

Reference Specification

200°C Operation Leaded MLCC for Automotive with AEC-Q200 RHS Series

Product specifications in this catalog are as of Nov. 2020, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to 200°C Operation Leaded MLCC RHS series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

• Applied maximum temperature up to 200°C

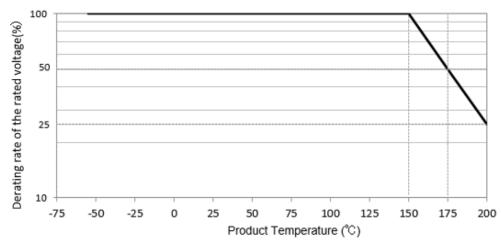
Note: Maximum accumulative time to 200°C is within 2000 hours.

• Part number configuration

ex.) RHS 7J 2D 101 Α2 H01 В Temperature Series Rated Capacitance Capacitance Dimension Lead Individual Packing Characteristic voltage specification style tolerance code code code code

Series

Code	Content
RHS	Epoxy coated, 200°C max.


• Temperature characteristic

		101.0			
Code	Temp. Char.	Temp. Range	Temp. coeff.(ppm/°C)	Standard Temp.	Operating Temp. Range
		-55∼25°C	-750+120/-347		
7J	UNJ (Murto codo)	25∼125°C	-750±120	25°C	-55 ~ 200°C
	(Murta code)	25∼125°C	-750+347/-120		

• Rated voltage

Code	Rated voltage
2D	DC200V
2H	DC500V

When the product temperature exceeds 150°C, please use this product within the voltage and temperature derated conditions in the figure below.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 101.

$$10 \times 10^1 = 100 pF$$

• Capacitance tolerance

Code	Capacitance tolerance
J	+/-5%

• Dimension code

Code	Dimensions (LxW) mm max.
1	4.2 x 3.5
2	5.5 x 4.0

• Lead code

Code	Lead style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
DG	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M2	Inside crimp taping type	5.0+0.6/-0.2

Lead wire is solder coated CP wire.

• Individual specification code Murata's control code Please refer to [Part number list].

• Packing style code

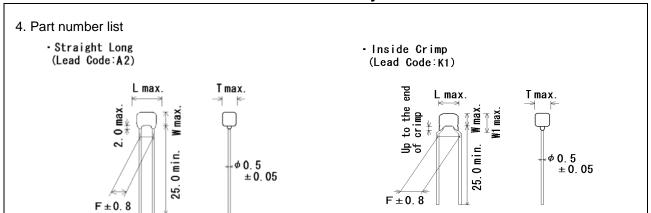
Code	Packing style			
Α	Taping type of Ammo			
В	Bulk type			

3. Marking

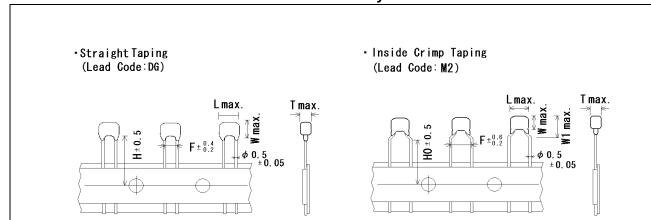
Temp. char. : Letter code : 2 (UNJ char.)

Capacitance : 3 digit numbers

Capacitance tolerance : Code


Rated voltage : Letter code : 6 (DC200V only. Except dimension code : 1)

Letter code: 9 (DC500V only)


Company name code : Abbreviation : (Except dimension code : 1)

(Ex.)

