RF1432C
319.500 MHz SAW Filter
$\substack{\text { sm5050.8 case } \\ 5 \times 5}$

Characteristic	Sym	Notes	Minimum	Typical	Maximum	
Center Frequency at $25^{\circ} \mathrm{C}$ Absolute Frequency Tolerance from 319.500 MHz	f_{C}	1, 2	319.420		319.580	MHz
	$\Delta \mathrm{f}_{\mathrm{C}}$				± 80	kHz
Insertion Loss	IL	1		1.8	2.8	dB
3 dB Bandwidth	BW_{3}	1, 2	500	600	800	kHz
Rejection at $f_{\mathrm{c}}-21.4 \mathrm{MHz}$ (Imag at $\mathrm{f}_{\mathrm{c}}-10.7 \mathrm{MHz}$ (LO) Ultimate		1	40	50		dB
			40	50		
				80		
Operating Case Temperature Turnover Temperature Turnover Frequency Frequency Temperature Coefficent	T_{C}	3, 4	-40		+85	${ }^{\circ} \mathrm{C}$
	T_{O}		25	40	55	${ }^{\circ} \mathrm{C}$
	f_{O}			f_{C}		MHz
	FTC			0.032		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$
Frequency Aging Absolute Value during the First Year	IfAI	5		≤ 10		ppm/yr
$\begin{array}{ll} \hline \text { Impedance @ FC } & \text { INPUT } \mathrm{Z}_{\mathrm{IN}}=\mathrm{R}_{\mathrm{IN}} / / \mathrm{C}_{\mathrm{IN}} \\ & \text { OUTPUT } \mathrm{Z}_{\mathrm{OUT}}=\mathrm{R}_{\mathrm{OUT}} / / \mathrm{C}_{\text {OUT }} \end{array}$	$\mathrm{Z}_{\text {IN }}$	1	$3.97 \mathrm{k} \Omega / / 4.37 \mathrm{pF}$			
	$\mathrm{Z}_{\text {OUT }}$	1	$2.56 \mathrm{k} \Omega / / 4.27 \mathrm{pF}$			
Lid Symbolization (in addition to Lot and/or Date Codes)	621 // DATECODE					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50Ω test system with VSWR \leq $1.2: 1$. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
2. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
3. Where noted, specifications apply over the entire specified operating temperature range.
4. The turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{O}. The nominal frequency at any case temperature, T_{C}, may be calculated from: $f=f_{o}\left[1-\operatorname{FTC}\left(T_{o}-T_{C}\right)^{2}\right]$.
5. Frequency aging is the change in fc with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$.

Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
6. The design, manufacturing process, and specifications of this device are subject to change without notice.
7. One or more of the following U.S. Patents apply: $4,54,488,4,616,197$, and others pending.
8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature ${ }^{5}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Soldering Temperature	(10 seconds $/ 5$ cycles max.)	260
${ }^{\circ} \mathrm{C}$		

Electrical Connections

Pin	Connection
1	Input
2	Input Ground
3	Ground
4	Case Ground
5	Output
6	Output Ground
7	Ground
8	Case Ground

Matching Circuit to 50Ω

Case Dimensions

Dimension	mm			Inches		
	Min	Nom	Max	Min	Nom	Max
A	4.8	5.0	5.2	0.189	0.197	0.205
B	4.8	5.0	5.2	0.189	0.197	0.205
C	1.30	1.50	1.7	0.050	0.060	0.067
D	1.98	2.08	2.18	0.078	0.082	0.086
E	1.07	1.17	1.27	0.042	0.046	0.05
F	0.50	0.64	0.70	0.020	0.025	0.028
G	2.39	2.54	2.69	0.094	0.100	0.106

Optional Electrical Connections

Matching Circuit to 50Ω

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Murata manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057
FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C PD0922J5050D2HF 1E1305-3 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 TP-102-PIN TP-103-PIN

