

Reference Specification

Leaded MLCC for Automotive with AEC-Q200 RCE Series

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Leaded MLCC RCE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

• Part number configuration

ex.) RCE	7U	2E	102	J	1	K1	H03	В
Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Packing
	Characteristic	voltage		tolerance	code	code	specification code	style code

• Temperature characteristic

Code	Temp. Char.	Temp. Range	Cap. Change (Within%)	Standard Temp.	Operating Temp. Range
7U	U2J	25~125°C	750+/-120	25°C	-55 ∼ 125°C

• Rated voltage

Code	Rated voltage
2E	DC250V
2J	DC630V
3A	DC1000V

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 102.

$$10 \times 10^2 = 1000 pF$$

• Capacitance tolerance

Code	Capacitance Tolerance
J	+/-5%

• Dimension code

Code	Dimensions (LxW) mm max.				
1	4.0 x 3.5				
2	5.5 x 4.0				
3	5.5 x 5.0				
4	7.5 x 5.5				
5	7.5 x 8.0				
U	7.7 x 13.0				

• Lead code

Code	Lead style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Lead wire is solder coated CP wire.

Individual specification code
 Murata's control code
 Please refer to [Part number list].

• Packing style code

Code	Packing style
Α	Taping type of Ammo
В	Bulk type

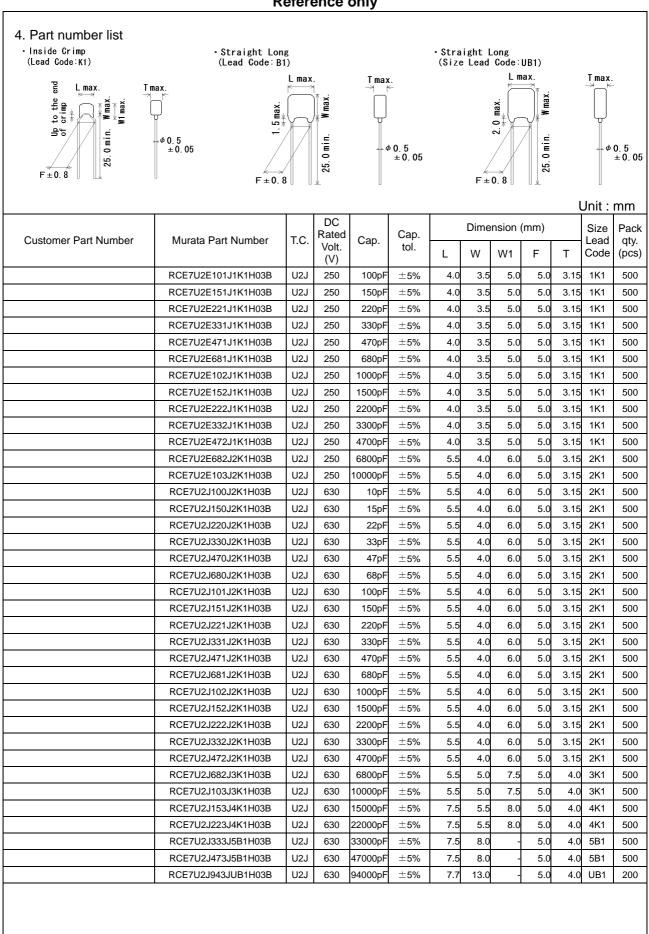
3. Marking

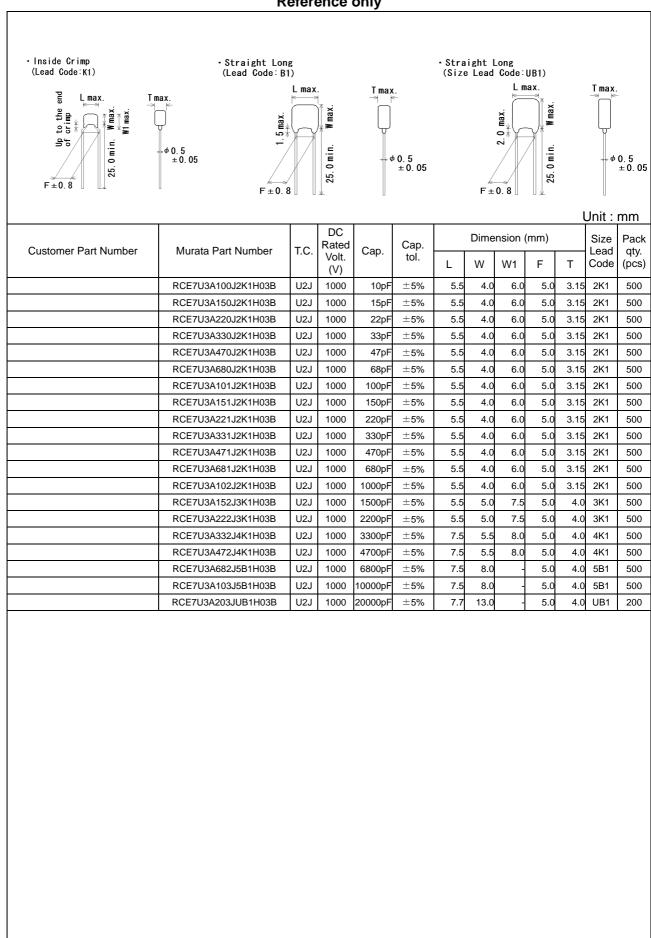
Temp. char. : Letter code : U(U2J Char.)

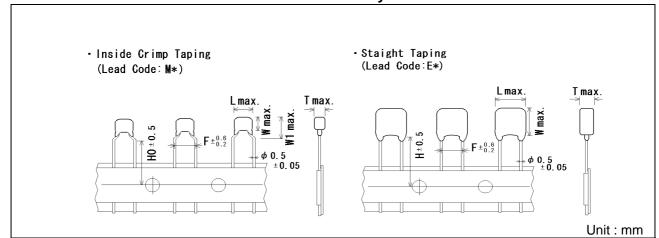
Capacitance : Actual numbers (Less than 100pF)

3 digit numbers (100pF and over)

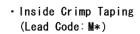
Capacitance tolerance : Code

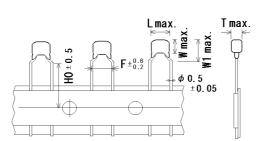

Rated voltage : Letter code : 4 (DC250V only. Except dimension code : 1)

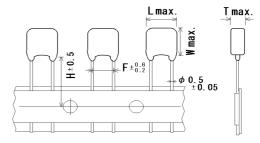

Letter code: 7 (DC630V only.) Letter code: A (DC1000V only.)


Company name code : Abbreviation : (Except dimension code : 1)

(Ex.)


EX.)			
Rated voltage Dimensions	DC250V	DC630V	DC1000V
1	U 102J		
2	(4)	€ 472	M _{JAU}
3,4	G 473 J4U	(M103 J7U	6 472 JAU
5,U		6 333 J7U	103 JAU