(EX.)		
Rated voltage Dimension code	200V	500V
1	2 101J	
2	(H) 103 J62	6 101 J92

	1		1								JIIIL .	111111
Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	nsion	(mm)		Size Lead	Pack
Customer Fait Number	Murata Fait Number	1.0.	Volt. (V)	Сар.	tol.	L	V	W1	F	Т	Code	qty. (pcs)
	RHS7J2D101J1A2H01B	UNJ	200	100pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D151J1A2H01B	UNJ	200	150pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D221J1A2H01B	UNJ	200	220pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D331J1A2H01B	UNJ	200	330pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D471J1A2H01B	UNJ	200	470pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D681J1A2H01B	UNJ	200	680pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D102J1A2H01B	UNJ	200	1000pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D152J1A2H01B	UNJ	200	1500pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D222J1A2H01B	UNJ	200	2200pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D332J1A2H01B	UNJ	200	3300pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D472J1A2H01B	UNJ	200	4700pF	±5%	4.2	3.5	-	2.5	2.8	1A2	500
	RHS7J2D682J2A2H01B	UNJ	200	6800pF	±5%	5.5	4.0	-	2.5	3.3	2A2	500
	RHS7J2D103J2A2H01B	UNJ	200	10000pF	±5%	5.5	4.0	-	2.5	3.3	2A2	500
	RHS7J2D101J1K1H01B	UNJ	200	100pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D151J1K1H01B	UNJ	200	150pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D221J1K1H01B	UNJ	200	220pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D331J1K1H01B	UNJ	200	330pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D471J1K1H01B	UNJ	200	470pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D681J1K1H01B	UNJ	200	680pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D102J1K1H01B	UNJ	200	1000pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D152J1K1H01B	UNJ	200	1500pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D222J1K1H01B	UNJ	200	2200pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D332J1K1H01B	UNJ	200	3300pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D472J1K1H01B	UNJ	200	4700pF	±5%	4.2	3.5	5.0	5.0	2.8	1K1	500
	RHS7J2D682J2K1H01B	UNJ	200	6800pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2D103J2K1H01B	UNJ	200	10000pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H101J2K1H01B	UNJ	500	100pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H151J2K1H01B	UNJ	500	150pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H221J2K1H01B	UNJ	500	220pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H331J2K1H01B	UNJ	500	330pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H471J2K1H01B	UNJ	500	470pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H681J2K1H01B	UNJ	500	680pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H102J2K1H01B	UNJ	500	1000pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H152J2K1H01B	UNJ	500	1500pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H222J2K1H01B	UNJ	500	2200pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H332J2K1H01B	UNJ	500	3300pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500
	RHS7J2H472J2K1H01B	UNJ	500	4700pF	±5%	5.5	4.0	6.0	5.0	3.3	2K1	500

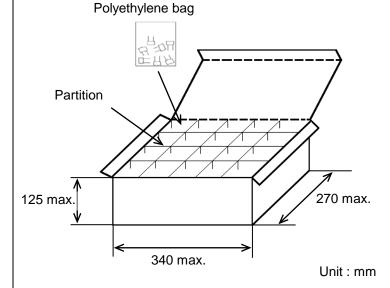
Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Cap. tol.		Dii	mensi	on (mr	n)		Size Lead	Pack qty.
			volt. (V)			L	W	W1	F	Т	H/H0	Code	(pcs)
	RHS7J2D101J1DGH01A	UNJ	200	100pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D151J1DGH01A	UNJ	200	150pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D221J1DGH01A	UNJ	200	220pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D331J1DGH01A	UNJ	200	330pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D471J1DGH01A	UNJ	200	470pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D681J1DGH01A	UNJ	200	680pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D102J1DGH01A	UNJ	200	1000pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D152J1DGH01A	UNJ	200	1500pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D222J1DGH01A	UNJ	200	2200pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D332J1DGH01A	UNJ	200	3300pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D472J1DGH01A	UNJ	200	4700pF	±5%	4.2	3.5	-	2.5	2.8	20.0	1DG	2000
	RHS7J2D682J2DGH01A	UNJ	200	6800pF	±5%	5.5	4.0	-	2.5	3.3	20.0	2DG	1500
	RHS7J2D103J2DGH01A	UNJ	200	10000pF	±5%	5.5	4.0	-	2.5	3.3	20.0	2DG	1500
	RHS7J2D101J1M2H01A	UNJ	200	100pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D151J1M2H01A	UNJ	200	150pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D221J1M2H01A	UNJ	200	220pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D331J1M2H01A	UNJ	200	330pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D471J1M2H01A	UNJ	200	470pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D681J1M2H01A	UNJ	200	680pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D102J1M2H01A	UNJ	200	1000pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D152J1M2H01A	UNJ	200	1500pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D222J1M2H01A	UNJ	200	2200pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D332J1M2H01A	UNJ	200	3300pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D472J1M2H01A	UNJ	200	4700pF	±5%	4.2	3.5	5.0	5.0	2.8	20.0	1M2	2000
	RHS7J2D682J2M2H01A	UNJ	200	6800pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2D103J2M2H01A	UNJ	200	10000pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H101J2M2H01A	UNJ	500	100pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H151J2M2H01A	UNJ	500	150pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H221J2M2H01A	UNJ	500	220pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H331J2M2H01A	UNJ	500	330pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H471J2M2H01A	UNJ	500	470pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H681J2M2H01A	UNJ	500	680pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H102J2M2H01A	UNJ	500	1000pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H152J2M2H01A	UNJ	500	1500pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H222J2M2H01A	UNJ	500	2200pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H332J2M2H01A	UNJ	500	3300pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500
	RHS7J2H472J2M2H01A	UNJ	500	4700pF	±5%	5.5	4.0	6.0	5.0	3.3	20.0	2M2	1500

