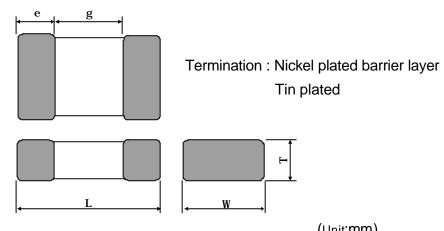

FOR FLOW AND REFLOW SOLDERING CHIP MONOLITHIC CERAMIC CAPACITOR GRM SERIES

1.SCOPE

This product specification is applied to CHIP MONOLITHIC CERAMIC CAPACITOR used for General Electronic equipment.


2.MURATA PART NO. SYSTEM

2.1 NEW PART NO.

3.TYPE

3.1 TYPE & DIMENSIONS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					•	(Unit:I	nm)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TYF	ΡE	L	W	т	е	g	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRM03	3	0.6+/-0.03	0.3+/-0.03	0.3+/-0.03	0.1 to 0.2	0.2 min.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRM15	5	1.0+/-0.05	0.5+/-0.05	0.5+/-0.05	0.15 to 0.35	0.3 min.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRM188	8	1.6+/-0.1	0.8+/-0.1	0.8+/-0.1	0.2 to 0.5	0.5 min.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GRM21		2.0+/-0.1	1.25+/-0.1		0.2 to 0.7	0.7 min.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							••••	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.2.1.0.45	4.0./0.45				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CDM21		3.2+/-0.15	1.6+/-0.15		0.2 to 0.9	1 E min	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GRIVIST					0.3 10 0.8	1.5 mm.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.2+/-0.2	1.6+/-0.2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	3.2+/-0.3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		М						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ν		05./00	1.35+/-0.15		1.0 min	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GRIVI32	С		2.3+/-0.2	1.6+/-0.2	0.3 min.	1.0 min.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		R			1.8+/-0.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D			2.0+/-0.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Е			2.5+/-0.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ν			1.35+/-0.15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		С			1.6+/-0.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GRM43	R	4.5+/-0.4	3.2+/-0.3	1.8+/-0.2	0.3 min.	2.0 min.	
$GRM55 \frac{M}{D} = 5.7 + -0.4 = 5.0 + -0.4 = \frac{1.15 + -0.1}{1.35 + -0.15} = 0.3 \text{ min.} = 2.0 \text{ min.}$		D			2.0+/-0.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Е			2.5+/-0.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		М			1.15+/-0.1			
GRM55 C R D 5.0+/-0.4 5.0+/-0.4 1.6+/-0.2 1.3 min. 2.0 min. 2.0 min.		Ν			1.35+/-0.15			
R 1.8+/-0.2 D 2.0+/-0.2		С		50 / 0 /				
	GRM55	R	5.7+/-0.4	5.0+/-0.4	1.8+/-0.2	0.3 min.	2.0 min.	
		D						
		Е			2.5+/-0.2			

1. Thickness dimensions(T) : According to appendix.

2.GRM18 Series Bulk case packaging is L:1.6+/-0.07mm W/T:0.8+/-0.07mm.

3.GRM21 Series B1 0J 335/475K is L:2.0+/-0.15mm W/T:1.25+/-0.15mm.

4.GRM31 Series B3/R1 1E 225K/M, B1/R1 1C 105/155/225K/M, B1 1A 335K/M,

B1 0J 475K/M, R7 2A 474/684K/M is L:3.2+/-0.2mm, W:1.6+/-0.2 mm.

FUKUI MURATA MFG.CO.,LTD

3.2 TEMPERATURE CHARACTERISTICS (1)Temperature Compensating Type

Code	TEMPERATURE CHARACTERISTICS	Temp. Range	Temp. coeff.(ppm/°C)
2C	СН		0 +/-60
3C	CJ		0 +/-120
4C	СК	-55 to 125°C	0 +/-250
5C	C0G		0+/-30
6C	COH		0+/-60
2P	PH	-25 to 85°C	-150 +/-60
3P	PJ	-25 10 65 °C	-150 +/-120
6P	P2H	-55 to 85°C	-150+/-60
2R	RH		-220 +/-60
3R	RJ	-25 to 85°C	-220 +/-120
4R	RK		-220+/-250
6R	R2H	-55 to 85°C	-220+/-60
2S	SH		-330 +/-60
3S	SJ	-25 to 85°C	-330 +/-120
4S	SK		-330+/-250
6S	S2H	-55 to 85°C	-330+/-60
2T	TH		-470 +/-60
3T	TJ	-25 to 85°C	-470 +/-120
4T	TK		-470+/-250
6T	T2H	-55 to 85°C	-470+/-60
3U	UJ	-25 to 85°C	-750 +/-120
4U	UK	-25 10 65 C	-750 +/-250
7U	U2J	-55 to 85°C	-750+/-120
1X	SL	20 to 85°C	+350 to -1000

(2) High Dielectric Constant Type

Code	TEMPERATURE	Temp. Range	Cap. Change(Within%)	Standard Temp.		
COUE	CHARACTERISTICS	Temp. Range	Cap. Change(Within %)	Standard Temp.		
B1*	В	-25 to 85°C	+/-10			
B3	В	-25 to 85°C +/-10		20°C		
R1*	R	-55 to 125°C	+/-15	20 0		
F1*	F	-25 to 85°C	+30/-80			
R7	X7R	-55 to 125°C	+/-15			
R6	X5R	-55 to 85°C	+/-15			
C7	X7S	-55 to 125°C	+/-22	25°C		
C8	X6S	-55 to 105°C	+/-22			
F5	Y5V	-30 to 85°C	+22/-82			

 * : Add 50% of the rated voltage.

3.3 DC RATED VOLTAGE

Code	0J	1A	1C	1E	1H	2A
DC Rated voltage	6.3V	10V	16V	25V	50V	100V

3.4 NOMINAL CAPACITANCE

Nominal Capacitance shall be expressed by three digits. The first two digits represents significant figures. The last specifies the number of zero to follow. The letter R is used as the decimal point. According to appendix.

(EX.)

Code	Capacitance
R50	0.5pF
5R0	5.0pF
220	22pF
221	220pF

3.5 CAPACITANCE TOLERANCE

Code	Туре	Temperature Characteristics	Capaci	tance Tolerance	Capacitance Step
С	Tomporatura		<10pF	+/-0.25pF	0.5,1,2,3,4,5,7(pF)
D	Temperature	ΔC to ΔX	< TOPF	+/-0.5pF	5,6,7,8,9(pF)
R	Compensating		≧10pF	+/-2.5%	10(pF)
J	Туре		≡TOPF	+/-5%	E24 Step
К	High	B1/B3/R6/R1/R7		+/-10%	E12 Step
М	Dielectric	D1/D3/R0/R1/R1		+/-20%	
Z	Constant Type	F1/F5	-	+80/-20%	E6 Step

*E24 step is also available for GRM03/15/18 1 to 9.1pF.

E Step

E24	1	1.1	1.2	1.3	1.5	1.6	1.8	2	2.2	2.4	2.7	3	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1
E12		1	1.	2	1.	5	1.	8	2.	.2	2.	7	3.3	3	3.	9	4	.7	5.	6	6.	8	8.	2
E6			1			1.	.5			2.	2			3.	.3			4.	7			6.	8	

3.6 PACKAGING

Packaging is the following method. According to Packaging Methods.

Packaging Code	Specification	Packaging Unit
В	Bulk Packaging in a bag	1000pcs/bag (Only GRM43S,GRM55E/F: 500pcs./bag)
D	\$\$\overline{178mm}\$ Paper Tape Carrier Packaging \$\$\$ \$\$\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$	
L	\$\$\overline{178mm}\$\$ Plastic Tape Carrier Packaging \$\$\$ \$\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$	
E		
J	\$\$\overline{330mm} Paper Tape Carrier Packaging \$\$\$ \$\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$	According to Capacitance Value and Tolerance
К	\$\$\overline{330mm}\$\$ Plastic Tape Carrier Packaging \$\$\$ \$\$\$ \$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	
F		
С	Bulk Case Packaging	

4.SPECIFICATIONS

Refer to P10 to P13 for Appendix 1 to 3. Refer to P14 to P16 for Appendix 4. Refer to P17 to P19 for Appendix 5. Refer to P20 to P21 for Appendix 6.

	50				Jiyhe			! - 4!			1470
	DC RATED		Т		Iem	perature	Charact	eristics ai	nd Capacitance(p	F)	φ178 Desker
Туре	VOLTAGE (V)	Code	Thickness (mm)	ΔC	ΔP	ΔR	ΔS	ΔT	ΔU	1X	Packag- ing Unit (pcs/Reel)
	50			-	-	-	-	-	1 to 15	-	
GRM03	25	3	0.3+/-0.03	0.5 to 100	-	1to 100	1to 100	1to 100	16 to 100	-	15000
GRM15	50	5	0.5+/-0.05	0.5 to 1000	3to 30	3to 33	3to 39	3to 100	3 to 200	0.5 to 200	10000
•	25	Ū		180 to 270	-	-	-	-	-	220 to 390	
GRM18	50	8	0.8 +/-0.1	0.5to 2700	3to 160	3to 180	3to 220	3to 470	3 to 750 1000 to 10000	0.5 to 750 1000 to 10000	4000
	25			560 to 1500	-	-	-	-	-	820 to 1500	
		6	0.6 +/-0.1	0.5 to 4700	3to 160	3to 180	3to 240	3to 130	3 to 1300 10000, 12000, 15000, 18000	0.5 to 1300 10000, 12000, 15000, 18000	4000
GRM21	50	9	0.85+/-0.1	1000, 5100 to 15000	180 to 360	200 to 470	270 to 470	150 to 390	1500 to 2200 22000 to 27000	1500 to 2200 22000 to 27000	
		Α	1.0+0/-0.2	-	-	-	-	-	33000	33000	3000
		В	1.25+/-0.1	18000 to 22000	390 to 620	510 to 750	510 to 820	430 to 1800	2400 to 3300 39000 to 47000	2400 to 3300 39000 to 47000	3000
	25	9	0.85+/-0.1	-	-	-	-	-	-	3600 to 4700	4000
		В	1.25+/-0.1	-	-	-	-	-	-	5100 to 6800	3000
		6	0.6+/-0.1	0.5 to 750	3 to 330	3 to 390	3 to 510	3 to 390	3 to 1800	0.5 to 1800	
CDM24	50	9	0.85+/-0.1	820 to 22000, 27000, 33000	360 to 910	430 to 820	560 to 1100	430 to 750	2000 to 6200 56000	2000 to 6200 56000	4000
GRM31		М	1.15+/-0.1	39000 to 47000	1000 to 1600	910 to 1600	1200 to 2000	820 to 4300	6800 to 8200 68000to100000	6800 to 8200 68000to100000	3000
		С	1.6+/-0.2	56000 to 82000	-	-	-	-	-	-	2000
	25	М	1.15+/-0.1	-	-	-	-	-	-	9100 to 16000	3000
		С	1.6+/-0.2	100000	-	-	-	-	-	-	2000
GRM32	50	Ν	1.35+/- 0.15	-	-	-	-	-	-	9100 to 12000	2000
GRM43	50	R	1.8+/-0.2	-	-	-	-	-	-	13000 to 16000	1000
		М	1.15+/-0.1	-	-	-	-	-	-	18000	
GRM55	50	N	1.35+/- 0.15	-	-	-	-	-	-	20000 to 22000	1000
Capacit	ance Tolera	R ance	1.8+/-0.2 (0.5 tc C:+/-0	- 7.0pF) .25pF	- (5.0 to 9 D:+/-0.5	• •	- (More tl J:+/-5%	<u>-</u> nan 10pF	-) (10pF) R:+/-2.5%	24000 to 39000	

Appendix 1. CAPACITANCE VALUE AND TOLERANCE 50V max. <Temperature Compensating Type>

1. Inner electrode : Nickel , Palladium or Silver/Palladium

Appendix 2-1. CAPACITANCE VALUE AND TOLERANCE 50V max. <High Dielectric Constant Type>