Customer Part Number	ustomer Part Number Murata Part Number T.C. Rated Cap. Cap. tol. Dimension (mm)		n)		Size Lead	Pack qty.							
Oustomer Furryamber	Wardia Fart Warnson	1.0.	volt. (V)	Оцр.	Oup. toi.	L	W	W1	F	Т	H/H0	Code	(pcs)
	RCE7U2E101J1M1H03A	U2J	250	100pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E151J1M1H03A	U2J	250	150pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E221J1M1H03A	U2J	250	220pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E331J1M1H03A	U2J	250	330pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E471J1M1H03A	U2J	250	470pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E681J1M1H03A	U2J	250	680pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E102J1M1H03A	U2J	250	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E152J1M1H03A	U2J	250	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E222J1M1H03A	U2J	250	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E332J1M1H03A	U2J	250	3300pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E472J1M1H03A	U2J	250	4700pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E682J2M1H03A	U2J	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2E103J2M1H03A	U2J	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J100J2M1H03A	U2J	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J150J2M1H03A	U2J	630	15pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J220J2M1H03A	U2J	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J330J2M1H03A	U2J	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J470J2M1H03A	U2J	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J680J2M1H03A	U2J	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J101J2M1H03A	U2J	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J151J2M1H03A	U2J	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J221J2M1H03A	U2J	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J331J2M1H03A	U2J	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J471J2M1H03A	U2J	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J681J2M1H03A	U2J	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J102J2M1H03A	U2J	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J152J2M1H03A	U2J	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J222J2M1H03A	U2J	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J332J2M1H03A	U2J	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J472J2M1H03A	U2J	630	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J682J3M1H03A	U2J	630	6800pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCE7U2J103J3M1H03A	U2J	630	10000pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCE7U2J153J4M1H03A	U2J	630	15000pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCE7U2J223J4M1H03A	U2J	630	22000pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCE7U2J333J5E1H03A	U2J	630	33000pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCE7U2J473J5E1H03A	U2J	630	47000pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCE7U2J943JUE1H03A	U2J	630	94000pF	±5%	7.7	13.0		5.0	4.0	17.5	UE1	1500

• Staight Taping (Lead Code:E*)

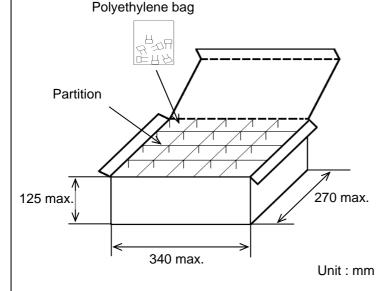
Customer Part Number	Murata Part Number	T.C.	DC Rated	Rated	Cap.	Cap. Cap. tol.	Dimension (mm)						Size Lead	Pack qty.
Customer Fait Number	iviurata Fart Number	1.0.	volt. (V)	Сар.	Cap. toi.	ш	W	W1	F	Т	H/H0	Code		
	RCE7U3A100J2M1H03A	U2J	1000	10pF	$\pm 5\%$	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A150J2M1H03A	U2J	1000	15pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A220J2M1H03A	U2J	1000	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A330J2M1H03A	U2J	1000	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A470J2M1H03A	U2J	1000	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A680J2M1H03A	U2J	1000	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A101J2M1H03A	U2J	1000	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A151J2M1H03A	U2J	1000	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A221J2M1H03A	U2J	1000	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A331J2M1H03A	U2J	1000	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A471J2M1H03A	U2J	1000	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A681J2M1H03A	U2J	1000	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A102J2M1H03A	U2J	1000	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RCE7U3A152J3M1H03A	U2J	1000	1500pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000	
	RCE7U3A222J3M1H03A	U2J	1000	2200pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000	
	RCE7U3A332J4M1H03A	U2J	1000	3300pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500	
	RCE7U3A472J4M1H03A	U2J	1000	4700pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500	
	RCE7U3A682J5E1H03A	U2J	1000	6800pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500	
	RCE7U3A103J5E1H03A	U2J	1000	10000pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500	
	RCE7U3A203JUE1H03A	U2J	1000	20000pF	±5%	7.7	13.0	-	5.0	4.0	17.5	UE1	1500	

