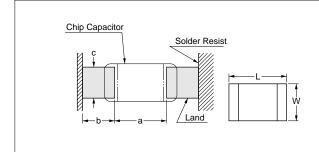

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

components and the PCB), should be within the conditions of table 3.

It is required to keep the temperature differential between the soldering Iron and the components surface (ΔT) as small as possible.

After soldering, do not allow the component/PCB to cool down rapidly.

The operating time for the re-working should be as short as possible. When re-working time is too long, it may cause solder leaching, and that will cause a reduction of the adhesive strength of the terminations.


Notice

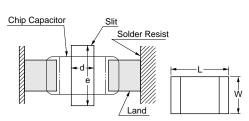
■ Notice (Soldering and Mounting)

1. Construction of Board Pattern

After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)

Flow Soldering $\mathsf{L} \mathsf{X} \mathsf{W}$ b С 2.0×1.25 1.0-1.2 0.9-1.0 0.8-1.1 3.2X1.6 2.2-2.6 1.0-1.1 1.0-1.4


Flow soldering: 3.2×1.6 or less available.

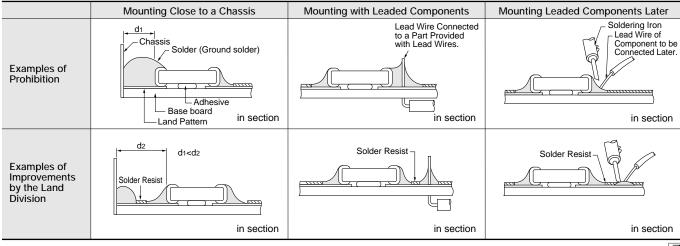
Reflow Soldering

L×W	a	b	С
2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8

(in mm)

Dimensions of Slit (Example)

L×W	d	е
2.0×1.25	-	-
3.2×1.6	1.0-2.0	3.2-3.7
3.2×2.5	1.0-2.0	4.1-4.6
		(in mm)


Preparing slit helps flux cleaning and resin coating on the back of the capacitor.

But, the length of slit design should be shorter enough as much as possible to prevent the mechanical damage in the capacitor.

The longer slit design might receive more severe mechanical stress from the PCB.

Recommendable slit design is shown in the Table.

Land Layout to Prevent Excessive Solder

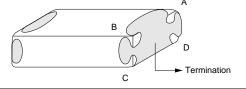
Notice

Continued from the preceding page.

2. Mounting of Chips

 Thickness of adhesives applied Keep thickness of adhesives applied (50-105μm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70µm) and the land pattern (30-35 μ m).

 Mechanical shock of the chip placer When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble. An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting,


causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

3. Soldering

(1) Limit of losing effective area of the terminations and conditions needed for soldering.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

(2) Flux Application

- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering.)
- Flux containing too high percentage of halide may cause corrosion of the outer electrodes unless sufficient cleaning. Use flux with a halide content of 0.2% max.
- Do not use strong acidic flux.
- Do not use water-soluble flux*. (*Water-soluble flux can be defined as non rosin type flux including wash-type flux and non-wash-type flux.)

(3) Solder

The use of Sn-Zn based solder will deteriorate the reliability of the MLCC.

Please contact our sales representative or product engineers on the use of Sn-Zn based solder in advance.

Continued from the preceding page.

4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with the intended equipment.

The residue after cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result it might cause reliability to deteriorate. Please confirm beforehand that there is no problem with the intended equipment in ultrasonic cleansing.

5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

A cracked chip might be caused at the cooling/heating cycle by the amount of resin spreading and/or bias thickness.

The resin for coating and molding must be selected as the stress is small when stiffening and the hygroscopic is low as possible.

■ Rating

1. Capacitance change of capacitor

(1) In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit.

Please contact us if you need detailed information.

(2) In case of U2J char.

Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.

2. Performance check by equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

C03E.pdf 10.5.20

♠ Note:

1 Export Control

<For customers outside Japan>

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For customers in Japan>

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
 -) Undersea equipment) Medical equipment
 - Medical equipment
 Traffic signal equipment
- d in this catalog.

 (2) Aerospace equipment
 (4) Power plant equipment
 (6) Transportation equipment (vehicles, trains, ships, etc.)
 (8) Disaster prevention / crime prevention equipment
 (10) Application of similar complexity and/or reliability requirements to the applications listed above Data-processing equipment
- 3. Product specifications in this catalog are as of March 2010. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or
- 4. Please read rating and 🗘 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

M39014/02-1218V M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0603NPO101F50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO331F50TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC0805X7R224K16TRPLPF NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC1206X7R106K10TRPLPF C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J CCR06CG153FSV CDR04BX104AKSR CDR31BX103AKWR CDR33BX683AKUS CGA3E1X7R1C684K CL05B183KO5NNNC CL10C0R8BB8ANNC M39014/01-1535V M55342H06B20G0R-T/R C1005X5R0G225M C2012X7R2E223K C3216C0G2J272J C3216X5R1H105K D55342E07B35E7R-T/R CDR34BX563BKWS NMC0402NPO220F50TRPF NMC0402X7R562J25TRPF NMC0603NPO102J25TRPF NMC1206X7R332K50TRPF NMC-P1206X7R104K250TRPLPF 726632-1 CGA6M3X7R1H225K CGA5L2X7R2A105K CGA3E2X8R1H223K 1625862-2-CUT-TAPE CDR33BX823AKUR\M500