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F5 - - - - - - - - - - - - - - - - - - -	
GRM03 16 10 3 10 0.3+/-0.03 100 to 1000 1200 to 10000 1200 to 10000 1200 to 10000 1200 to 10000 1200 to 10000 GRM15 25 5 0.5+/-0.05 220 to 47000 - 220 to 47000 - 2200 to 100000 - 1200 to 10000 - 1500 to 10000 - 1500 to 10000 - 1200 to 10000 - 2200 to 47000 - 2200 to 10000 - 22000 to 10000 - 1000 to 22000 - 1000 to 220000 - 1000 to 22000 - 220 to 10000 - 1000 to 20000 - 1000 to 22000 - 22000 to 10000 -	- - - - - - - - - - - - - - - - - - -	10000 4000 4000
GRM03 16 3 0.3+/-0.03 100 fo 1000 1000 fo 3300 - - 63 - 1200 to 10000 - 1200 to 10000 - 1200 to 10000 -	- - - - - - - - - - - - - - - - - - -	10000 4000 4000
6.3 1200 to 10000 - 1200 to 10000 - - GRM15 25 5 0.5+/-0.05 220 to 4700 - 220 to 4700 - 100 to 15000 10 560 220 to 4700 5600 to 22000 47000 - 1000 to 10000 - 50 25 5 0.5+/-0.05 5600 to 100000 27000 to 47000 - 15000 to 100000 - 33000 to 100000 - 25 7 25 8 220 to 47000 5600 to 22000 - 15000 to 100000 - 15000 to 100000 - 15000 to 100000 15000 to 100000 15000 to 100000 12000 to 22000 - 220 to 47000 - <t< td=""><td>- - - - - - - - - - - - - - - - - - -</td><td>10000 4000 4000</td></t<>	- - - - - - - - - - - - - - - - - - -	10000 4000 4000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- - - - - - - - - - - - - - - - - - -	4000
GRM15 25 0.5+/-0.05 5600 to 22000 470000 5600 to 47000 - 22000 to 100000 10 10 27000 to 47000 56000 to 100000 - 33000 to 100000 - 33000 to 100000 - 33000 to 100000 - 33000 to 100000 - 15000 to 47000 - 15000 to 47000 - 15000 to 47000 - 15000 to 100000 - 15000 to 100000 - 12000 to 47000 - 15000 to 100000 - 12000 to 470000 - 12000 to 220000 -	- - - - - - - - - - - - - - - - - - -	4000
GRM15 5 0.5+/-0.05	- - - - - - - - - - - - - - - - - - -	4000
16 2/000 to 4/000 100000 15000 to 470000 - 33000 to 100000 10 5600 to 100000 - 2700 to 47000 - 15000 to 470000 - 25 25 - 220 to 47000 56000 to 22000 - 15000 to 100000 220000 to 470000 10 25 8200 to 150000 180000 8200 to 220000 - 15000 to 100000 220000 to 470000 10 6.3 0.8 +/-0.1 12000 to 220000 470000 12000 to 470000 - 33000 to 1000000 -	- - - - - - - - - - - - - - - - - - -	4000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- - - - - - - - - - - - - - - - - - -	4000
30 220 is 37000 220 is 47000 220 is 100000 - 100000 220000 is 220000 10 25 8 0.8 +/-0.1 12000 is 33000 390000 is 220000 - 15000 is 1000000 220000 is 220000 - 15000 is 1000000 220000 is 220000 - 15000 is 1000000 12000 is 220000 - 33000 is 1000000 - 10000 is 220000 - 10000 is 220000 220000 - 10000 is 220000 - 10000 is 220000 220000 is 20000 1000000	- 70000 to 1000000 -	4000
25 GRM18 25 16 8 0.8 +/-0.1 8200 to 150000 (12000 to 330000) (12000 to 330000) (12000 to 470000) (12000 to 220000) (12000 to 33000) (12000 to 130000) (12000 to 13000) (12000 to 13000) (12000 to 13000) (12000 to 13000) (12000 to 13000) (12000 to 127000) (12000 to 1270000) (12000 to 12	- 70000 to 1000000 -	4000
GRM18 16 8 0.8 +/-0.1 12000 to 330000 12000 to 470000 - 220000 to 470000 - 10 -6.3 12000 to 220000 470000 12000 to 470000 - 33000 to 1000000 -	- 70000 to 1000000 -	4000
Instruct	- 70000 to 1000000 -	4000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 70000 to 1000000 -	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 70000 to 1000000 -	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	- 70000 to 1000000 -	
50 9 0.85+/-0.1 27000 is 39000 330000 27000 is 39000 330000 100000 is 150000 100 B 1.25+/-0.1 47000 to 100000 470000 470000 150000to 220000 220000 20000 <t< td=""><td>-</td><td></td></t<>	-	
B 1.25+/-0.1 47000 to 100000 470000 470000 to 100000 150000to 220000 25 6 0.6+/-0.1 10000 to 33000 - 10000 to 33000 - 33000 to 68000 9 0.85+/-0.1 39000 to 68000 470000, 39000 to 68000 - 220000, to 270000 - 220000, to 470000 - 220000, to 470000 - 220000, to 470000 -	-	3000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	3000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	3000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	4000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	3000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	4000
B 1.25+/-0.1 100000,2200000 - 680000 to 1000000 - 4700000 6.3 B 1.25+/-0.1 2200000 - <td>-</td> <td>4000</td>	-	4000
6.3 B 1.25+/-0.15 330000.4700000 - </td <td>-</td> <td>3000</td>	-	3000
6 0.6+/-0.1 220 to 15000 - 220 to 15000 - 1000 to 47000 50 M 1.15+/-0.1 220 to 100000 - 220 to 100000 - 1000 to 47000 50 M 1.15+/-0.1 120000 to 220000 1000000 120000 to 220000 390000 to 470000	-	3000
9 0.85+/-0.1 220 to 100000 - 220 to 100000 270000 to 330000 68000 to 330000 50 M 1.15+/-0.1 120000 to 220000 1000000 120000 to 220000 390000 to 470000 470000	-	
50 M 1.15+/-0.1 12000 to 22000 100000 120000 to 22000 330000 68000 to 330000 50 M 1.15+/-0.1 120000 to 220000 120000 to 220000 390000 to 470000 470000	-	4000
M 1.15+/-0.1 120000 to 220000 1000000 120000 to 220000 470000 470000	-	
1500000	-	3000
	_	2000
220000		2000
6 0.6+/-0.1 18000 to 33000 - 18000 to 33000 - 68000 to 150000 0 0.95+/-0.4 39000 to 150000 39000 to 150000 39000 to 150000 39000 to 150000	-	4000
9 0.85+/-0.1 270000 to 680000 - 270000 to 680000 - 220000 to 470000	-	
25 M 1.15+/-0.1 180000 to 220000 - 180000 to 220000 - 680000 to 4700000	-	2000
1.15+/-0.15 - 2200000 2200000	-	3000
C 1.6+/0.2 3300000, 6800000000	-	2000
4700000	- 1	
GRM31 6 0.6+/-0.1 47000 to 56000 - 47000 to 56000 - 220000 68000 to 220000 68000 to 220000	-	
9 0.85+/-0.1 330000, - 330000, - 330000, - 330000 to 470000 470000 to 560000 - 1000000 - 1000000	-	4000
16 115+/01 270000 270000 680000 to 1700000	-	
M 680000 to 820000 680000 to 820000	- 1	3000
1.15+/-0.15 1500000, 2200000 - 1500000, 2200000 - - C 1.6, / 0.2 4700000 3300000, 2300000 4700000 - -		
C 1.6+/-0.2 4700000 3300000, 4700000 - 9 0.85+/-0.1 820000 to 1000000 2200000, 3300000 - 820000 to 1000000 - 2200000 to 3300000	-	4000
40 4700000 to	-	4000
M 1.15+/-0.1 220000 - 1000000	-	
C 1.6 +/-0.2 4700000, 10000000 - 10000000 - - - - - - 10000000 - - - - - - 10000000 - - - - - - - 10000000 - - - - - 10000000 - - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - - 10000000 - - 10000000 - - - 100000000 -		3000
6.3 C 1.6 +/-0.2 4700000	-	3000 2000
Capacitance Tolerance K:+/-10%, M +/-20% Z : +80/-20%		3000

1.Inner electrode : Nickel , Palladium , or Silver/Palladium

JEMCG0-4240B

FUKUI MURATA MFG. CO., LTD.

Appendix 2-2. CAPACITANCE VALUE AND TOLERANCE 50V max.

<High Dielectric Constant Type>

	DC		Т	Te	emperature	Characteristics and	Capacitance	e (pF)		φ178
Туре	RATED VOLTAGE (V)	Code	Thickness (mm)	B1	B3/R6	R1/R7	R7	F1/F5	F5	Packag- ing Unit (pcs/Reel)
		М	1.15+/-0.1	390000 to 470000	-	390000 to470000	-	-	-	3000
	50	Ν	1.35+/-0.15	180000 to220000 560000 to680000	-	180000 to220000 560000 to680000	-	680000	-	2000
	50	R	1.8 +/-0.2	820000 to1000000	-	820000 to1000000	-	1000000	-	1000
		D	2.0+/-0.2	-	3300000	-	-	-	1000000	1000
		Е	2.5+/-0.2	-	4700000	-	-	-	-	1000
		9	0.85+/-0.1	-	-	-	-	4700000	-	4000
	25	Ν	1.35+/-0.15	-	-	-	1500000	10000000	-	2000
GRM32	25	R	1.8 +/-0.2	2200000	-	-	2200000	-	-	1000
0		D	2.0+/-0.2	3300000,4700000	-	3300000,4700000		-	-	1000
		М	1.15+/-0.1	2200000	-	2200000	-	-	-	3000
	16	Ν	1.35+/-0.15	3300000	-	3300000	-	1000000	-	2000
	10	R	1.8 +/-0.2	4700000	-	4700000	-	-	-	1000
		D	2.0+/-0.2	1000000	10000000	1000000	-	-	-	1000
		9	0.85+/-0.1	-	-	-	-	1000000	-	4000
	10	D	2.0+/-0.2	-	-	-	10000000	-	-	1000
	10	Е	2.5 +/-0.2	1000000	-	-	-	-	-	1000
GRM43	50	R	1.8 +/-0.2	270000 to 680000	-	270000 to 680000	-	1000000 to 2200000	-	1000
GRIVI43		D	2.0 +/-0.2	-	-	1500000	-	-	-	500
		Е	2.5 +/-0.2	-	-	2200000	-	-	-	500
	25	Е	2.5 +/-0.2	-	-	4700000	-	-	-	500
GRM55	50	R	1.8 +/-0.2	560000 to1500000	-	560000 to1500000	-	3300000 to 4700000	-	1000
GRIVDD		D	2.0+/-0.2	-	10000000	3300000	-	-	-	1000
		Е	2.5+/-0.2	-	-	4700000	-	-	-	500
	25	D	2.0+/-0.2	1000000	-	1000000	-	-	-	1000
C	apacitance	Tole	rance		K:+/-10%,	M:+/-20%		Z:+80)/-20%	

1.Inner electrode : Nickel , Palladium , or Silver/Palladium

Appendix 3. CAPACITANCE VALUE AND TOLERANCE(100V)

	DC			Tempe	erature Characteris	tics and Capacitanc	e	φ178
Turne	RATED		Т	Tempe	erature		electric	Packag-
Туре	VOLTAGE			Compensa	ating Type	Consta	nt Type	ing Unit
	(V)	Code	Thickness (mm)	ΔC	1X	R7	F5	(pcs/Reel)
GRM15	100	5	0.5+/-0.05	-	-	220 to 4700	-	10000
GRM18	100	8	0.8+/-0.1	0.5 to 1000	0.5 to 430	220 to 3300, 100000	1500 to 4700	4000
		6	0.6+/-0.1	100 to 560	-	-	-	
GRM21	100	9	0.85+/-0.1	0.5 to 91, 620 to 1500	0.5 to 750	220 to 6800	680 to 6800	4000
		В	1.25+/-0.1	-	820 to 2000	8200 to 47000	10000 to 22000	3000
		9	0.85+/-0.1	0.5 to 5600	0.5 to 1800	220 to 15000, 100000	1000 to 22000	4000
GRM31	100	М	1.15+/-0.1	-	2000 to 4700	18000 to 82000 150000, 220000	33000 to 47000	3000
			1.15+/-0.15	-	-	470000, 680000	-	
		С	1.6+/-0.2	-	-	1000000	-	2000
		Μ	1.15+/-0.1	-	-	47000	68000	3000
		Ν	1.35+/-0.15	-	5100 to 6800	56000 to 100000	68000 to 100000	2000
GRM32	100	С	1.6+/-0.2	-	-	680000,1000000	-	2000
		D	2.0+/-0.2	-	-	1500000	-	1000
		Ш	2.5+/-0.2	-	-	1000000,2200000	-	1000
		N	1.35+/-0.15	-	7500 to 8200	-	-	
		R	1.8+/-0.2	6200 to 12000	9100 to 16000		150000 to 330000	1000
GRM43	100	D	1.6+/-0.2	-	-	390000 to 470000 1500000	-	1000
		Е	2.5+/-0.2	-	-	2200000	-	500
		Μ	1.15+/-0.1	-	18000	-	-	
		Ν	1.35+/-0.15	13000 to 16000	20000 to 22000	270000	-	
		R	1.8+/-0.2	18000 to 30000	24000 to 39000	330000 to 560000	470000 to 680000	1000
GRM55	100	D	1.6+/-0.2	-	-	820000 to 1000000 3300000	-	1000
		E	2.5+/-0.2	-	-	4700000	-	500
C	Capacitance	e Tolera	nce		C:+/-0.25pF D:+/-0.5pF) J:+/-5%	K:+/-10% M:+/-20%	Z:+80/-20%	