5. <u>A</u> E	C-Q200 I	Murata Sta	andard Specifications and Test Me	ethods
No.	Test	Q200 Item	Specification	AEC-Q200 Test Method
1	Pre-and Post Electrical Tes		-	
2	High	Appearance	No defects or abnormalities Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger) 30 pF $\leq C: Q \geq 350$ 10 pF $\leq C < 30$ pF $: Q \geq 275+5$ C/2 10 pF $> C: Q \geq 200+10$ C C: Nominal Capacitance (pF)	Sit the capacitor for 1,000±12h at 150±3°C. Let sit for 24±2h at *room condition, then measure.
		I.R.	More than 1,000M Ω or 50 M Ω ·μF (Whichever is smaller)	
3	Temperature Cycling		No defects or abnormalities Within $\pm 5\%$ or ± 0.5 pF (Whichever is larger) 30 pF $\leq C: Q \geq 350$	Perform the 1,000 cycles according to the four heat treatments listed in the following table. Let sit for 24±2 h at *room condition, then measure. Step 1 2 3 4
		I.R.	10pF ≤ C < 30pF : Q ≥ 275+5C/2 10pF > C : Q ≥ 200+10C C : Nominal Capacitance (pF) 1,000MΩ or 50MΩ·μF min.	Temp. (°C) -55+0/-3 Room Temp. 125+3/-0 Room Temp. Time (min.) 15±3 1 15±3 1
	NA 111		(Whichever is smaller)	
4	Moisture Resistance	11	No defects or abnormalities Within $\pm 5\%$ or $\pm 0.5 pF$ (Whichever is larger) $30pF \le C : Q \ge 200$ $30pF > C : Q \ge 100+10C/3$ C : Nominal Capacitance(pF)	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature
		I.R. 500MΩ or 25MΩ·μF min. (Whichever is smaller)		60 55 950 845 840 635 130 25 20 15 10 10 10 11 11 10 10 11 10 10
5	Biased Humidity		No defects or abnormalities Within ±5% or ± 0.5pF	Apply the rated voltage and DC1.3+0.2/-0 V (add 100kΩ resistor) at 85±3°C and 80 to 85% humidity for 1,000±12h.
	,	Change Q I.R.	(Whichever is larger) $30pF \le C: Q \ge 200$ $30pF > C: Q \ge 100+10C/3$ $C: Nominal Capacitance(pF)$ $500M\Omega \text{ or } 25M\Omega \cdot \mu F \text{ min.}$	Remove and let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.
* "roon	n condition"	Temperature:1	(Whichever is smaller) 5 to 35°C, Relative humidity:45 to 75%, Atmosp	here pressure:86 to 106kPa