	EC-Q200	Murata S	tandard Specifications and Test Metho	oas								
No.		·Q200 Item	Specification	AEC-Q200 Test Method								
1	Pre-and Post Electrical Tes			-								
2	High Temperature Exposure	Appearance Capacitance	No defects or abnormalities except color change of outer coating. Within ±3% or ±0.3pF	Sit the capacitor for 1,000±12h at 200±5°C. Let sit for 24±2h at *room condition, then measure.								
	(Storage)	Change Q	(Whichever is larger) Q ≥ 350	_								
		I.R.	1,000MΩ min.									
3	Temperature Cycling	Appearance Capacitance	No defects or abnormalities except color change of outer coating	Perform the 1,000 cycles according to the four heat treatments listed in the following table. Let sit for 24±2 h at *room condition then measure.								
		Change	(Whichever is larger)	Step 1 2 3 4								
		Q I.R.	Q ≥ 350 1,000MΩ min.	Temp. (°C) -55+0/-3 Room Temp. 200+5/-0 Room Temp.								
				(min.) 15±3 1 15±3 1								
4	Moisture Resistance	Appearance Capacitance Change Q I.R.	No defects or abnormalities	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature Humidity								
5	Biased Humidity	Appearance Capacitance Change Q I.R.	No defects or abnormalities Within $\pm 5\%$ or $\pm 0.5 pF$ (Whichever is larger) $Q \ge 200$ $500M\Omega$ min.	Poly 25% of the rated voltage for 1,000±12h at 200±5°C.								
	Life	Capacitance Change Q	change of outer coating Within $\pm 3\%$ or $\pm 0.3 pF$ (Whichever is larger) $Q \ge 350$	Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.								
7	External Visu	I.R. al	1,000MΩ min. No defects or abnormalities	Visual inspection								
8	Physical Dim		Within the specified dimensions	Using calipers and micrometers.								
9 10	Marking Resistance to Solvents	Appearance Capacitance Q I.R.	To be easily legible. No defects or abnormalities Within the specified tolerance $Q \geq 1,000$ $10,000 M\Omega \text{ min.}$	Visual inspection Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water								
			5 to 35°C, Relative humidity:45 to 75%, Atmosphere p	1part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolamine								