1.Inner electrode : Nickel , Palladium , or Silver/Palladium

Appendix 4. CAPACITANCE VALUE

	DC		Т		Temperature	Characte	ristics and (Canacita	nce (uF)		φ178
Туре	RATED		Thickness							I	Packag-
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VOLTAGE (V)	Code	(mm)	B1	B3/R6	R7	R1/R7	C8	C7	F1/F5	ing Unit (pcs/Reel)
GRM03	6.3	3	0.3+/-0.03	0.015 to 0.033	0.047 to 0.10	-	-	-	-	-	15000
GRM15	10	5	0.5+/-0.05	-	0.15to 1.0	-	-	-	-	0.22to 1.0	10000
	6.3			0.15to 0.33	0.47, 1.0	-	-	-	-	1.0	
	16	5	0.5+0/-0.1	-	1.0	-	-	-	-	-	-
	25			-	0.47, 1.0 0.47	-	-	-	-	-	_
GRM18	16		0.8+/-0.1	-	1.0, 2.2	-	-	-	1.0	-	4000
	10	8	0.8+/-0.1	-	2.2	-	-	-	1.0	2.2, 4.7	
	6.3			2.2	2.2, 4.7	-	-	-	2.2	2.2, 4.7	
	4	6	0.6+/-0.1	-	- 1.0	-	-	4.7	2.2	-	4000
	25	ь В	1.25+/-0.15	-	2.2, 3.3,	- 2.2	-	-		-	3000
		Б 6	0.6+/-0.1		4.7				-		3000
		9	0.85+/-0.1	-	2.2	-	-	-	-	-	4000
	16			-	2.2, 3.3,	-	-			-	
GRM21		В	1.25+/-0.1	-	4.7	-	-	-	-	-	3000
		6	0.6+/-0.1	1.0	2.2	-	-	-	-	-	4000
	10	9	0.85+/-0.1 1.25+/-0.1	2.2	<u>3.3, 4.7</u> 10	-	-	-	-	-	
		В	1.25+/-0.15	-	3.3, 4.7	-	-	-	3.3,4.7	-	3000
		9	0.85+/-0.1	4.7	4.7, 10	-	-	-	-	-	4000
	6.3	В	1.25+/-0.1	10	10	-	-	-	-	10	3000
			1.25+/-0.15 0.6+/-0.1	-	22 2.2	-	-	-	-	-	
	25	6 9	0.85+/-0.1	-	4.7	-	-	-	-	-	4000
	20	Č	1.6+/-0.2	-	10	-	-	-	-	-	3000
	16	6	0.6+/-0.1	-	2.2	-	-	-	-	-	4000
		9	0.85+/-0.1	-	4.7	-	-	-	-	-	
GRM31		6 9	0.6+/-0.1 0.85+/-0.1	- 4.7	3.3, 4.7 10	-	-	-	-	-	4000
	10	M	1.15+/-0.1	-	10	-	-	-	-	-	3000
		С	1.6+/-0.2	-	-	-	-	-	-	22	2000
		9	0.85+/-0.1	10	10	-	-	-	-	-	4000
	6.3	M	1.15+/-0.1	-	10	-	-	-	-	-	3000
	25	С	1.6+/-0.2	-	15, 22, 47	-	-	-	-	22	2000
	25	E C	2.5+/-0.2 1.6+/-0.2	-	- 22	-	-	-	-	- 22	1000 2000
	16	Ē	2.5+/-0.2	-	22, 47	-	-	-	-	-	1000
		N	1.35+/-0.15	-	22	-	-	-	-	-	2000
GRM32	10	C E	1.6+/-0.2 2.5+/-0.2	- 22	- 47	-	- 22	-	-	22	2000 1000
		D	2.0+/-0.2	22	33	-	-	-	-	-	1000
	6.3	E	2.5+/-0.2	-	47, 100	-	-	-	-	100	1000
	4	Е	2.5+/-0.2	-	-	-	-	100	-	-	1000
	16	Е	2.5+/-0.2	22	-	-	-	-	-	-	500
	10	D	2.0+/-0.2	-	33	-	-	-	-	-	1000
GRM43		E D	2.5+/-0.2 2.0+/-0.2	22 33	47	-	22	-	-	-	500 1000
	6.3	E	2.0+/-0.2	47	-	-	-	-	-	-	500
		S	2.8+/-0.2	-	100	-	-	-	-	-	500
GRM55	6.3	F	3.2+/-0.2	100	-	-	-	-	-	-	300
C	Capacitanc	e Toler	ance	K : +/-10% M : +/-20%	Not apply to	GRM2 GRM3 GRM3 GRM3 GRM3 GRM3	21BB3/R60 21BB3/R60 31CB3/R60 32DB3/R60 32EB3/R60 32EB3/R60 32EC80G10 43SB3/R60	G226M J476M J336M J476M J107M D7M		Z: +80/-20%	

Appendix 5. CAPACITANCE VALUE

No	MURATA New P/N	SIZE	(mm)	T(mm)		DC RATED VOLTAGE	CAP.		CAP.TOL.
		L	W	~ /		(V)			
1	GRM 31M F5 1C 106 Z A12 L	3.2	1.6	1.15+/-0.1	F5	16	10	μF	+80/-20%

No	MURATA New P/N	CUSTOMER P/N	φ178 PACKAGING Q'TY (pcs/Reel)
1	GRM 31M F5 1C 106 Z A12 L		3000

1. Inner electrode : Nickel, Palladium, or Silver/Palladium.

Appendix 6. CAPACITANCE VALUE

No	MURATA New P/N	SIZE	(mm)	T(mm)	T.C.	DC RATED VOLTAGE			CAP.TOL.
_		L	W			(V)	-		
1	GRM 188 R6 0J 106 M E47 D	1.6	0.8	0.8+/-0.1	R6	6.3	10	μF	+/-20%

No	MURATA New P/N	CUSTOMER P/N	φ178 PACKAGING Q'TY (pcs/Reel)
1	GRM 188 R6 0J 106 ME47 D		4000

1. Inner electrode : Nickel, Palladium, or Silver/Palladium.

			DNS AND TEST	Specific		Γ				
No	Iten	n	Temperature Compensating T		High Dielectric Constant Type	ĺ		Test Met	hod	
1	Operating Tempo Range	erature	$\Delta C, 1X = 55^{\circ}C$ to $125^{\circ}C$ Other := 25^{\circ}C to $85^{\circ}C$		B1,B3,F1:-25°C to 85°C R1,R7:-55°C to 125°C R6:-55°C to 85°C C8:-55°C to 105°C F5:-30°C to 85°C			emperature : 20 °C F5 : 25 °C)		
2	Rated Voltage		See the previous pages.			m W V	nay be app Vhen AC v	voltage is defined as blied continuously to the oltage is superimposed ever is larger, shall be ge.	capacitor. I on DC vol	tage, V ^{P-P} or
3	Appearance		No defects or abnormalitie				'isual inspe			
4	Dimension		Within the specified dimer	nsions			lsing calipe GRM02 siz	ers. e is based on Microsco	npe)	
5	Dielectric Streng	ıth	No defects or abnormalitie	es.		N (tr (h te cu	lo failure s emperatur high diele erminations urrent is le	shall be observed whe e compensating type) ectric constant type) s for 1 to 5 seconds, pl ess than 50mA.	n 300% of or 250% of is applie rovided the	the rated voltaged between th charge/discharg
6	Insulation Resis	tance	$C \stackrel{=}{=} 0.047 \mu$ F:More than 10 C > 0.047 μ F:500 $\Omega \cdot$ F		C:Nominal Capacitance	no m	ot exceedi nax. and	on resistance shall be ing the rated voltage a within 2 minutes harge current is less th	at 20°C /25 of chargin	5°C and 75%R
7 8	Capacitance Q/Dissipation Fa	ctor (D F)	Within the specified toleral	nce. [B1,B3,R1,F	26 R7 C8			ance/D.F. shall be mea ency and voltage show		
0			30pF and over: $Q \stackrel{>}{=} 1000$ 30pF and below: $Q \stackrel{>}{=} 400+20C$ C:NominalCapacitance	W.V.:100V: : 0.05 W.V.:25/50\ W.V.:16/10\	0.025max.(C< 0. 068μF) max.(C [≥] 0.068μF) / :0.025max. / :0.035max. V :0.05max.(C<3.3μF)		ltem Freque	Char. ∆C to 3U,1X (1000pF and below) ncv 1±0.1MHz	∆C t (more th B1,R1,R 1±	o 3U,1X aan 1000pF) 86,R7,F1,F5 0.1kHz
		Γ	(pF)	[F1,F5] W.V.:25Vmi :0.05max :0.09max W.V.:16/10\ W.V.:6.3V:0	κ. (C<0.1μF) κ.(C ≟0.1μF) /:0.125max. .15max.		Voltac	ae 0.5 to 5Vrms		.2Vrms
9	Capacitance Temperature Characteristics	No bias	Within the specified tolerance.(Table A-1)	R1,R7 : Wit (R6 : With (C8 : With (F1 : With	-25°C to +85°C)	sp (1 TI m S ca te TI be	pecified te 1)Tempera he temper neasured in Vhen cyclir (+20°C to apacitance emperature he capacit etween the		be ermind usin uentially fro effs.:+20°C ecified toler tance chan d by dividin um measur	g the capacitanc om step 1 through to +85°C) the ance for the ge as Table A-1. g the differences
					n +22/-82%		Step	Tempera	ture(°C)	
		50% of		B1: Within +	-30°C to +85°C) -10/-30%		1	20:		
		the rated		R1: Within -			2	-55±3(for ÄC)/-25±3(for 20:	,	
		voltage		F1: Within +	-30/-95%		4	125±3(for ÄC)/85		er TC)
		Capacitance	Within±0.2% or±0.05pF			ŤI Va	he ranges alue over t	20: electric Constant Type of capacitance changes the temperature ranges pecified ranges.*	ge compar	
		Drift	(Whichever is larger.) *Not apply to 1X/25V			m	neasured a	pplying voltage, the ca fter 1 more min. with a n of each temp. stage. Temperature(°C	pplying volt	
						╟		· · ·	<i>'</i>	voltage(V)
				type	surement for high dielectric constant		1 2	20±2/25±2 -55±3(for R1,R7,R6,C -25±3(for B1,B3,F1)/ -30±3(for F5)	,	No bias
				one hour an temperature	d then set for 48±4 hours at room		3 4	20±2/25±2 125±3(for R1,R7)/ 105±3(for C8) 85±3(for B1,B3,R6,,F	-1,F5)	
							5 6 7	20±2 -55±3(for R1)/ -25±3(for B1,F1) 20±2		50% of the rated
						ľ	8	125±3(for R1)/ 85±3(for B1,F1)		voltage

FUKUI MURATA MFG. CO., LTD.

				Specific	ation						
No	Iter	n	Temperature Compensating Ty	/pe	High Dielectric Constant Type			Test M	lethod		
10	Adhesive Strer Termination	ngth of	No removal of the terminat	ions or other	defect shall occur.	Fig witl The me uni	der the capacito .1a using an eute in the test jig for 1 e soldering shall be form and free I(GRM02),2N(GR Type GRM02 GR□3 GR□15 GRM18 GRM21 GRM31 GRM32 GRM33 GRM55	ectic solder. T 0±1sec. De done eithe e conducted v e of defe	hen apply 10 r with an iror vith care so t cts such	N ★ force in n or using the that the sold as heat	i parallel e reflow dering is
11	Resistance		No defects or abnormalitie Within the specified tolerar			sar	der the capacito ne manner and u e capacitor shall	nder the sam	e conditions	as (10).	
	c	λ/D.F.	30pF and over:Q [≥] 1000 30pF and beloow: Q ≧400+20C C:Nominal Capacitance (pF)	: 0.05r W.V.:25/50V W.V.:16/10V W.V.:6.3V/4' :0.1r [F1,F5] W.V.:25Vmir :0.05max	0.025max. (C< 0. 068 μ F) max. (C ² 0.068 μ F) \prime :0.025max. \prime :0.035max. V :0.05max. (C<3.3 μ F) max. (C ² 3.3 μ F) n c. (C <0.1 μ F) k. (C ² 0.1 μ F) \prime :0.125max.	uni frec trav for	ring a total ampl formly between t quency range, fro versed in approxi a period of 2 actions(total of 6	the approxim form 10 to 55H mately 1 minu hours in e	ate limits of Iz and retur ute. This mo	10 and 55 n to 10Hz, tion shall be	Hz. The shall be applied
12	Deflection		No crack or marked defect	shall occur.		Fig dire dor cor	der the capacitor .2a using an erection shown in he either with an inducted with care ects such as hea	utectic solde Fig 3a for 5 iron or using so that the	r. Then app ≟1 sec. The the reflow n	oly a force soldering s nethod and	in the shall be shall be
									\$4.5		
			R230_	Press	sunzing d:1.0mm/sec. sunze		(Type GRM02 GR⊡03 GR⊡15	Fig.2 GRP15,GRM 0.2 0.3 0.4	18 : t:0.8mm b 0.56 0.9 1.5	t:1.6mm) 0.23 0.3 0.5	
			45	citance me 45 ig.3a	Flexure: ≦ 1 ter		GRM18 GRM21 GRM31 GRM32 GRM43 GRM55	1.0 1.2 2.2 2.2 3.5 4.5	3.0 4.0 5.0 5.0 7.0 8.0	1.2 1.65 2.0 2.9 3.7 5.6 (in mi	m)
13	Solderability of Termination		75% of the terminations is and continuously.	to be soldere	d evenly	ros Pre Afte	nerse the capacit in (JIS-K-5902) (2 heat at 80 to 120 er preheating, im 0.5 seconds at 23	25% rosin in v) ° for 10-to 3 merse in an e	weight propo 0 seconds.	(JIS-K-8101 tion) .	I) and