No.		-Q200	Specification		AEC-Q200 Test Method					
		t Item	·							
6	Operational	Appearance	No defects or abnormalities		voltage in Table for					
	Life	Capacitance	Within ±3% or ±0.3pF		t for 24±2 h at *roo					
		Change	(Whichever is larger)	Ine c	harge/discharge c	urrent is less tr	nan 50mA.			
		Q	$30pF \le C: Q \ge 350$		Rated Voltage	Test	Voltage			
			$10pF \le C < 30pF : Q \ge 275+5C/2$		•					
			10pF > C : Q ≥ 200+10C		DC250V	150% of the	e rated voltage			
			C : Nominal Capacitance (pF)		DC630V					
		I.R.	1.000MΩ or 50MΩ·μF min.			120% of the	e rated voltage			
		1.13.	(Whichever is smaller)		DC1000V		-			
7	External Visual	l .	No defects or abnormalities	Visua	I inspection					
8	Physical Dimer	sion	Within the specified dimensions		Using calipers and micrometers.					
9	Marking		To be easily legible.		l inspection					
10	Resistance to	Appearance	No defects or abnormalities		Per MIL-STD-202 Method 215					
	Solvents	Capacitance	Within the specified tolerance		Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits					
		Q	30pF ≤ C : Q ≥ 1,000							
			30pF > C : Q ≥ 400+20C		ent 2 : Terpene de					
				Solv	ent 3 : 42 parts (b					
			C : Nominal Capacitance (pF)		1part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolamine					
		I.R.	More than 10,000M Ω or 500 M Ω · μ F							
			(Whichever is smaller)							
							1			
11	Mechanical	Appearance	No defects or abnormalities	Three shocks in each direction should be applied along 3						
	Shock		Within the specified telegrans	mutually perpendicular axes of the test specimen (18 shocks). The specified test pulse should be Half-sine and should have a						
	1	Capacitance	Within the specified tolerance		duration :0.5ms, peak value:1,500G and velocity change: 4.7m					
		Q	30pF ≤ C : Q ≥ 1,000	a a a a a a	duration .o.ons, peak value.1,5000 and velocity change.					
			30pF > C : Q ≥ 400+20C							
			O . Naminal Caracitanas (a.F.)							
40	\		C : Nominal Capacitance (pF)	Thora	angoitar abould be	aubicated to a	oimple bermenie	motion		
12	Vibration	Appearance	No defects or abnormalities				simple harmonic r			
		Capacitance	Within the specified tolerance		having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 2,000Hz. The frequency range, from 10 to 2,000Hz and return to 10Hz,					
		Q	30pF ≤ C : Q ≥ 1,000							
		Q	30pF > C : Q ≥ 400+20C	0 . Q = 1,000			d in approximately 20 min. This motion			
			00p1 > 0 . Q = 1001200		should be applied for 12 items in each 3 mutually perpendicular					
			C : Nominal Capacitance(pF)	direct	directions (total of 36 times).					
40.4	Desistance	A		The lead wires should be immerced in the malted and a						
13-1	Resistance	Appearance	No defects or abnormalities	The lead wires should be immersed in the melted solder 1.5						
	to Soldering	Capacitance	Within ±2.5% or ±0.25pF	2.011	2.0mm from the root of terminal at 260±5°C for 10±.1 sec					
	Heat	Change	(Whichever is larger)							
	(Non-	Dielectric	No defects	 Post-treatment Capacitor should be stored for 24±2 hours at *room condition 						
	Preheat)	Strength		06	Capacitor should be stored for 24±2 flours at 100m condition					
	i reneat)	(Between								
		terminals)								
13-2	Resistance	Appearance	No defects or abnormalities	First the capacitor should be stored at 120+0/-5°C for 60+						
10 2	to	71000101100		seconds.						
	Soldering	Capacitance	Within ±2.5% or ±0.25pF		Then, the lead wires should be immersed in the melted solo					
	Heat	Change	(Whichever is larger)	1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-seconds.						
	(On-	Dielectric	No defects							
	Preheat)	Strength		5555.145.						
		(Between		• Po	Post-treatment					
		terminals)		Capacitor should be stored for 24±2 hours at *room conditio						
13-3	Resistance	Appearance	No defects or abnormalities		Test condition					
	to			I	mperature of iron-	tip : 350±10°C				
	Soldering	Capacitance	Within ±2.5% or ±0.25pF		dering time: 3.5±0	•				
	Heat	Capacitance	(Whichever is larger)		ering position					
	(soldering	Dielectric	No defects			.0mm from the	root of terminal.			
	iron method)	Strength	110 0010010		Straight Lead:1.5 to 2.0mm from the root of terminal. Crimp Lead:1.5 to 2.0mm from the end of lead bend.					
		(Between								
		terminals)		• Po	Post-treatment					
		,	,		Capacitor should be stored for 24±2 hours at *room condition					
	Thermal Shock	Appearance	No defects or abnormalities		Perform the 300 cycles according to the					
14	Thermal Shock		Within ±5% or ±0.5pF		in the following table(Maximum transfer time is 20s.). Let sit for					
14	Thermal Shock	Capacitance	(Whichever is larger)	24±2	h at *room condition	on, then measu	ire.			
14	Thermal Shock		·							
14	Thermal Shock	Capacitance Change	(Whichever is larger)	_	C+					
14	Thermal Shock	Capacitance	(Whichever is larger) $30pF \le C: Q \ge 350$	=	Step	1	2			
14	Thermal Shock	Capacitance Change	(Whichever is larger) 30pF ≤ C : Q ≥ 350 10pF ≤ C < 30pF : Q ≥ 275+5C/2		Temp.	1 -55+0/-3	2 125+3/-0			
14	Thermal Shock	Capacitance Change	(Whichever is larger) $30pF \le C: Q \ge 350$		Temp. (°C)					
14	Thermal Shock	Capacitance Change	(Whichever is larger) 30pF ≤ C : Q ≥ 350 10pF ≤ C < 30pF : Q ≥ 275+5C/2 10pF > C : Q ≥ 200+10C		Temp. (°C) Time					
14	Thermal Shock	Capacitance Change	(Whichever is larger) 30pF ≤ C : Q ≥ 350 10pF ≤ C < 30pF : Q ≥ 275+5C/2		Temp. (°C)	-55+0/-3	125+3/-0			