No.	AEC-Q200 Test Item		Specification		AEC-Q200 Test Method				
11	Mechanical Shock	Appearance	No defects or abnormalities		Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks).				
	SHOCK	Capacitance	Within the specified tolerance	The spec	The specified test pulse should be Half-sin		-sine and should h	ine and should have	
		Q	Q ≥ 1,000		duration :0.5ms, peak value:1,500G and velocity change: 4.7r				
12	Vibration	Appearance	No defects or abnormalities			simple harmonic			
		Capacitance	Within the specified tolerance	uniformly	having a total amplitude of 1.5mm, the frequency beir uniformly between the approximate limits of 10 and 2,		ts of 10 and 2,000	000Hz.	
		Q	Q ≥ 1,000	should be	The frequency range, from 10 to 2,000Hz and return to 1 should be traversed in approximately 20 min. This motio should be applied for 12 items in each 3 mutually perper directions (total of 36 times).				
13-1	Resistance to Soldering Heat (Non-Preheat)	Appearance	No defects or abnormalities		The lead wires should be immersed in the melted solder 1 2.0mm from the root of terminal at 260±5°C for 10±1 second				
		Capacitance	Within ±2.5% or ±0.25pF	2.011111	2.0mm from the root of terminal at 260±5°C for 10±1 s			econas	
		Change	(Whichever is larger)		Post-treatment				
		Dielectric Strength (Between terminals)	No defects	Capacit	Capacitor should be stored for 24±2 hours at			nditio	
13-2	Resistance to Soldering Heat (On-Preheat)	Appearance	No defects or abnormalities		First the capacitor should be stored at 120+0/-5°)+0/-	
		Capacitance	Within ±2.5% or ±0.25pF		seconds. Then, the lead wires should be immersed 1.5 to 2.0mm from the root of terminal at 2		sad in the molted	ad in the melted solds	
		Change	(Whichever is larger)	- , -					
		Dielectric	No defects		seconds.	u. 200_0 0 .0. 7.	0 . 0,		
		Strength (Between							
		terminals)			Post-treatment Capacitor should be stored for 24±2 hours at *room conditions				
13-3	Posistanco to	Appearance	No defects or abnormalities			stored for 24±2	2 nours at *room condit		
13-3	Resistance to Soldering Heat (soldering iron method)	Appearance	No delects of abriormalities		Test condition Termperature of iron-tip: 350±10°C				
				Soldering time : 3.5±0.5 seconds					
		Change	(Whichever is larger)		Soldering position				
		Dielectric	No defects	_	Straight Lead:1.5 to 2.0mm from				
		Strength (Between terminals)		Clilip	Crimp Lead:1.5 to 2.0mm from the end of lead bend. • Post-treatment				
				Post-tr					
		tommalo		Capacitor should be stored for 24±2 hours at *room condi				ndit	
14	Thermal Shock	Appearance	No defects or abnormalities				two heat treatme		
		Capacitance	Within ±5% or ±0.5pF		in the following table(Maximum transfer time is 20s.). Let sit 24±2 h at *room condition, then measure.				
		Change	(Whichever is larger)	241211 0	Step	1	2	1	
		Q	Q ≥ 350		Temp.				
		I.R. 1,000M Ω min.		(°C)	-55+0/-3	200+5/-0			
					Time (min.)	15±3	15±3		
15	ESD	Appearance	No defects or abnormalities	Per AEC	-Q200-002			_	
		Capacitance Within	Within the specified tolerance						
		Q	Q ≥ 1,000						
		I.R.	10,000MΩ min.						
16	Solderability		Lead wire should be soldered with uniform coating on the axial direction over 95% of circumferential direction.	he (JIS-K-81 propotion In both cathe termi	The terminal of a capacitor is dipped into a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25%rosin in weight propotion) and then into molten solder (JIS-Z-3282) for 2±0.5 s In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body. Temp. of solder: 245±5°C Lead Free Solder(Sn-3.0Ag-0.5Cu)				

No.	AEC-Q200 Test Item		Specifications No defects or abnormalities		AEC-Q200 Test Method			
17								
17	Characte- rization	Apperance Capacitance Q		ecified tolerance	Visual inspection. The capacitance, Q should be measured at 25°C at the frequer and voltage shown in the table.			
		Q	Q ≥ 1,000		Nominal Cap. Frequency Voltage			
		Insulation Resistance (I.R.)	Room Temperature	10,000MΩ min.	The insulation resistance should be measured at 25±3 °C with DC voltage not exceeding the rated voltage at normal temperal and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)			
			High Temperature	20MΩ min.	The insulation resistance should be measured at 200±5 of DC voltage not exceeding 25% of the rated voltage at not temperature and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)			
		Dielectric Strength	Between Terminals	No defects or abnormalities	The capacitor should not be damaged when voltage in Ta applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.)	able is		
					Rated voltage Test voltage DC200V 250% of the rated voltage DC500V 150% of the rated voltage	_		
			Body Insulation	No defects or abnormalities	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls as shown in the figure, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.)	Approx 2n V Met ba		
					Rated voltage Test voltage DC200V 250% of the rated voltage DC500V 150% of the rated voltage			
18	Terminal Tensile Strength Strength		Termination not to be broken or loosened		As in the figure, fix the capacitor body, apply the force grate to each lead in the radial direction of the capacitor until re 10N and then keep the force applied for 10±1 seconds.			
		Bending Strength	Termination not to be broken or loosened		Each lead wire should be subjected to a force of 2.5N and the be bent 90° at the point of egress in one direction. Each wire then returned to the original position and bent 90° in the oppodirection at the rate of one bend per 2 to 3 seconds.			
19	Capacitance		Within the specified Tolerance.		The capacitance change should be measured after 5min	. at		
	Temperature Characteristics		-750+120/-347ppm/°C (-55~25°C) -750±120ppm/°C (25~125°C)		each specified temperature step. Step Temperature(°C)			
			-750+347/-	120ppm/°C (125~200°C)	1 25±2			
					2 -55±3			
					3 25±2			
					4 200±5			
					5 25±2			
					The temperature coefficient is determind using the capacitance in step 3 as a reference. When cycling the tem sequentially from step 1 through 5 (-55°C to +150°C) the capacitance should be within the specified tolerance temperature coefficient and capacitance change as Table The capacitance drift is caluculated by dividing the difference between the maximum and minimum measured values in 1, 3 and 5 by the capacitance value in step 3.	nperat for the A. ences		
	1 11 -	Comporaturo:1	E to 25°C Pol	ative humidity:45 to 75%, Atmosphe				
	1 11 -	Comporaturo:1	E to 25°C Pol	ative humidity: 45 to 75% Atmosphe				