				Cassifi	ention						PT
No		Item	Temperature Compensating Ty	Specifi pe	High Dielectric Constant Type			T	Fest Metho	bd	
	Resista Solderin		The measured and observed the specifications in the follo	d characteri	stics shall satisfy	Ir	mmerse th	e capacitor at 12 ne capacitor in a C for 10±0.5 se	n eutectic s	solder Solution	perature f
	[Appearance	No defects or abnormalities.					s (temperature			•
ĺ		Capacitance	Within ±2.5% or± 0.25pF	B1.B3.R1	,R6,R7,C8:Within ±7.5%		•	ctric constant typ			
		Change	(Whichever is larger)	F1,F5	:Within ±20%	ተ		Soldering metho er type: SnAgCu		soldering	
		Q/D.F.	30pF and over:Q≧ 1000 30pF and beloow: Q≧ 400+20C C:Nominal Capacitance (pF)	W.V.:100\ : 0.0 W.V.:25/5 W.V.:16/1 W.V.:6.3V	I,R6,R7,C8] /: 0.025max.(C< 0. 068 μ F))5max.(C $\stackrel{?}{=}$ 0.068 μ F) 0V :0.025max. 0V :0.035max. /4V:0.05max. (C<3.3 μ F) 1max.(C $\stackrel{?}{=}$ 3.3 μ F)	P s P	Initial mea Perform a et at room Perform the *Preheati Step	surement for hig heat treatment a h temperature for e initial measure ng for GRM32/43	h dielectric at 150+0/-1 r 48±4 hou ment. 3/55 erature	10°C for one ho irs.	ne
				:0.05m :0.09m	ax. (C <0.1μF) nax. (C <u>=</u> 0.1μF) 0V:0.125max.	ł	1 2		to 120°C to 200°C	1 m	
		I.R.	More than 10,000MΩ or 500 (Whichever is smaller)	Ω·F							
		Dielectric Strength	No defects.								
15	Tempera	ature Cycle	The measured and observed the specifications in the follo		stics shall satisfy	n P	nanner an Perform the	acitor to the sup d under the sam e five cycles acc	e condition ording to th	ns as (10). he four heat	
		Appearance	No defects or abnormalities.					shown in the foll	•		20) 12
		Capacitance	Within ±2.5% or± 0.25pF	B1,B3,R1	,R6,R7,C8 :Within ±7.5%			±2 hours (temp dielectric consta			be) or 48
		Change	(Whichever is larger)	1	:Within ±20%			e, then measure			
			>	- · ·	I,R6,R7,C8]		Step	1	2	3	4
			30pF and over: $Q = 1000$		/: 0.025max.(C< 0. 068µF) 05max.(C ≟ 0.068µF)			Min.	Deem	Max.	Deem
		Q/D.F.	30pF and beloow: Q = 400+20C	W.V.:25/5	0V :0.025max.		Temp.	Operating	Room Temp.	Operating	Room Temp.
			C:Nominal Capacitance	W.V.:6.3V	0V :0.035max. /4V :0.05max.(C<3.3μF) 1max.(C ≟ 3.3μF)		Time (min)	Temp.+0/-3 30±3	2 to 3	Temp.+3/-0 30±3	2 to 3
			(pF)	:0.09m	ax. (C <0.1μF) nax. (C≕ 0.1μF) 0V:0.125max.	P	Perform a et at room	asurement for hig heat treatment a h temperature for e initial measure	at 150+0/-1 r 48±4 hou	0.°C for one ho	
		1.0	Mana (han 40.000MO an 500								
		I.R.	More than 10,000MΩ or 500 (Whichever is smaller)	27.L							
ĵ		Dielectric	No defects.			——————————————————————————————————————					
		Strength									
16	Humidity		The measured and observed		stics shall satisfy			acitor at 40±2°C	and in 90) to 95% humidu	ty
	(Steady	Appearanc	the specifications in the follo No defects or abnormalities.			R		hours. nd set for 24±2 h pe) or 48±4 hou	· ·		
		Capacitan ce	Within ±5% or± 0.5pF (Whichever is larger)		R6,R7,C8:Within ±12.5% Within ±30%		0 71	erature, then me			···· ·9P0)
		Change Q/D.F.	30pF and over: $Q \ge 350$ 10pF and over 30pF and below: $Q \ge 275+2.5C$ 10pF and below: $Q \ge 200+10C$ C:Nominal Capacitance	W.V.:100V : 0.07 W.V.:25/50 W.V.:16/10 W.V.:6.3V	,R6,R7,C8] (: 0.05max.(C < 0.068μF) 75max.(C ≥ 0.068μF) DV :0.05max. 0V :0.05max. (4V:0.075max.(C<3.3μF) 25max.(C ≥ 3.3μF)						
			(pF)	:0.125n W.V.:16/10 W.V.:6.3V	nax. (C<0.1μF) nax. (C ≟ 0.1μF) 0V:0.15max.						
		I.R.	More than 1,000M Ω or 50 Ω (Whichever is smaller)	۰F							

FUKUI MURATA MFG. CO., LTD.

No				Specification						
-	l	tem	Temperature		High Dielectric Constant Type		Test Metho	d		
17 H	lumidity Lo	ad	Compensating Type The measured and observed		· · · ·		-	and 90 to 95% hum		
		Appearance	the specifications in the follo No defects or abnormalities.					for 24±2 hours (temperation of the second seco		
		Capacitance	Within ±7.5% or±0.75pF		R6,F7,C8:Within ±12.5%	at room tempra is less than 50r		ne charge/discharge cu		
		Change	(Whichever is larger)	F1,F5 :W [W.V.:10Vm	Vithin ±30% ıax.]	Initial measure	ement for F1/10Vmax.			
			30pF and over: $Q \ge 200$	F1 :Within+		Apply the rated	DC voltage for 1 hour			
		Q/D.F.	30pF and below: Q = 100+10C/3 C:Nominal Capacitance (pF)	$\begin{array}{l} W.V.:25/50V:0.05max.\\ W.V.:16/10V:0.05max.\\ W.V.:16.3V:0.075max.(C<3.3\mu F)\\ :0.125max.(C \geqq 3.3\mu F)\\ [F1,F5]\\ W.V.:25Vmin\\ :0.075max.(C<0.1\mu F)\\ :0.125max.(C \geqq 0.1\mu F)\\ \end{array}$				m temperature.		
				:0.125ma W.V.:16/10\	ax. (C ≧ 0.1µF) √:0.15max.					
		I.R.	More than 500M Ω or 25 Ω ·F	W.V.:6.3V:0						
18 Hi	ligh Tempe		The measured and observed		,	Apply 200% c	of the rated voltage	atThe maximum oper		
-	oad	latare	the specifications in the follo		es shall satisfy		for 1000±12 hours.	attine maximum oper		
		Appearance	No defects or abnormalities.				ours (temperature comp			
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	F1,F5 :W [Except 10) C=	R6,R7,C8:Within ±12.5% Vithin ±30% (max and = 1.0. μF] hin+30/-40%	temperature, th The charge/disc	charge current is less t	han 50mA.		
	c			 Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximun operturbative ±3°C for one hour. Remove and set for 48±4 						
Ī			30pF and over:Q \ge 350	[B1,B3,R1,F	· · ·	at room temperature.				
		Q/D.F.	10pF and over 30pF and below: $Q \stackrel{>}{=} 275+2.5C$ 10pF and below:	: 0.075 W.V.:25/50 W.V.:16/10	$0.05max.(C < 0.068\mu F)$ $5max.(C \ge 0.068\mu F)$ $\vee :0.04max.$ $\vee :0.05max.$ $\vee :0.075max.(C < 3.3\mu F)$	Perform initial r	Perform initial measurement.			
		I.R.	Q≧200+10C C:Nominal Capacitance (pF) More than 1,000MΩor 50Ω ·	:0.12 [F1,F5] W.V.:25Vmi :0.075ma :0.125ma W.V.:16/10\ W.V.:6.3V:0	25max.(C [≥] 3.ậµF) in ax. (C <0.1µF) ax. (C ≥ 0.1µF) V:0.15max. 0.2max.	_				
					Canacitanas Chan	•				
e A-1	1				Capacitance Chang					
A-1 Char.		nal Values	-55		-2	5	-	10		
Char.		/) Note 1	Max.	Min.	Max.	Min.	Max.	Min.		
Char. 2C	(ppm	/) Note 1 0± 60	Max. 0.82	-0.45	Max. 0.49	Min. -0.27	Max. 0.33	Min. -0.18		
Char.	(ppm	/) Note 1	Max.		Max.	Min.	Max.	Min.		
Char. 2C 3C 4C 2P	(ppm.	/) Note 1 0± 60 0±120 0±250 50± 60	Max. 0.82 1.37	-0.45 -0.90	Max. 0.49 0.82 1.54 1.32	Min. -0.27 -0.54 -1.13 0.41	Max. 0.33 0.55 1.02 0.88	Min. -0.18 -0.36 -0.75 0.27		
Char. 2C 3C 4C 2P 3P	(ppm)	/) Note 1 0± 60 0±120 0±250 50± 60 50± 120	Max. 0.82 1.37 2.56 - -	-0.45 -0.90 -1.88 	Max. 0.49 0.82 1.54 1.32 1.65	Min. -0.27 -0.54 -1.13 0.41 0.14	Max. 0.33 0.55 1.02 0.88 1.10	Min. -0.18 -0.36 -0.75 0.27 0.09		
Char. 2C 3C 4C 2P 3P 4P	(ppm)	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 50±250	Max. 0.82 1.37 2.56 - - - -	-0.45 -0.90 -1.88 - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45	Max. 0.33 0.55 1.02 0.88 1.10 1.57	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30		
Char. 2C 3C 4C 2P 3P 4P 2R	(ppm)	/) Note 1 0±60 0±120 0±250 50±60 50±120 50±250 20±60	Max. 0.82 1.37 2.56 - -	-0.45 -0.90 -1.88 	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48		
Char. 2C 3C 4C 2P 3P 4P	(ppm	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 50±250	Max. 0.82 1.37 2.56 - - - - - - -	-0.45 -0.90 -1.88 - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45	Max. 0.33 0.55 1.02 0.88 1.10 1.57	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30		
Char. 2C 3C 4C 2P 3P 3P 4P 2R 3R	(ppm)	/) Note 1 0± 60 0±120 0±250 50± 60 50± 120 50± 250 20± 60 20± 120	Max. 0.82 1.37 2.56 - - - - - - - - -	-0.45 -0.90 -1.88 - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4R 2S 3S	(ppm)	/) Note 1 0± 60 0±120 0±250 50± 60 50±250 20± 60 20±120 20±250 30± 60 30± 120	Max. 0.82 1.37 2.56 - - - - - - - - - - - - -	-0.45 -0.90 -1.88 - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 1.76	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4R 2S 3S 4S	(ppm)	$ \begin{array}{c} \ / \) \ Note \ 1 \\ \hline 0 \pm 60 \\ 0 \pm 120 \\ 0 \pm 250 \\ \hline 50 \pm 60 \\ \hline 50 \pm 120 \\ \hline 50 \pm 250 \\ 20 \pm 60 \\ 20 \pm 120 \\ 20 \pm 250 \\ \hline 30 \pm 60 \\ \hline 30 \pm 120 \\ \hline 30 \pm 250 \\ \end{array} $	Max. 0.82 1.37 2.56 - - - - - - - - - - - - -	-0.45 -0.90 -1.88 - - - - - - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 1.76 2.23	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4R 2S 3S 4S 2T	(ppm -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -4	/) Note 1 0 ± 60 0 ± 120 0 ± 250 50 ± 60 50 ± 250 20 ± 250 20 ± 120 20 ± 250 30 ± 250 30 ± 250 70 ± 60	Max. 0.82 1.37 2.56 - <	-0.45 -0.90 -1.88 - - - - - - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07	Min. -0.27 -0.54 -1.13 0.41 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.76 2.23 2.05	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23		
Char. 2C 3C 2P 3P 4P 2R 3R 4R 2S 3S 4S 2T 3T	(ppm -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	/) Note 1 0± 60 0±120 0±250 50± 60 50±250 20± 60 20±120 20±250 30± 60 30±120 30±120 30±250 70± 60 70±120	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 1.76 2.23 2.05 2.27	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05		
Char. 2C 3C 2P 3P 4P 2R 3R 4R 2S 3S 4S 2T 3T 4T	(ppm -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12	Min. -0.27 -0.54 -1.13 0.41 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 2.23 2.05 2.27 2.74	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4R 2S 3S 4S 2T 3T 4T 3U	(ppm -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	/) Note 1 0± 60 0±120 0±250 50± 60 50±250 20± 60 20±120 20±250 30± 60 30±120 30±250 70±60 70±120 70±250 50±120	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94	Min. -0.27 -0.54 -1.13 0.41 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 2.23 2.05 2.27 2.74 3.29	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4P 2R 3R 4P 2R 3R 4P 2R 3R 4T 3T 4T 3U 4U 1X	(ppm)	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12	Min. -0.27 -0.54 -1.13 0.41 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 2.23 2.05 2.27 2.74	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4R 2S 3S 4S 2T 3T 4T 3U 4U	(ppm)	$ \begin{array}{c} \ \) \ \ Note \ 1 \\ \hline 0 \pm 60 \\ 0 \pm 120 \\ 0 \pm 250 \\ 50 \pm 60 \\ 50 \pm 120 \\ 20 \pm 250 \\ 20 \pm 120 \\ 20 \pm 120 \\ 20 \pm 120 \\ 20 \pm 120 \\ 30 \pm 250 \\ 30 \pm 120 \\ 30 \pm 250 \\ 70 \pm 120 \\ 70 \pm 120 \\ 70 \pm 120 \\ 70 \pm 250 \\ 50 \pm 120 \\ 50 \ 250 \\ \end{array} $	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65	Min. -0.27 -0.54 -1.13 0.41 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 -	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.54 1.54 1.76 2.23 2.05 2.27 2.74 3.29 3.77 -	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 -		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4P 2R 3R 4P 2R 3R 4P 2R 3R 4T 3T 4T 3U 4U 1X	(ppm -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 20± 250 20± 60 20±120 20±250 30± 120 30±250 70± 60 70±120 70±250 50±120 50 250 0 -1000 mal Values	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65 - Capacitance Chance -3	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 -	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 1.76 2.23 2.05 2.27 2.74 3.29 3.77 -	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 - -		
Char. 2C 3C 2P 3P 4P 2R 3R 4R 2S 3R 4R 2S 3S 4S 2T 3T 4T 3U 4U 1X A-2 Char.	(ppm) -11 -11 -11 -12 -22 -22 -22 -33 -33 -33 -33 -3	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 20± 200 20± 120 20± 120 20± 120 30± 60 30± 120 30± 250 70± 60 70± 120 50 250 0 -1000 mal Values 2C) Note 1	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65 - Capacitance Chance -3 Max	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 - - be from 25 °C (%) 0 Min	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 1.76 2.23 2.05 2.27 2.74 3.29 3.77 -	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 - - 10 Min		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4P 2R 3R 4P 2R 3R 4P 2R 3R 4T 3T 4T 3U 4U 1X A-2	(ppm) 1 1 1 1 1 1 1 	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 20± 250 20± 60 20±120 20±250 30± 120 30±250 70± 60 70±120 70±250 50±120 50 250 0 -1000 mal Values	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65 - Capacitance Chance -3	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 - - the from 25 °C (%)	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 1.76 2.23 2.05 2.27 2.74 3.29 3.77 -	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 - -		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4P 2R 3P 4P 2R 3P 4P 2R 3P 4P 2R 3R 4P 2R 3R 4P 2R 3R 4S 2T 3T 4T 4U 4C 4C 4C 4C 4C 4C 4C 4C 4C 4C	(ppm) -11 -11 -11 -12 -22 -22 -22 -22	/) Note 1 0± 60 0±120 0±250 50± 60 50±250 20±250 20±120 20±250 30± 60 30±120 30±250 70± 60 70±250 50±120 50±250 0 -1000 mal Values 2C) Note 1 0± 30	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65 - Capacitance Chance - Max 0.40	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 - - the from 25 °C (%) 0 Min -0.17	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.35 1.83 1.54 2.05 2.05 2.27 2.74 3.29 3.77 - Max 0.25	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 - - 10 Min -0.11		
Char. 2C 3C 2P 4P 2P 3P 4P 2R 3R 4R 2S 3S 4S 4S 4S 4S 4T 3U 4U 1X A-2 Char. 6C 6R	(ppm 1 1 1 1 1 1 1 2 2 2	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 20± 60 20± 200 20± 200 20± 250 30± 120 30± 120 30± 250 70± 120 70± 120 70± 250 50± 120 50± 250 0 -1000 mal Values ² C) Note 1 0± 60 50± 60 20± 60	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65 - Capacitance Chance -3 Max 0.40 0.59 1.61 2.08	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 - - the from 25 °C (%) 0 Min -0.17 -0.33 0.50 0.88	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.57 1.13 1.35 1.83 1.54 1.76 2.23 2.05 2.27 2.74 3.29 3.77 - Max 0.25 0.38 1.02	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 - - 10 Min -0.21 0.32 0.56		
Char. 2C 3C 4C 2P 3P 4P 2R 3R 4P 2R 3R 4P 2R 3R 4T 3S 4S 2T 3T 4T 3U 4T 3U 4T 3U 4T 5C 6C 6P	(ppm) 1 1 1 1 1 1 1 	/) Note 1 0± 60 0±120 0±250 50± 60 50±120 20± 250 20± 60 20± 120 20± 250 30± 60 30± 120 30± 250 70± 60 70± 120 50± 120 50± 50 50± 120 50± 50 100 100 100 100 100 100 100 1	Max. 0.82 1.37 2.56 -	-0.45 -0.90 -1.88 - - - - - - - - - - - - -	Max. 0.49 0.82 1.54 1.32 1.65 2.36 1.70 2.03 2.74 2.30 2.63 3.35 3.07 3.40 4.12 4.94 5.65 - Capacitance Chance .3 Max 0.40 0.59 1.61	Min. -0.27 -0.54 -1.13 0.41 0.14 -0.45 0.72 0.45 -0.14 1.22 0.95 0.36 1.85 1.58 0.99 2.84 2.25 - - me from 25 °C (%) 0 Min -0.17 -0.33 0.50	Max. 0.33 0.55 1.02 0.88 1.10 1.57 1.13 1.57 1.13 1.57 1.13 1.57 2.23 2.05 2.27 2.74 3.29 3.77 - Max 0.25 0.38 1.02	Min. -0.18 -0.36 -0.75 0.27 0.09 -0.30 0.48 0.30 -0.09 0.81 0.63 0.24 1.23 1.05 0.66 1.89 1.50 - - 10 Min -0.21 0.32		

