- Ideal Front-End Filter for European Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Complies with Directive 2002/95/EC (RoHS)

The RF3319E is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter designed to provide front-end selectivity in 868.95 MHz receivers. Receiver designs using this filter include superheterodyne receivers with 10.7 MHz or lower intermediate frequencies, plus direct conversion and superregenerative receivers. Typical applications of these receivers are wireless remote-control and security devices operating in Europe under ETSI I-ETS 300220 regulations.

868.95 MHz SAW Filter

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units		
Center Frequency @ $25^{\circ} \mathrm{C}$	f_{C}	1,2,3	868.80	868.95	869.10	MHz		
Insertion Loss	IL	1		2.4	4.0	dB		
3 dB Bandwidth	BW_{3}	1,3	800	900	1000	kHz		
Passband Ripple, Fc $\pm 300 \mathrm{kHz}$		1, 3		1.2	2.0	$\mathrm{dB}_{\text {P-P }}$		
 $10-859 \mathrm{MHz}$ Attenuation: $859-864 \mathrm{MHz}$ (relative to IL $864-867.2 \mathrm{MHz}$ $870.6-872 \mathrm{MHz}$ $872-895 \mathrm{MHz}$ $895-1030 \mathrm{MHz}$		1,3	33	35		dB		
			32	34				
			12	14				
			19	21				
			15	17				
			38	40				
Temperature Freq. Temp. Coefficient	FTC	3, 4		0.032		$\begin{gathered} \hline \mathrm{ppm} / \\ { }^{\circ} \mathrm{C}^{2} \end{gathered}$		
Frequency Aging Absolute Value during the First Year	\|fA		5		< ± 10		ppm/yr	
Input $Z_{\text {IN }}=\mathrm{R}_{\text {IN }} \\| \mathrm{C}_{\text {IN }}$	$\mathrm{Z}_{\text {IN }}$	1	$84.13 \Omega\|\mid 6.0 \mathrm{pF}$					
Output $Z_{\text {OUT }}=\mathrm{R}_{\text {OUT }} \\| \mathrm{C}_{\text {OUT }}$	$\mathrm{Z}_{\text {OUT }}$		180.84Ω \|	4.0 pF				
Lid Symbolization (in addition to Lot and/or Date Codes)	695 // YWWS							
Standard Reel Quantity 7 Inch Reel		9	500 Pieces/Reel					
Standard Reel Quantity 13 Inch Reel			3000 Pieces/Reel					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50Ω test system with VSWR $\leq 1.2: 1$. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss and bandwidth are dependent on the impedance matching component values and quality.
2. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
3. Where noted, specifications apply over the entire specified operating temperature range of -40 to $90^{\circ} \mathrm{C}$.
4. The turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{O}. The nominal frequency at any case temperature, T_{c}, may be calculated from: $\mathrm{f}=\mathrm{f}_{\mathrm{o}}\left[1-\mathrm{FTC}\left(\mathrm{T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{c}}\right)^{2}\right]$.
5. Frequency aging is the change in fc with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65{ }^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
6. The design, manufacturing process, and specifications of this device are subject to change without notice.
7. One or more of the following U.S. Patents apply: $4,54,488,4,616,197$, and others pending.
8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
9. Tape and Reel Standard for ANSI / EIA 481.

RF3319E Passband and Broadband Amplitude Response

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering Temperature, 10 seconds $/ 5$ cycles maximum	260	${ }^{\circ} \mathrm{C}$

Electrical Connections

Pin	Connection
1	Input Ground
2	Input
3	Ground
4	Output Ground
5	Output
6	Ground

Case Dimensions

Dimension	mm			Inches		
	Min	Nom	Max	Min	Nom	Max
A	2.87	3.0	3.13	0.113	0.118	0.123
B	2.87	3.0	3.13	0.113	0.118	0.123
C	1.12	1.25	1.38	0.044	0.049	0.054
D	0.77	0.90	1.03	0.030	0.035	0.040
E	2.67	2.80	2.93	0.105	0.110	0.115
F	1.47	1.6	1.73	0.058	0.063	0.068
G	0.72	0.85	0.98	0.028	0.033	0.038
H	1.37	1.5	1.63	0.054	0.059	0.064
I	0.47	0.60	0.73	0.019	0.024	0.029
J	1.17	1.30	1.43	0.046	0.051	0.056

Matching Circuit to 50Ω

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Murata manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E1305-3 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 10017-3 TP-103-PIN BD1222J50200AHF BD1722J50100AHF