6. Packing specification


•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

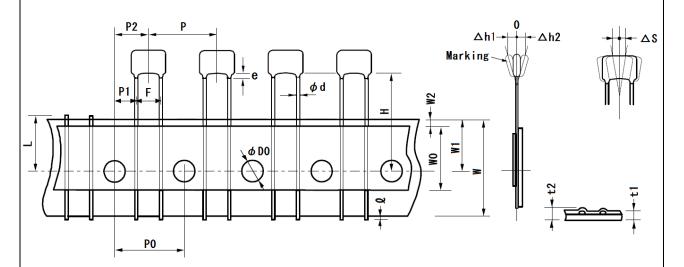
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

Position of label

Position of label

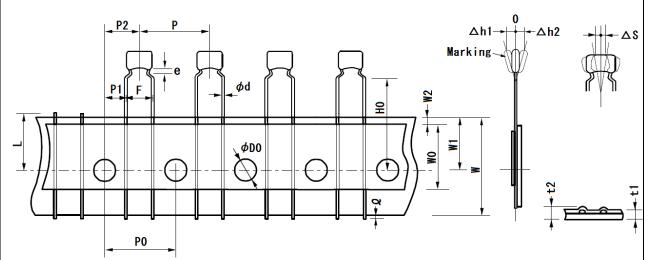
Capacitor

Base tape


Hold down tape upper

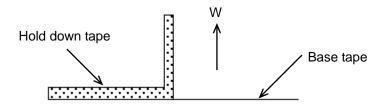
7. Taping specification

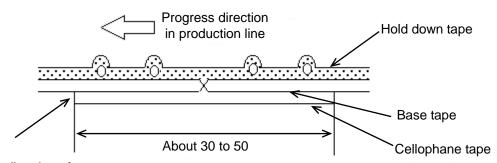
7-1. Dimension of capacitors on tape


Straight taping type < Lead code : DG >

Pitch of component 12.7mm / Lead spacing 2.5mm

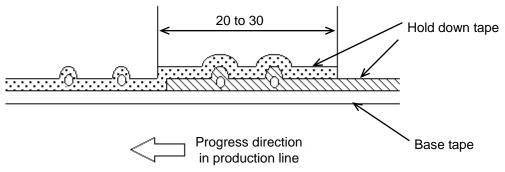
Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	2.5+0.4/-0.2		
Length from hole center to component center		6.35+/-1.3		
Length from hole center to lead	P1	5.1+/-0.7	Deviation of progress direction	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	Н	20.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	D0	4.0+/-0.1		
Lead diameter	d	0.50+/-0.05		
Total tape thickness	t1	0.6+/-0.3		
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
B	∆h1	1.0 max.		
Deviation across tape	∆h2	1.0 max.		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	2.0 max.		


Inside crimp taping type < Lead code : M2 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of any many dispation	
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	Н0	20.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	D0	4.0+/-0.1		
Lead diameter	φd	0.50+/-0.05		
Total tape thickness	t1	0.6+/-0.3		
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation agrees tone	∆h1	2.0 max. (Dimension code : W)		
Deviation across tape	∆h2	1.0 max. (except as above)		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	Up to the end of c	rimp	

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - Leaded category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

010-007220-002REV A M39014/011207 M39014/011225 M39014/011267 M39014/011277 M39014/01-1281V M39014/01-1284V M39014/01-1293 M39014/011299 M39014/011327 M39014/011332 M39014/01-1333V M39014/011335 M39014/01-1339V M39014/011443 M39014/01-1443V M39014/01-1467 M39014/011489 M39014/01-1489V M39014/011514 M39014/011572 M39014/01-1581V M39014/01-1593 M39014/021218 M39014/021223 M39014/021225 M39014/02-1240V M39014/02-1241V M39014/02-1262V M39014/02-1300V M39014/021303 M39014/02-1315V M39014/02-1338 M39014/02-1354V M39014/021411 M39014/02-1418V M39014/05-2103 M39014/05-2127 M39014/220697 M39014/221162 M39014/230073 M39014/230319 M39014/230355 Q52-DK NCD332M1KVZ5UF C410C201J1G5TATR C410C221K1G5TATR C420C102J1G5TATR C430C104M1U5TATR SL217C103KAB