-		AND TEST METHODS	Test Method
No 1	Item Operating Temperature	Specification B1,B3,F1,F5 :-25°C to 85°C	Test Method Standard Temperature : 20°C
1	Range	B1,B3,F1,F5 :-25°C to 85°C R1,R7:-55°C to 125°C C6,R6:-55°C to 85°C C7:-55°C to 125°C C8:-55°C to 105°C	(R6,R7,C6,C7,C8,F5 : 25°C)
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V^{P-P} or V^{O-P} , whichever is larger, shall be maintained within the rated voltage range.
3	Appearance	No defects or abnormalities.	Visual inspection.(GRM02 size is based on Microscope)
<u>4</u> 5	Dimension Dielectric Strength	Within the specified dimensions No defects or abnormalities.	Using calipers. No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance	More than 50Ω · F	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at Standard Temperature and 75%RH max. and within 1 minutes of charging, provided the charge/discharge current is less than 50mA.
7	Capacitance	*Table 1 GRM155 B3/R6 1A 124 to 105 GRM185 B3/R6 1C/1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106 GRM319 B3/R6 1A 106	The capacitance shall be measured at Standard Temperature at the frequency and voltage shown in the table. Capacitance Frequency Voltage *1 C $\leq 10\mu$ F (10V min) 1+/-0.1kHz 1.0+/-0.2Vrms C $\leq 10\mu$ F (6.3V max.) 1+/-0.1kHz 0.5+/-0.1Vrms C > 10\muF 120+/-24Hz 0.5+/-0.1Vrms *1 However the Voltage is 0.5+/-0.1Vrms about Table 1 items on the left side.
8	Dissipation Factor (D.F.)	B1,B3,R1,R6,R7,C7,C8 : 0.1 max. C6 :0.125 max F1,F5 : 0.2 max *Table 1 GRM155 B3/R6 1A 124 to 105 GRM185 B3/R6 1C/1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1A 106	The D.F. shall be measured at Standard Temperature at the Frequency and voltage shown in the table.CapacitanceFrequencyVoltage*1 C $\leq 10\mu$ F (10V min)1+/-0.1kHz1.0+/-0.2VrmsC $\leq 10\mu$ F (6.3V max.)1+/-0.1kHz0.5+/-0.1VrmsC > 10\muF120+/-24Hz0.5+/-0.1Vrms*1 However the Voltage is 0.5+/-0.1Vrms about Table 1 items on the left side.
9	Capacitance Temperature Characteristics 50% of the rated voltage	B1,B3 : Within +/-10% (-25°C to +85°C) R1,R7 : Withn ±15% (-55°C to +125°C) F1,F5 : Within +30/-80% (-25°C to +85°C) R6 : Within +/-15% (-55°C to +85°C) C6 : Within +/-22% (-55°C to +85°C) C7 : Within +/-22% (-55°C to +125°C) C8 : Within +1-22% (-55°C to +105°C) B1: Within +10/-30% R1: Within +15/-40% F1: Within +30/-95%	The capacitance change shall be measured after 5min. at each specified temp.stage. The ranges of capacitance change compared with the Standard Temperature value over the temperature ranges shown in the table shall be within the specified ranges.* In case of applying voltage, the capacitance change shall be measured after 1 more min. with applying voltage in equilibration of each temp. stage.*GRM43 B1/R6 0J/1A 336/476 only : $1.0\pm 0.2Vrms$ StepTemperature(°C)Applying voltage(V)1 $20+/-2$ * $-25+/-3(for R1,R6,R7,C6,C7,C8)$ $-25+/-3(for B1,B3,F1,F5,R6,C6)$ 4 2 $-55+/-3(for B1,B3,F1,F5,R6,C6)$ 4 4 $125+/-3(for R1,R7,C7)$ $105+/-3(for R1)$ 5 5 $20+/-2$ 6 $-55\pm 3(for R1)$ $-25+/-3(for B1,F1,F5)$ 7 $20+/-2$ 8 $125\pm 3(for R1)$ $85\pm 3(for B1,F1,F5)$ 7 $20+/-2$ 8 $125\pm 3(for R1)$ $85\pm 3(for B1,F1,F5)$ *Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour
			Perform a neat treatment at $150 + 0/-10^{\circ}$ C for one hour and then set for 48 ± 4 hours at room temprature. Perform the initial measure-ment.

No	Item		Specification	Test Method	
10	Adhesive Strength of Termination	No removal of the te	erminations or other defect shall occur.	Solder the capacitor on the test jig board)shown in Fig.1a using an eutectic sol 10N* force in parallel with the test jig for 10- The soldering shall be done either with an in 	lder. Then apply +/-1sec. iron or using the care so that the h as heat shock.
11	Vibration Resistance	Appearance Capacitance Q/D.F.	No defects or abnormalities. Within the specified tolerance. B1,B3,R1,R6,R7,C7,C8:0.1max. C6 : 0.125 max F1,F5 : 0.2 max	Solder the capacitor on the test jig (glass of the same manner and under the same cond The capacitor shall be subjected to a s motion having a total amplitude of 1.5mm being varied uniformly between the approxir and 55Hz. The frequency range, from 10 return to 10Hz, shall be traversed in a minute. This motion shall be applied for a per in each 3 mutually perpendicular direct hours).	litions as (10). simple harmonic n, the frequency mate limits of 10 0 to 55Hz and approximately 1 eriod of 2 hours
12	Deflection	No crack or marked	defect shall occur.	Solder the capacitor on the test jig (glass shown in Fig.2a using an eutectic solder. force in the direction shown in Fig 3a for soldering shall be done either with an irc reflow method and shall be conducted with soldering is uniform and free of defects such	. Then apply a 5+/-1 sec. The on or using the care so that the
		45	20 50 Pressunzing Pressunze Flexure:≤1 aoitance meter 45 Fig.3a	(GRM02,GR□03/15 : t:0 Type a b GRM02 0.2 0.56 GR□03 0.3 0.9 GR□15 0.4 1.5 GRM18 1.0 3.0 GRM21 1.2 4.0 GRM31 2.2 5.0 GRM32 2.2 5.0 GRM32 2.2 5.0 GRM43 3.5 7.0 GRM55 4.5 8.0	1.8mm) C 0.23 0.3 0.5 1.2 1.65 2.0 2.9 3.7 5.6 (in mm)
13	Solderability of Termination	75% of the terminat and continuously.	ions is to be soldered evenly	Immerse the capacitor in a solution of ethan and rosin (JIS-K-5902) (25% rosin in weight Preheat at 80 to 120°C for 10-to 30 second After preheating, immerse in an eutectic sole 2+/-0.5 seconds at 230+/-5°C.	t propotion) . ds.

