

RoHS Compliance This component is compliant with RoHS directive

This component was always RoHS compliant from the first date of manufacture.

- **RO3112**
- 433.42 MHz SAW Resonator

- Ideal for European 433.92 MHz Superhet Receiver LOs
- · Very Low Series Resistance
- **Quartz Stability**
- · Rugged, Hermetic, Low-Profile TO39 Case

The RO3112 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 433.42 MHz. The RO2112 is designed for IC based 433.92 MHz superhet receivers with 500 kHz IF (Philips UAA3201T). Applications include remote-control and wireless security devices operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature (10 seconds / 5 cycles max.)	260	°C

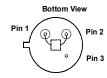
Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	Absolute Frequency	f _C	2 2 4 5	433.345		433.495	MHz
	Tolerance from 433.420 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.3	1.5	dB
Quality Factor	Unloaded Q	Q _U	F C 7		7500		
	50Ω Loaded Q	Q _L	5, 6, 7		940		
Temperature Stability	Turnover Temperature	T _O		10	25	40	°C
	Turnover Frequency	f _O	6, 7, 8		f _c		kHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance bet	DC Insulation Resistance between Any Two Pins		5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			14.5		Ω
	Motional Inductance	L _M	5, 7, 9		39.6		μH
	Motional Capacitance	C _M			3.4		fF
	Pin 1 to Pin 2 Static Capacitance	Co	5, 6, 9		3.5		pF
	Transducer Static Capacitance	C _P	5, 6, 7, 9		3.2		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		39		nH
Lid Symbolization (in Addition	n to Lot and/or Date Codes)	RFM RO3112					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

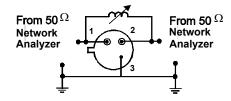
- Frequency aging is the change in $f_{\mathbb{C}}$ with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years. The center frequency, f_C, is measured at the minimum insertion loss point,
- IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_O at f_C . Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- One or more of the following United States patents apply: 4,454,488 and
- 4,616,197 and others pending.


 Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment
- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- The design, manufacturing process, and specifications of this device are

- subject to change without notice.
- Derived mathematically from one or more of the following directly 7. measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- Turnover temperature, T_{O} , is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 - FTC (T_O - T_C)²]. Typically, oscillator T_O is 20°C less than the specified resonator T_O .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance CO is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to $C_{\rm O}$.

Electrical Connections

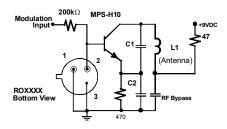
This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.


Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

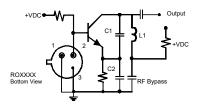
Typical Test Circuit

The test circuit inductor, $\rm L_{TEST}$, is tuned to resonate with the static capacitance, $\rm C_O$ at $\rm F_C$

Electrical Test:

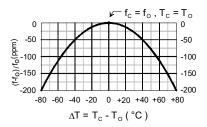


Power Test:

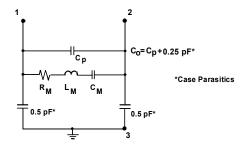


Typical Application Circuits

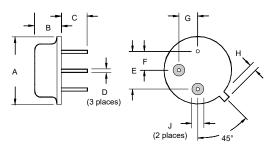
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millimeters		Inches		
Dillicitations	Min	Max	Min	Max	
Α		9.40		0.370	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

B39431R820H210 CSAC2.00MGCM-TC ECS-HFR-40.00-B-TR CSTLS4M00G53Z-A0 ECS-CR2-16.00-A-TR ECS-HFR-20.00-B-TR ECS-CR2-20.00-A-TR RO3164E-3 CSTNE14M7V510000R0 7D038400I01 7B009843R01 NX2012SA 32.768KHZ STD-MUB-1 NX3215SA 32.768KHZ STD-MUS-2 7B009843M01 OZ26030001 Q22FA12800519 CSTCR4M00G55E-R0 XC32M4-37.400-F16NLDT CSTLS24M0X53-B0 AWSCR-10.00CELB-C10-T3 AWSCR-12.00CELA-C33-T3 AWSCR-2.00CPLB-C15-T4 AWSCR-3.58CPLA-C30-T4 AWSCR-3.58CPLB-C30-T4 AWSCR-4.00CPLA-C33-T4 AWSCR-4.00CPLB-C10-T4 AWSCR-4.00CRLA-C39-T3 AWSCR-4.19CPLA-C30-T4 AWSCR-4.19CRLA-C15-T3 AWSCR-4.19CRLB-C15-T3 AWSCR-4.91CRLB-C15-T3 AWSCR-5.00CPLA-C30-T4 AWSCR-5.00CPLA-C30-T4 AWSCR-5.00CPLA-C30-T4 AWSCR-7.37CPLB-C30-T4 AWSCR-5.00CRLA-C15-T3 AWSCR-5.00CRLB-C15-T3 AWSCR-7.37CPLA-C30-T4 AWSCR-7.37CPLB-C30-T4 AWSCR-7.37CPLB-C30-T4 9AC04194152080D2JB CSTCR4M91G55B-R0 CSTLS3M68G56-B0 FC-12M32.768KHZ9PF20PPM ASR433.42E-T ZTTCS8.00MT X1A000091000500 X1A0000910001 ECS-SR1-4.19-B-TR 7C024000HW1 7C012000IW1 7C012000IMV1