	۸۵	C 0200									
No.	AEC-Q200 Test Item		Specifications		AEC-Q200 Test Method						
15	ESD	Appearance	No defects or abnormalities		Per AE	EC-Q200-002					
		Capacitance	<u> </u>	pecified tolerance							
		Q	30pF ≤ C : C 30pF > C : C	Q ≥ 1,000 Q ≥ 400+20C							
			C : Nominal Capacitance (pF) More than 10,000MΩ or 500 MΩ·μF (Whichever is smaller)								
16	16 Solderability		Lead wire should be soldered with uniform coating on the axial direction over 95% of the circumferential direction.			Should be placed into steam aging for 8h±15 min. The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion).Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm fro the terminal body. Temp. of solder: 245±5°C Lead Free Solder(Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder					
17	Electrical	Apperance	No defects or abnormalities			I inspection.					
	Characte- rization	Capacitance	Within the specified tolerance			The capacitance, Q should be measured at 25°C at the frequent and voltage shown in the table.					
		Q	30pF ≤ C : C 30pF > C : C	Q ≥ 1,000 Q ≥ 400+20C		C ≤ 1000pF	Frequency 1±0.1MHz	Volta	5V(rms.)		
				Capacitance (pF)	L		1±0.1kHz	AC1±0.2	` ′]	
		I.R.	Between Terminals	10,000MΩ or 500MΩ·μF min. (Whichever is smaller)		nsulation resistance 50V in case of rate orging.					
		Dielectric Strength	Between Terminals	No defects or abnormalities	The ca	apacitor should no d between the terr ge/Discharge curre	minations for	1 to 5 seco	•	ble is	
						Rated Voltage	Te	est Voltage			
						DC250V	200% of	the rated v	oltage		
						DC630V		DC1300V			
						DC1000V					
			Body Insulation	No defects or abnormalities	The capacitor is placed in a container with metal balls of 1 diameter so that each terminal, short-circuit is kept approx 2mm from the balls, and 200% of the rated DC voltage(13 the rated voltage in case of rated voltage : DC1000V) is imfor 1 to 5 seconds between capacitor terminals and metal (Charge/Discharge current ≤ 50mA.)				ximate 30% of presse		
18	Terminal Strength	Tensile Strength	Termination not to be broken or loosened			the figure, fix the control that is the figure, fix the control that is the fixed by the fixed b	I direction of	the capacit	or until re		
		Bending Strength	Termination not to be broken or loosened		Each lead wire should be subjected to a force of 2.5N and ther be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the oppositive direction at the rate of one bend per 2 to 3 seconds.						
19	Capacitance Temperature Characteristics		Within the specified Tolerance. 25°C~125°C: -750±120 ppm/°C -55°C~25°C: -750+120/-347 ppm/°C			apacitance change specified temperate Step 1 2 3 4	Tempera 25. -55	ture(°C) +2 :±3 +2	ter 5min.	at	
				elative humidity:45 to 75%, Atmosphere p	measus seque the ca tempe The ca between step 1	emperature coefficured in step 3 as a entially from step 1 apacitance should erature coefficient apacitance drift is een the maximum, 3 and 5 by the care	reference. V through 5 (- be within the and capacita caluculated I and minimu	mind using the transfer of the	the temp 5°C) blerance f as Table he differe d values i	oeratu or the A. nces	

6. Packing specification

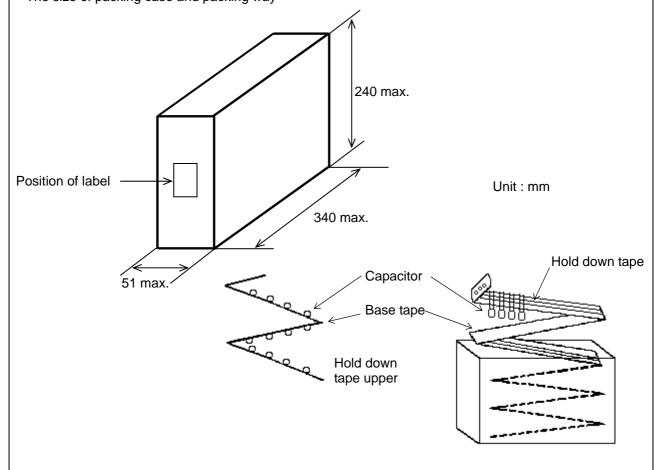

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)



Note)

The outer package and the number of outer packing be changed by the order getting amount.