14	Item		Specification			t Method	-		
14	Resistance to Soldering Heat	Appearance	No defects or abnormalities.	Immerse	the capacitor at the capacitor in	an euteo	ctic solder sol	ution at	
		Capacitance Change	B1,B3,R1,R6,R7,C6,C7,C8:Within+/-7.5% F1,F5 : Within +/-20%	tempera		+/-2 ł	nours (tem	at room perature	
		Q/D.F.	B1,B3,R1,R6,R7,C7,C8: 0.1 max. C6 : 0.125 max F1,F5 : 0.2 max	constan *GRM02	t type), then mea 2- Soldering meth	sure. od:Reflo	hours (high o	ulelectri	
		I.R.	More than $50\Omega \cdot F$	 Initial n 	older type: SnAgC neasurement for a heat treatment	high diel	ectric constar	it type	
		Dielectric Strength	No defects .	and ther	the initial measu	perature			
				*Preheating for GRM32/43/55 Step Temperature Time					
				Step 1 2	100°C to 170°C to	o 120°C	1 m 1 m	nin.	
15	Temperature Sudden Change	Appearance	No defects or abnormalities.	manner Perform	and under the sa the five cycles a	ame conc ccording	to the four he		
	-	Capacitance Change	B1,B3,R1,R6,R7,C6,C7,C8:Within+/-7.5% F1,F5 : Within +/-20%	Set for 2	24+/-2 hours (ter	nperatur	e compensat		
		Q/D.F.	B1,B3,R1,R6,R7,C7,C8: 0.1 max. C6 : 0.125 max F1,F5 : 0.2 max		4 hours (high die ture, then measu	a the supporting jig in the same the same conditions as (10). cles according to the four heat in the following table. ins (temperature compensating type gh dielectric constant type) at room measure. 2 3 4 ing Room Temp. Operating Temp.			
		I.R.	More than $50\Omega \cdot F$	Step	1	2	3	4	
		Dielectric Strength	No defects .	Temp. (°C)	Min. Operating	Room	Max.	Room	
				Time (min)	Temp.+0/-3 30+/-3	2 to 3	30+/-3	2 to3	
				Perform and ther Perform	neasurement for a heat treatment n set at room tem the initial measu	t at 150 perature rement.	+0/-10℃ for (e for 48+/-4 hc	one hou ours.	
16	High Temperature		No defects or abnormalities.	Perform and ther Perform Apply th humidity	a heat treatment o set at room term the initial measu e rated voltage a for 500+/-12 hor	t at 150 perature rement. t 40+/-2° urs. The	+0/-10°C for (e for 48+/-4 hc °C and 90 to 9	one hou ours.	
16	Temperature High Humidity			Perform and ther Perform Apply th humidity currentis	a heat treatmen n set at room tem the initial measu e rated voltage a for 500+/-12 hor s less than 50mA	t at 150 perature rement. t 40+/-2° urs. The	+0/-10°C for (e for 48+/-4 hc °C and 90 to 9	one hou ours.	
16	Temperature High	Capacitance Change Q/D.F.	B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5%	Perform and ther Perform Apply th humidity currentis . Initial r Perform and the	a heat treatmen n set at room tem the initial measu e rated voltage a for 500+/-12 hous s less than 50mA measurement a heat treatmen n let sit for 48+/-	t at 150 perature rement. it 40+/-2° urs. The it at 150- 4 hours	+0/-10°C for (e for 48+/-4 hc ?C and 90 to 9 o charge/disch +0/-10°C for (5% arge	
16	Temperature High Humidity	Capacitance Change Q/D.F.	B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5% F1,F5 : Within +/-30% B1,B3,R1,R6,R7,C6,C7,C8: 0.2 max.	Perform and ther Perform Apply th humidity currentis • Initial r Perform and ther Perform	a heat treatmen n set at room tem the initial measu e rated voltage a for 500+/-12 hous s less than 50mA measurement a heat treatmen n let sit for 48+/- the initial measu	t at 150 perature rement. tt 40+/-2° urs. The urs. The t at 150 4 hours rement.	+0/-10°C for (e for 48+/-4 hc ?C and 90 to 9 o charge/disch +0/-10°C for (5% arge	
16	Temperature High Humidity	Capacitance Change Q/D.F.	B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5% F1,F5 : Within +/-30% B1,B3,R1,R6,R7,C6,C7,C8: 0.2 max. F1,F5 : 0.4 max	Perform and ther Perform Apply th humidity currentis · Initial r Perform and ther Perform · Measu Perform	a heat treatmenn n set at room tem the initial measu e rated voltage a for 500+/-12 hous s less than 50mA measurement a heat treatment n let sit for 48+/- the initial measu urement after test a heat treatment n let sit for 48+/-	t at 150 perature rement. t 40+/-2° urs. The t at 150- t hours rement. t t at 150+	+0/-10°C for (e for 48+/-4 hc ?C and 90 to 9 o charge/disch +0/-10°C for (at room temp	5% arge one hou berature	
	Temperature High Humidity	Capacitance Change Q/D.F.	B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5% F1,F5 : Within +/-30% B1,B3,R1,R6,R7,C6,C7,C8: 0.2 max. F1,F5 : 0.4 max	Perform and ther Perform Apply th humidity currentis - Initial r Perform and ther Perform and ther then me Apply 15 the max	a heat treatmenn n set at room tem the initial measu e rated voltage a for 500+/-12 hor s less than 50mA measurement a heat treatmenn n let sit for 48+/- the initial measu rrement after test a heat treatmenn n let sit for 48+/- asure.	t at 150 perature rement. tt 40+/-2° urs. The urs. The t at 150- t hours rement. t at 150+ 4 hours t at 150+ 4 hours	+0/-10°C for 6 e for 48+/-4 hc °C and 90 to 9 o charge/disch +0/-10°C for 6 at room temp -0/-10 °C for 6 at room temp -0/-10 °C for 6 at room temp	5% arge one hou perature one hou perature hours a et sit for	
	Temperature High Humidity (Steady)	Capacitance Change Q/D.F. I.R. Appearance	B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5% F1,F5 : Within +/-30% B1,B3,R1,R6,R7,C6,C7,C8: 0.2 max. F1,F5 : 0.4 max More than 12.5Ω · F	Perform and ther Perform Apply th humidity currentis - Initial r Perform and ther Perform and ther then me Apply 15 the max 48+/-4 h The cha	a heat treatmenn n set at room tem the initial measu e rated voltage a for 500+/-12 hors s less than 50mA measurement a heat treatmenn n let sit for 48+/- the initial measu rement after test a heat treatmenn n let sit for 48+/- asure.	t at 150 perature rement. tt 40+/-2° urs. The tt at 150- 4 hours rement. tt at 150+ 4 hours t at 150+ 4 hours voltage fe emperature	+0/-10°C for 6 e for 48+/-4 hc PC and 90 to 9 o charge/disch +0/-10°C for 6 at room temp -0/-10 °C for 6 at room temp -0/-10 °C for 6 at room temp	5% arge one hou perature one hou perature hours a et sit for re.	
	Temperature High Humidity (Steady)	Capacitance Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5% F1,F5 : Within +/-30% B1,B3,R1,R6,R7,C6,C7,C8: 0.2 max. F1,F5 : 0.4 max More than 12.5Ω · F No defects or abnormalities. B1,B3,R1,R6,R7,C6,C7,C8:Within +/-12.5%	Perform and ther Perform Apply th humidity currentis · Initial r Perform and ther Perform and ther then me Apply 15 the max 48+/-4 h The cha · Initial r Perform and ther	a heat treatmenn set at room tem the initial measu e rated voltage a for 500+/-12 hors a less than 50mA measurement a heat treatmenn n let sit for 48+/- the initial measu rement after test a heat treatmenn n let sit for 48+/- asure.	t at 150 perature rement. tt 40+/-2° urs. The tt at 150- 4 hours rement. tt at 150- 4 hours voltage fe emperature urrent is tt at 150- 4 hours	+0/-10°C for 6 e for 48+/-4 hc PC and 90 to 9 o charge/disch +0/-10°C for 6 at room temp -0/-10 °C for 6 at room temp -0/-10°C for 6 e, then measu less than 50m +0/-10°C for 6	5% arge one hou perature one hou perature hours a et sit for re. nA.	

JEMCGS-0052U

No	Item	Specification	Test Method
1	Operating Temperature	R7/C7 :-55°C to +125°C	Standard Temperature:25 °C
	Range	R6 :-55°C to +85°C F5 :-30°C to +85°C	
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V $^{P-P}$ or V $^{O-P}$, whichever is larger, shall be maintained within th
3	A =======	No defecto en obrecumeditico	rated voltage range.
3	Appearance Dimension	No defects or abnormalities. Within the specified dimensions.	Visual inspection. Using calipers.
	Dielectric Strength	No defects or abnormalities.	No failure shall be observed when 250% of the rated
U			voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance	$\label{eq:constraint} \begin{array}{l} C \stackrel{\leq}{=} 0.047 \mu F: More than 10000 M\Omega \\ (GRM188R61C334-105K:100\Omega \cdot F) \\ C > 0.047 \mu F: 500\Omega \cdot F \\ C : Nominal Capacitance \end{array}$	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25 °C and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is less than 50mA. * 5 minutes (GRM188R6/334-105K)
7	Capacitance	Within the specified tolerance.	The capacitance/D.F. shall be measured at 25 °C at the frequency and voltage shown in the table.
8	Q/Dissipation Factor	[R6,R7,C7]	
	(D.F.)	W.V.:100V :0.05max. W.V.:35/25/16V :0.035max. W.V.:10V :0.05max.(C< 3.3μ F) :0.1max.(C $\leq 3.3\mu$ F) [F5] W.V.:50V :0.07max.(C < 0.1 μ F) :0.09max.(C $\geq 0.1\mu$ F) W.V.:35/25/16V.:0.125max.	Char. Item Frequency Voltage 1±0.1kHz Voltage 1±0.2Vrms
9	Capacitance Temperature Characteristics	R7 : Withn ±15% (-55°C to +125°C) R6 : Withn ±15% (-55°C to +85°C) F5 : Within +22/-82% (-30°C to +85°C) C7 : Withn ±22% (-55°C to +125°C)	The capacitance change shall be measured after 5min. at each specified temp.stage. The ranges of capacitance change compared with the 25 °C value over the temperature ranges shown in the table shall be within the specified ranges.* $\underbrace{\begin{array}{ c c c c c c c c c c c c c c c c c c $
10	Adhesive Strength of Termination	No removal of the terminations or other defect shall occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig.1a using a n eutectic solder. Then apply *10N force in parallel with the test jig for 10± 1sec.The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heal shock.*5N (GRP/M15, GRM18) 2N (GRP/M03)Type a b c GRP/M03GRP/M030.30.90.30.90.3GRM181.03.01.2GRM181.2GRM211.24.01.65GRM312.25.02.9
			GRM43 3.5 7.0 3.7
	1		GRM55 4.5 8.0 5.6
			(in:mm)

11 Vibration Resistance	e	No defects or abnormalities. Within the specified tolerance. [R6,R7,C7] W.V.:100V :0.05max. W.V.:35/25/16V :0.035max. W.V.:35/25/16V :0.035max. W.V.:10V :0.05max. (C< 3.3 μ F) :0.1max.(C \ge 3.3 μ F) [F5] W.V.:50V :0.07max.(C< 0.1 μ F) :0.09max.(C \ge 0.1 μ F) W.V.:35/25/16V.:0.125max. No crack or marked defect shall occur.	Solder the capacitor on the test jig (glass epoxy board) in thesame manner and under the same conditions a (10). The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed inapproximately 1 minute. This motion shall be appliedfor a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) shown in Fig.2a using an eutectic solder. Then apply a force in the direction shown in Fig 3a for 5±1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.
	e Capacitance	Within the specified tolerance. [R6,R7,C7] W.V.:100V :0.05max. W.V.:35/25/16V :0.035max. W.V.:10V :0.05max. (C< 3.3μ F) :0.1max.(C \geq 3.3μ F) [F5] W.V.:50V :0.07max.(C< 0.1μ F) :0.09max.(C \geq 0.1μ F) W.V.:35/25/16V.:0.125max.	 in thesame manner and under the same conditions a (10). The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed inapproximately 1 minute. This motion shall be appliedfor a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) shown in Fig.2a using an eutectic solder. Then apply a force in the direction shown in Fig 3a for 5±1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.
12 Deflection		No crack or marked defect shall occur.	shown in Fig.2a using an eutectic solder. Then apply a force in the direction shown in Fig 3a for 5 ± 1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.
		20, 50 Pressunzing speed:1.0mm/sec. Pressunze	Image: constraint of the second state of the second sta
13 Solderability of Terminat		Flexure:≤1 Capacitance meter 45 45 Fig.3 75% of the terminations is to be soldered evenly and continuously.	GRM18 1.0 3.0 1.2 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 GRM31 2.2 5.0 2.0 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 5.6
			Preheat at 80 to 120 °C for 10-to 30 seconds. After preheating, immerse in an eutectic solder solution for 2 ± 0.5 seconds at 230 ± 5 °C.
14 Resistance Soldering H	Heat	The measured and observed characteristics shall satisfy the specifications in the following table.	Preheat the capacitor at 120 to 150 ° C for 1 minute. Immerse the capacitor in a n eutectic solder solution at $270\pm5^{\circ}$ C for 10 ± 0.5 seconds. Set at room temperature
	opearance	No defects or abnormalities.	for 48± 4 hours (high dielectric constant type), then measure.
Cr	apacitance nange D.F.	$\begin{array}{l} \text{R6,R7:Within } \pm 7.5\% \\ \text{F5} ::Within \pm 20\% \\ \hline [\text{R6,R7,C7]} \\ \text{W.V.:100V : 0.05max} \\ \text{W.V.:35/25/16V : 0.035max.} \\ \text{W.V.:10V:0.05max. (C< 3.3\muF)} \\ & :0.1max.(\text{C} \stackrel{>}{=} 3.3\mu\text{F}) \\ \hline [\text{F5]} \end{array}$	 Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then set at room temperature for 48± 4 hours. Perform the initial measurement.
		W.V.:50V	*Preheating for GRM32/43/55
		:0.07max.(C < 0.1μF) :0.09max.(C ≟ 0.1μF)	Step Temperature Time
I.R	۶.	W.V.:35/25/16V.:0.125max. More than 10.000MΩ or 500Ω · F	1 100°C to 120°C 1 min.
Die	electric rength	(Whichever is smaller) No defects .	2 170°C to 200°C 1 min.

No	-	Item	Specification			Test Meth			
15	I empera	ature Cycle	The measured and observed characteristics shall satisfy the specifications in the following table.		pacitor to the s				
		Appearance	No defects or abnormalities.	manner and under the same conditions as (10). Perform the five cycles according to the four heat					
		Capacitance	R6,R7,C7 :Within ±7.5%	treatment	s shown in the	following t	able.		
		Change	F5 :Within $\pm 20\%$				ic constant type	e)	
		<u>-</u>	[R6,R7,C7]		emperature, the	en measu	re.		
			W.V.:100V :0.05max	Step	1	2	3	4	
		Q/D.F.	W.V.:35/25/16V :0.035max. W.V.:10V :0.05max.(C< 3.3μF)	Temp.	Min.	Room	Max.	Room	
		G/D.1 .	$(C \ge 3.3F)$	(°C)	Operating Temp.+0/-3	Temp.	Operating Temp.+3/-0	Temp.	
			[F5]	Time	30±3	2to3	30±3	2to3	
			Ŵ.V.:50V :0.07max.(C < 0.1μF)	(min)	30±3	2105	30±3	2105	
			(0.07 max) (0.09 max) (0.1 max)						
			W.V.:35/25/16Vmax.:0.125max.	· Initial me	easurement for	high diele	ctric constant ty	ре	
		I.R.	More than 10,000 MΩ or $500\Omega \cdot F$	Perform a	a heat treatmen	t at 150 +0)/-10°C for one l	hour	
		Dielectric	(Whichever is smaller) No defects.	and then	set at room ten he initial measu	perature f	or 48± 4 hours.		
		Strength		Penomit	ne miliai measu	rement.			
16	Humidity		The measured and observed characteristics shall satisfy			^o C and in	90 to 95% humi	iduty	
	(Steady		the specifications in the following table.	for 500±1		4 hours a	t room tempera	ture	
		Appearance	No defects or abnormalities.	then mea		+ nours a	i iooni tempera	ure,	
		Capacitance Change	R6,R7,C7:Within ±12.5% F5 :Within ±30%		· -				
		Change	[R6,R7,C7]	1					
			W.V.:100V :0.075max						
			W.V.:35/25/16V :0.05max.						
		Q/D.F.	W.V.:10V:0.075max.(C< 3.3µF) :0.125max.(C ≧ 3.3µF)						
			[F5]						
			W.V.:50V						
			:0.1max.(C < 0.1μF) :0.125max.(C ≧ 0.1μF)						
			W.V.:35/25/16V.:0.15max.						
		I.R.	More than 1,000 MΩ or $50\Omega \cdot F$						
		Dielectric	(Whichever is smaller) No defects						
		Strength							
17	Humidity	/ Load	The measured and observed characteristics shall satisfy the specifications in the following table.	Apply the rated voltage * at 40±2°C and 90 to 95% humidi for 500±12 hours. Remove and set for 48±4 hours at roo					
		Appearance	No defects or abnormalities.	tempratu	e, then muasur	e.			
		Capacitance	R6,F7,C7:Within ±12.5%	The charge	ge/discharge cu R61A105K:6.3	irrent is le	ss than 50mA.		
		Change	F5 :Within ±30%		0.01A1051.0.5	v			
			[R6,R7,C7]		easurement for				
			Ŵ.V.:100V :0.075max		rated DC volta		our at 40± 2ºC. room temperatu	ire	
		005	W.V.:35/25/16V :0.05max. W.V.:10V:0.075max(C< 3.3μF)		nitial measurem				
		Q/D.F.	:0.125max.(C ≟ 3.3µF)						
			[F5] W.V.:50V						
			:0.1max.(C < 0.1uF)						
			$:0.125 \text{max.}(\text{C} \stackrel{>}{=} 0.1 \mu\text{F})$						
		I.R.	W.V.:35/25/16Vmax.:0.15max. More than 500MΩ or 25Ω · F	1					
			(Whichever is smaller)						
		Dielectric Strength	No defects .						
18		mperature	The measured and observed characteristics shall satisfy	Apply 12	5% of the rated	voltage at	the maximum		
	Load	•	the specifications in the following table.	operating	temperature ±3	3ºC for 100	00±12 hours.	<i>```</i>	
		Appearance	No defects or abnormalities.		48±4 hours (hi		ic constant type	e) at	
		Capacitance	R6,R7,C7:Within $\pm 12.5\%$		ge/discharge cu		ss than 50mA.		
		Change	F5 :Within $\pm 30\%$ [Except 25Vmax and C $\stackrel{\geq}{=} 1.0. \mu$ F] [R6.R7.C7]	l		and the second	anta a second		
			W.V.:100V :0.075max		easurement for 5% of the rated		ectric constant ty e at the	/pe.	
		Q/D.F.	W.V.:35/25/16V :0.05max. W.V.:10V:0.075max.(C< 3.3μF)	maximun	operating temp	erature ±	3°C for one hou	ur. Remo	
			:0.125max.(C ≧3.3μF)	and set for	or 48±4 hours a	t room ten			
			[F5] W.V.:50V	Performi	nitial measurem	ient.			
			:0.1max.(C < 0.1µF)						
			:0.125màx.(C≟ 0.1μF) W.V.:35/25/16Vmax.:0.15max.						
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$]					
		Dialactria	(Whichever is smaller) No defects .	1					
		Dielectric							