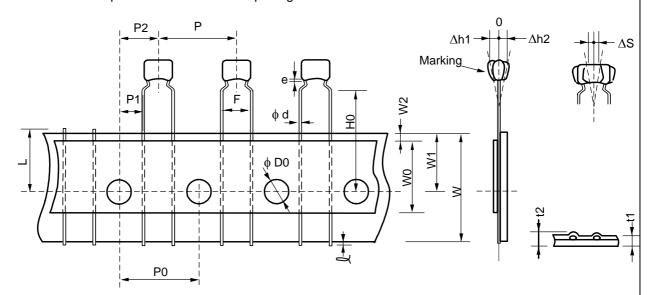
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

The size of packing case and packing way

EKBCRPE01

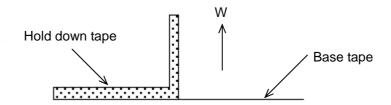
7. Taping specification

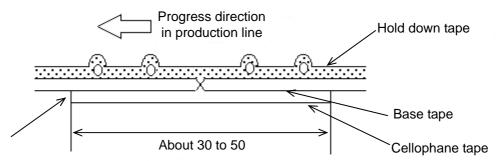
7-1. Dimension of capacitors on tape


Straight taping type < Lead code : E1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

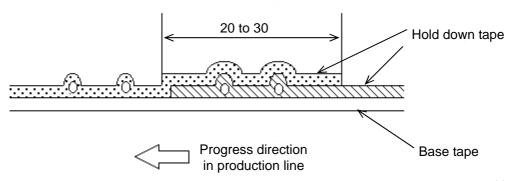
Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of managed discation	
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
For straight lead type	Н	17.5+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	D0	4.0+/-0.1		
Lead diameter	φd	0.50+/-0.05		
Total tape thickness	t1	0.6+/-0.3	The continuous health decree to the later and	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
	∆h1	2.0 max. (Dimension code : U)		
Deviation across tape	∆h2	1.0 max. (exce	pt as above)	
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	2.0 max. (Dimension code : U) 1.5 max. (except as above)		


Inside crimp taping type < Lead code : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of management discording	
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	НО	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	D0	4.0+/-0.1		
Lead diameter	φd	0.50+/-0.05		
Total tape thickness	t1	0.6+/-0.3		
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
	∆h1	2.0 max. (Dimension code : W)		
Deviation across tape	∆h2	1.0 max. (except as above)		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	Up to the end of o	rimp	

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - Leaded category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

010-007220-002REV A M39014/011207 M39014/011225 M39014/011267 M39014/011277 M39014/01-1281V M39014/01-1284V M39014/01-1293 M39014/011299 M39014/011327 M39014/011332 M39014/01-1333V M39014/011335 M39014/01-1339V M39014/011443 M39014/01-1443V M39014/01-1467 M39014/011489 M39014/01-1489V M39014/011514 M39014/011572 M39014/01-1581V M39014/01-1593 M39014/021218 M39014/021223 M39014/021225 M39014/02-1240V M39014/02-1241V M39014/02-1262V M39014/02-1300V M39014/021303 M39014/02-1315V M39014/02-1338 M39014/02-1354V M39014/021411 M39014/02-1418V M39014/05-2103 M39014/05-2127 M39014/220697 M39014/221162 M39014/230073 M39014/230319 M39014/230355 Q52-DK NCD332M1KVZ5UF C410C201J1G5TATR C410C221K1G5TATR C420C102J1G5TATR C430C104M1U5TATR SL217C103KAB