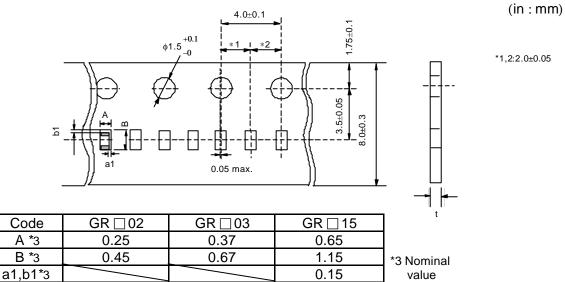
		SPECIFICATION S AND TEST METH	ODS P 20
No	Item	Specification	Test Method
1	Operating Temperature Range	R6: -55°C to +85°C	
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, shall be maintained within the rated voltage range.
	Appearance	No defects or abnormalities.	Visual inspection.
	Dimensions	Within the specified dimension.	Using calipers.
		No defects or abnormalities.	No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance	50Ω· F min.	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25 °C and 75%RH max. and within 1 minutes of charging.
	Capacitance	Within the specified tolerance.	The capacitance/D.F. shall be measured at 25 °C at the frequency and voltage shown in the table.
ð	Dissipation Factor (D.F.)	0.125 max.	$\begin{tabular}{ c c c c c } \hline Capacitance & Frequency & Voltage \\ \hline C &\leq 10 \mu F (10 V min.) & 1 \pm 0.1 \text{kHz} & 1.0 \pm 0.2 \text{ Vrms} \\ \hline C &\leq 10 \mu F (6.3 V max.) & 1 \pm 0.1 \text{kHz} & 0.5 \pm 0.1 \text{ Vrms} \\ \hline \end{tabular}$
			C > 10µF 120± 24Hz 0.5± 0.1 Vrms
٥	Capacitance		The capacitance change shall be measured affter 5 min.at each
9	Temperature	Char. Temp.Range Referenc Cap.Change	specified temperature stage.
	Characteristics	e Temp.	The ranges of capacitance change compared with the 25 °C value
		R6 -55°C to +85°C 25°C Within ±15%	over the temperature ranges shown in the table shall be within the specified ranges.
10	Adhesive Strength of Termination	No removal of the terminations or other defects shall occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply *10N force in parallel with the test jig for 10±1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N (GR □15, GRM18)/2N (GR □03)
		°┵┍┍┍┍┼┿╸	Type a b c
			GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5
		Solder resist	GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 (in mm)
		Fig.1 Baked electrode or copper foil	GRM21 1.2 4.0 1.65
			GRM31 2.2 5.0 2.0
			GRM32 2.2 5.0 2.9
			GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 5.6
11	Vibration	Appearance No defects or abnormalities.	Solder the capacitor to the test jig (glass epoxy board) in
		CapacitanceWithin the specified tolerance.D.F0.125 max.	the same manner and under the same conditions as (10). The capacitor shall be subjected to a simple harmonic motion having a
		D.F 0.125 max.	total amplitude of 1.5mm, the frequency being varied uniformly
			between
			the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately
			minute.
			This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).

		SPECI	FICATIONS AND TEST MET	HOI	DS			P 2'	1	
No	ltem		Specification			Tes	t Method	ł		
12	Deflection	No cracking	or marking defects shal occur. 150 Pressunzing speed:1.0mm/sec.	usi Fig ref	Ider the capaci ng a eutectic s .3. The solderi low method an uniformand fre	older. Then ap ng shall be dor d shall be cond	ply a for ne either ducted w	ce in the dire with an iron c ith care so th	ction show	wn in ne
		R230//	Pressunze			Туре		a b	c	:
		V				GR □03	0	0.3 0.9	0.	3
						GR □15	0	.4 1.5	0.	5
		Capaci	tance meter		¢4.5	GRM18	1	.0 3.0	1.	2
		45	_45			GRM21	1	.2 4.0	1.6	65
				-ø	40	GRM31	2	.2 5.0	2.	0
		Fig			<u> </u> _	GRM32	2	.2 5.0	2.	9
			r			GRM43	3	5.5 7.0	3.	7
			Fig2	i		GRM55	4	.5 8.0	5.	6
								(in:mm)		
13	Solderability of Termination	75% of the te and continuc	erminations is to be soldered evenly busly.	(JI ℃ for	merse the capa S-K-5902) (25 10 to 30 secor	% rosin in wei nds. After prehe	ght prope	ortion). Prehe	eat at 80	to 120
14	Pagistanga	Appoarance	No marking defects		ution for2 ±0.5			r 1 minuto Im	moreo	
14	Resistance to Soldering Heat		No marking defects. R6 : Within ± 15%		eheat the capac capacitor in a					0.5
	to condening riedt	Capacitance	NO . WIUHHT 1370		conds. Let sit a					
		-	0.125 max.	the √Ini	n measure. tial measureme	nt	0			
		I.R.	50Ω·F min.		erform a heat tr en let sit for 48					
		Dielectric Strength	No failure	th	e initial measur	ement.				
15	Temperature	Appearance	No marking defects.	Fix	the capacitor t	o the supportin	g jig in th	e same manr	ner	
	Sudden Change	Capacitance Change	R6 : Within ±7.5%	ano aco	d under the sar cording to the fo	ne conditions a our heat treatm	as (10). P ients liste	Perform the fived in the	e cycles	
		D.F.	0.125 max.	following table. Let sit for 48 ±4 hours at room tempera		ature,	_			
		I.R.	50Ω·F min.	Temp.(°C)	1 Min.	2 Room	3 Max.	4 Room		
		Dielectric	No failure		Operating Temp.± ⁰ 3	Temp.	Operating Temp. $\pm \begin{array}{c} 3\\ 0 \end{array}$	Temp.		
		Strength			Time(min.)	30±3	2 to 3	30±3	2 to 3	
				F	itial measureme Perform a heat hen let sit for 4 leasurement.	treatment at 15				nitial
16	High	Appearance	No marking defects.	Ap	ply the rated vo	oltage at 40 ± 2	² °C and	90 to 95% hu	midityfor	
	Temperature High Humidity	Capacitance Change	R6 : Within ±12.5%		0 ±12hours. e charge/disch	arge current is	less thar	n 50mA.		
	(Steady)	D.F.	0.25max.	F	· Initial measurement $_{0}^{0}$ Perform a heat treatment at 150 \pm 10 °C for one hour and then let sit for 48 \pm 4 hours at room temperature. Perform					
		I.R.	12.5Ω·F min.	th	e initial measur	ement.				
		Dielectric	No failure	┨		an tact				
		Strength		Р	leasurement aff erform a heat tr ien let sit for 48	eatment at 150				
17	Durability		No marking defects.	ma	ply 100% of the ximum operatir	ig temperature	± 3°C.		t the	
		Capacitance Change	R6 : Within ±12.5%		The charge/ discharge current is less than 50mA.					
		D.F.	0.25max.	Р	itial measureme erform a heat tr	eatment at 150				
		I.R.	25Ω·F min.	th	en let sit for 48 e initial measur	ement.		erature. Perf	orm	
		Dielectric Strength	No failure	Р	easurement aft erform a heat tr en let sit for 48	eatment at 150	-			

There are three type of packaging for chip monolithic ceramic capacitor. Please specify the packaging code.

1.Bulk Packaging(Packaging Code=B) : In a bag.

Minimum Quantity:1000(pcs./bag), Only GRM43S, GRM55E/F : 500(pcs./bag)

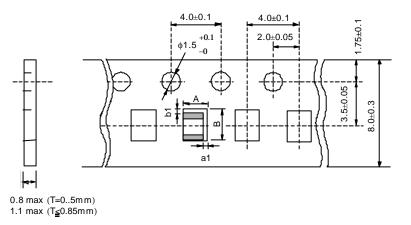

2.Tape Carrier Packaging(Packaging Code:D/E/F/L/J/K)

2.1 Minimum Quantity(pcs./reel)

Туре		φ178	s reel	φ330	reel
		Paper Tape	Plastic Tape	Paper Tape	Plastic Tape
		Code:D/E	Code:L	Code:F/J	Code:K
GR □ 02		20000			
GR 🗌 03		15000		50000	
GR 🗌 15		10000		50000	
GR 🗆 18		4000		10000	
GR□21	5/6/9	4000		10000	
	A/B		3000		10000
	6/9	4000		10000	
GR⊡31	M/X		3000		10000
	С		2000		6000
	5/6/9	4000		10000	
	A/M		3000		10000
GR□32	Ν		2000		8000
GR_JJZ	С		2000		6000
	R/D/E		1000		4000
	М		1000		5000
	N/C/R		1000		4000
GR□43	D		1000		4000
	E		500		2000
	S		500		1500
	М		1000		5000
	N/C/R		1000		4000
GR⊡55	D		1000		4000
	E		500		
	F/X		300		1500

2.2 Dimensions of Tape

(1)GR 02/03/15



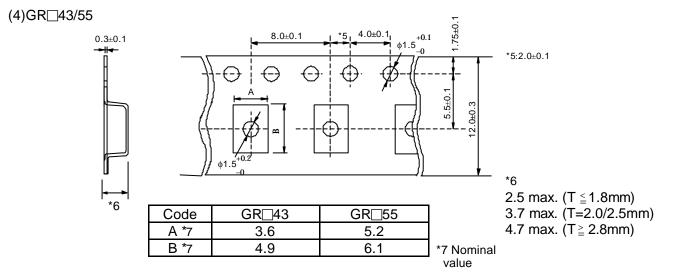
0.8 max.

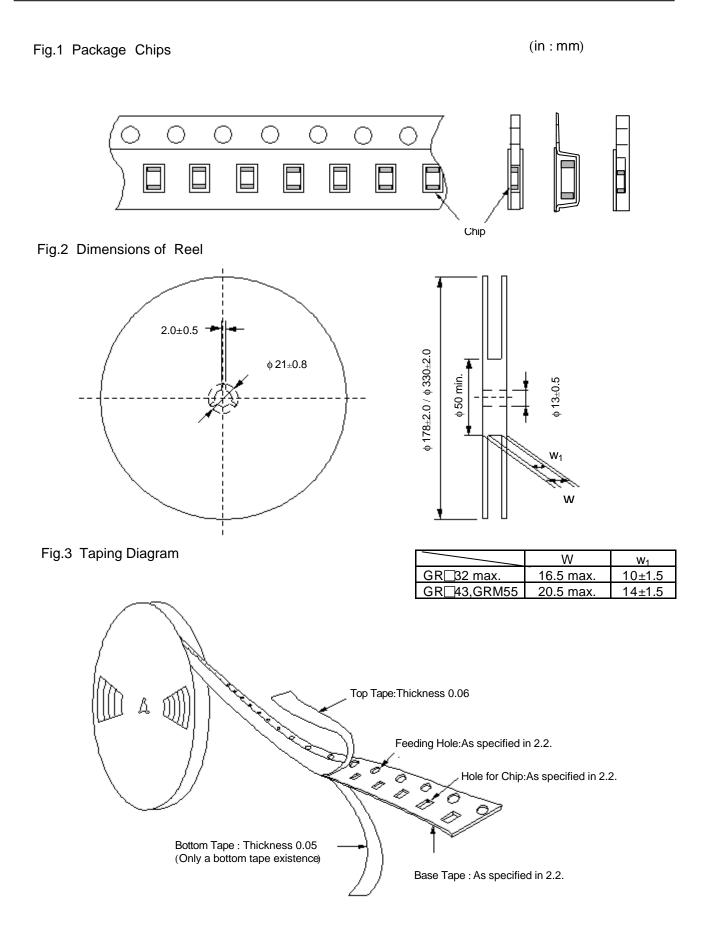
(2)GR[18/21/31/32 T:0.85 max.

t

0.4 max.

0.5 max.

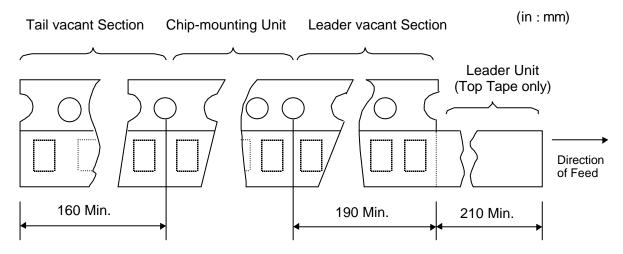

Code	GR⊡18	GR <u></u> 21	GR <u></u> 31	GR <u></u> 32
А	1.05±0.1	1.55±0.15	2.0±0.2	2.8±0.2
В	1.85±0.1	2.3±0.15	3.6±0.2	3.6±0.2
a1,b1	0.25±0.2	0.4±0.2	0.4±0.2	0.4+0.3/-0.2


(3)GR^{21/31/32} T:1.0 min.

Code	GR <u></u> 21	GR <u></u> 31	GR <u></u> 32
А	1.45±0.2	1.9±0.2	2.8±0.2
В	2.25±0.2	3.5±0.2	3.5±0.2

*4
1.7 max. (T ≦1.25mm)
2.5 max. (T:1.35/1.6mm)
3.0 max. (T:1.8/2.0mm)
3.7 max. (T≧ 2.5mm)

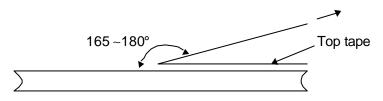
(in : mm)



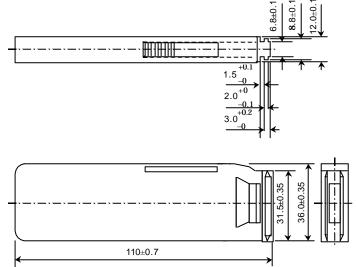
FUKUI MURATA MFG. CO., LTD.

2.3 Tapes for capacitors are wound clockwise shown in Fig.3.

(The sprocket holes are to the right as the tape is pulled toward the user.)


- 2.4 Part of the leader and part of the vacant section are attached
 - as follows.

- 2.5 Accumulate pitch : 10 of sprocket holes pitch = 40 ± 0.3 mm
- 2.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1.
- 2.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 2.8 There are no jointing for top tape and bottom tape.
- 2.9 There are no fuzz in the cavity.
- 2.10 Break down force of top tape : 5N min.


Break down force of bottom tape : 5N min. (Only a bottom tape existence)

- 2.11 Reel is made by resin and appeaser and dimension is shown in Fig 2. There are possibly to change the material and dimension due to some impairment.
- 2.12 Peeling off force : 0.1 to 0.6N^{*8} in the direction as shown below.
 - *8 GR [] 03:0.05N~0.5N

2.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel.

3.Bulk Case Packaging (Packaging Code=C) Fig.4 Dimensions of Bulk case

3.1 Minimum Quantity(pcs./case)

GR	2.4	50000
GR		15000
GR	6	10000
	В	5000

3.2 Case is made by resin of transparence or semitransparency, and appeaser and dimension is shown in Fig.4.

There are possibility to change the material and dimension due to some impairment.

3.3 Case must be marked in Customer 's part number, MURATA part number, MURATA name, Inspection number and quantity(pcs.).

Limitation of use

Please contact our sales representatives or product engineers before using our products for the applications listed below which require of our products for other applications than specified in this product.

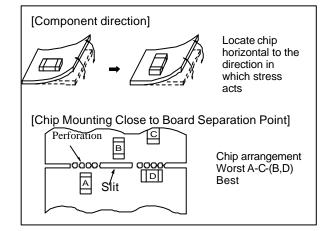
① Aircraft equipment② Aerospace equipment③ Undersea equipment④ Power plant control equipment⑤ Medical equipment⑥ Transportation equipment(vehicles,trains,ships,etc.)⑦ Traffic signal equipment⑧ Disaster prevention / crime prevention equipment⑨ Data-processing equipment

[®]Application of similar complexity and/or requirements to the applications listed in the above

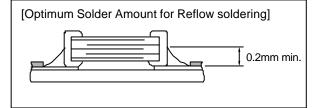
Storage and Operating Conditions

Chip monolithic ceramic capacitors(chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 C. and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. (Reference Data 1/ Solderability) Insulation Resistance shall be deteriorated on specific condition of high humidity or incorrosion gas such as hydrogen sulfide, sulfurous acid gas, cholorine. Those condition are not suitable for use.


■Handling

- 1.Inspection
- Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.
- 2.Board Separation (or Depane-lization)
- \cdot Board flexing at the time of separation causes cracked chips or broken solder.
- · Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.
- · Board separation must be performed using special jigs, not with hands.
- 3.Reel and bulk case
- · In the handling of reel and case, please pay attention not to drop it. Please do not use chip of the case which dropped.

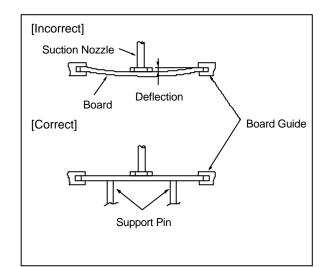


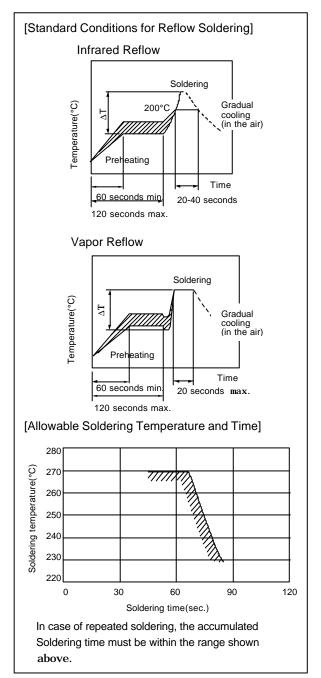
- Soldering and Mounting
- 1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

- 2.Solder Paste Printing
- •Overly thick application of solder paste results in excessive fillet height solder. This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.
- •Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3.Chip Placing


- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board.
 Normally, the suction bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- •Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.
- 4.Reflow Soldering
 - •Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT , within the range shown in Table 1. The smaller the ΔT , the less stress on the chip.
 - Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used.


Please confirm the solderability of Tin plating termination chip before use.

•When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

Part Number	Temperature Differential
GR□02/03/15	Δ T
GR□18/21/31	=
GR口32/43/55	$\Delta T \stackrel{<}{=} 130^{\circ}C$

Inverting the PCB

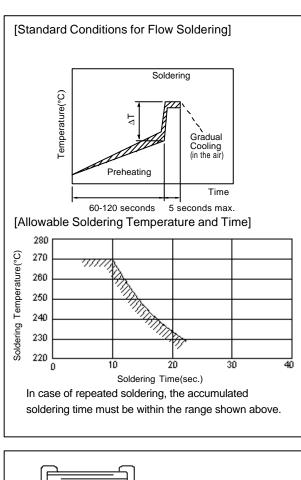
Make sure not to impose an abnormal mechanical shock on the PCB.

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs prevent warping.

6.Flow Soldering

- •Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- •When preheating, keep temperature differential between solder temperature and chip surface temperature, ΔT , within the range shown in Table 2. The smaller the ΔT , the less stress on the chip.


When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

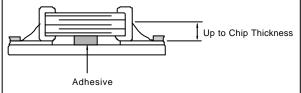
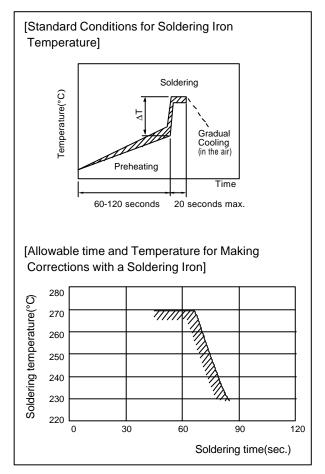
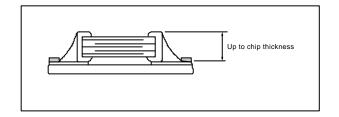

Don't apply flow soldering to chips not listed in Table 2.

Table 2

Part Number	Temperature Differential
GR□18/21/31	$\Delta T \stackrel{<}{=} 150^{\circ}C$

Optimum Solder Amount for Flow Soldering


7.Correction with a Soldering Iron


(1) For Chip Type Capacitors

•Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT , within the range shown in Table 3. The smaller the ΔT , the less stress on the chip.

Table 3

Part Number	Temperature Differential			
GR□03/15 GR□18/21/31	$\Delta T \stackrel{<}{=} 190^{\circ}C$			
GR□32/43/55	$\Delta T \stackrel{<}{=} 130^{\circ}C$			

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

8.Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

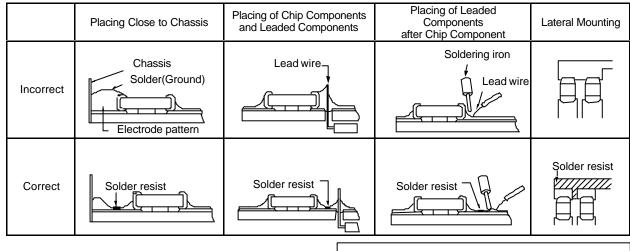
Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the products is use.

NOTICE

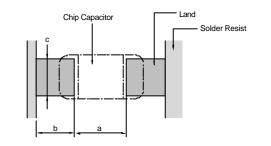
Soldering and Mounting

1.PCB Design

(1)Notice for Pattern Forms


Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.


Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

It has a possibility to happen the chip crack by the expansion and shrinkage of metal board. Please contact us if you want to use the ceramic capacitor on metal board such as Aluminum.

Pattern Forms

(2)Land Dimensions

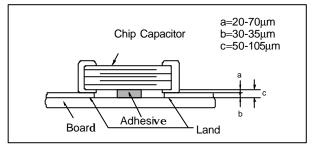
Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions(L X W)	а	b	с
GR□18	1.6 X 0.8	0.6-1.0	0.8-0.9	0.6-0.8
GR□21	2.0 X 1.25	1.0-1.2	0.9-1.0	0.8-1.1
GR□31	3.2 X 1.6	2.2-2.6	1.0-1.1	1.0-1.4
				(in : mm)

Table 2 Reflow Soldering Method

Colocial Colocia Colocial Colocial Colocial Colocial Colocial Colocial Colo				
Dimensions Part Number	Dimensions(L X W)	а	b	с
GR□02	0.4 X 0.2	0.16-0.2	0.12-0.18	0.2-0.23
GR□03	0.6 X 0.3	0.2-0.3	0.2-0.35	0.2-0.4
GR□15	1.0 X 0.5	0.3-0.5	0.35-0.45	0.4-0.6
GR□18	1.6 X 0.8	0.6-0.8	0.6-0.7	0.6-0.8
GR□21	2.0 X 1.25	1.0-1.2	0.6-0.7	0.8-1.1
GR□31	3.2 X 1.6	2.2-2.4	0.8-0.9	1.0-1.4
GR□32	3.2 X 2.5	2.0-2.4	1.0-1.2	1.8-2.3
GR□43	4.5 X 3.2	3.0-3.5	1.2-1.4	2.3-3.0
GR□55	5.7 X 5.0	4.0-4.6	1.4-1.6	3.5-4.8

(in : mm)


P33

2.Adhesive Application

 Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing below to obtain enough bonding strength.

The chip's electrode thickness and land thickness must be taken into consideration.

 Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000pa-s(500ps)min. (at 25°C)

3.Adhesive Curing

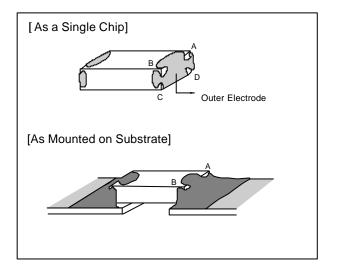
Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption. Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4.Flux Application

•An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).


•Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently cleaned. Use flux with a halide content of 0.2% max.

But do not use strongly acidic flux.

Wash thoroughly because water-soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5.Flow Soldering

•Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip(full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

Others

1.Resin Coating

When selecting resin materials, select those with low contraction.

- 2.Circuit Design
 - These capacitors on this catalog are not safety recognized products.
- 3.Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly.

MNOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. Your are requested not to use our product deviating from this product specification.
- Please return one copy of these specifications upon your acceptance. If the copy is not returned by a day mentioned in a cover the specifications will be deemed to have been accepted.
- 4. We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Murata manufacturer:

Other Similar products are found below :

M39014/02-1218V M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R392K50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0603X7R333K16TRPF NMC0805NPO220J100TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1206X7R106K10TRPLPF NMC-H0805X7R472K250TRPF C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT CCR06CG153FSV CDR33BX104AKUR CDR33BX683AKUS CGA3E1X7R1C684K CL10C0R8BB8ANNC M55342H06B20G0R-T/R C1005X5R0G225M C2012X7R2E223K C3216C0G2J272J D55342E07B35E7R-T/R CDR34BX563BKUS CDR34BX563BKWS NMC0402NPO220F50TRPF NMC0402X7R562J25TRPF NMC0603NPO102J25TRPF NMC1206X7R332K50TRPF NMC-P1206X7R104K250TRPLPF 726632-1 CGA6M3X7R1H225K CGA5L2X7R2A105K CGA3E2X8R1H223K CDR33BX823AKUR\M500 CDR33BP132BJUR CDR35BX474AKUR\M500 CDR35BX104BKUR\M500