## muRata

INNOVATOR IN ELECTRONICS
Ceramic Filters (CERAFIL)/
Crystal Filters


## Contents

Product specifications are as of October 2019.
Selection Guide ..... p2
Part Numbering ..... p3
1 Ceramic Filters (CERAFIL) Chip Type SFECF Series
Features/Appearance/Dimensions ..... p6
Part Number List ..... p6
Standard Center Frequency Rank Code ..... p7
Standard Land Pattern Dimensions ..... p7
Test Circuit ..... p7
Frequency Characteristics ..... p8
Spurious ..... p10
Notice ..... p12
Packaging ..... p14
Ceramic Filters (CERAFIL) Chip Type SFECV/SFECK Series
Features/Applications/Appearance/Dimensions ..... p15
Part Number List ..... p15
Standard Center Frequency Rank Code ..... p16
Standard Land Pattern Dimensions ..... p16
Test Circuit ..... p16
Frequency Characteristics ..... p16
Spurious ..... p17
Notice ..... p18
Packaging ..... p20
Ceramic Discriminator (CERAFIL) Chip Type CDSCB SeriesFeatures/Appearance/Dimensionsp21
Part Number List ..... p21
Standard Center Frequency Rank Code ..... p21
Standard Land Pattern Dimensions ..... p22
Test Circuit ..... p22
Recovered Audio Curve ..... p24
S Curve ..... p25
Notice ..... p26
Packaging ..... p28
Crystal Filters Chip Type XDCAF/XDCAG/XDCAH/XDCBA Series
Features/Applications/Appearance/Dimensions ..... p29
Series ..... p29
Part Number List ..... p30
Test Circuit ..... p31
Frequency Characteristics ..... p32
Spurious ..... p33
Notice ..... p34
Packaging ..... p36

## Selection Guides



## Part Numbering

CERAFIL for FM
(Part Number)
(1)Product ID

| Product ID |  |
| :---: | :---: |
| SF | Ceramic Filters |


| Code | Oscillation/Number of Elements |
| :---: | :---: |
| E | 2 Elements Thickness Expander Mode |
| T | 3 Elements Thickness Expander Mode |
| V | 2 Elements Thickness Expander Mode |
| (2nd Harmonic) |  |$|$| 2 Elements Thickness Expander Mode |
| :---: |
| (3rd Overtone) |

3Structure/Size

| Code | Structure/Size |
| :---: | :---: |
| $\mathbf{C} \square$ | Chip Type |

$\square$ is "A" or subsequent code, which indicates the structure/size.

4Nominal Center Frequency
Expressed by four-digit alphanumerics. The unit is in hertz (Hz). Decimal point is expressed by capital letter " M " in case of MHz .

53dB Bandwidth

| Code | 3dB Bandwidth |
| :---: | :---: |
| C | 450 kHz min |
| D | 350 kHz min |
| E | 330 kHz |
| F | 280 kHz |
| G | 230 kHz |
| H | 180 kHz |
| J | 150 kHz |
| K | 110 kHz |
| L | 80 kHz |
| M | 50 kHz |
| N | 35 kHz |


| Code | Center Frequency | Tolerance |
| :---: | :---: | :---: |
| A | Center Frequency Mentioned by Specification | $\pm 30 \mathrm{kHz}$ |
| F | Nominal Center Frequency | - |

3dB bandwidth of "F" signifies the frequency difference (both + and -) from reference frequency, which is nominal center frequency.
6Center Frequency/Tolerance

75eries

| Code | Series |
| :---: | :---: |
| AO | Two-digit Alphanumerics Express Series |
| 8Packaging |  |
| Code | Packaging |
| -B0 | Bulk |
| -R0 | Embossed Taping $\varnothing 180 \mathrm{~mm}$ |
| -R1 | Embossed Taping $\varnothing 330 \mathrm{~mm}$ |

Radial taping is applied to lead type and embossed taping to chip type. With non-standard products, two-digit alphanumerics indicating
"Individual Specification" are added between "(7Series" and
"8Packaging."

CERAFIL

| (Part Number) | SF | S | KA | 4M50 | CF | OO | -R1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |

(1)Product ID

(2) Oscillation/Numbers of Element

| Code | Oscillation/Numbers of Element |
| :---: | :---: |
| $\mathbf{S}$ | 2 Elements Thickness Shear Mode |

3Structure/Size

| Code | Structure/Size |
| :---: | :---: |
| $\mathbf{K} \square$ | Chip Type |

$\square$ is "A" or subsequent code, which indicates the structure/size.
(4)Nominal Center Frequency

Expressed by four-digit alphanumerics. The unit is in hertz (Hz). Decimal point is expressed by capital letter " M " in case of MHz .

## Discriminators for FM

| (Part Number) | CD | S | CB | $10 M 7$ | G | A | 001 | -RO |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | (5 | 6 | (7) | 8 |

1)Product ID

| Product ID | Discriminators |
| :---: | :---: |
| CD |  |
| 2Oscillation | Oscillation |
| Code | Thickness Shear Mode |
| S |  |
| 3Structure/Size | Structure/Size |
| Code | Chip Type |
| C $\square$ |  |

$\square$ is "A" or subsequent code, which indicates the structure/size.
(4Nominal Center Frequency
Expressed by four-digit alphanumerics. The unit is in hertz (Hz). Decimal point is expressed by capital letter " M " in case of MHz .

## ©Series

| Code | Series |
| :---: | :---: |
| G | Two-digit Alphanumerics Express Series |

5Product Specification Code (1)

| Code | Product Specification Code (1) |
| :---: | :---: |
| BF | Tight Bandwidth Type |
| CF | Standard Bandwidth Type |
| DF | Broad Bandwidth Type |
| EF | Ultra-broad Bandwidth Type |

6Product Specification Code (2)

| Code | Product Specification Code (2) |
| :---: | :---: |
| $\mathbf{0 0}$ | Standard Type |
| 7Packaging |  |
| Code | Packaging |
| -B0 | Bulk |
| -R1 | Embossed Taping $\varnothing=330 \mathrm{~mm}$ |

With non-standard products, two-digit alphanumerics indicating "Individual Specification" is added between "@Product Specification Code (2)" and " 7 Packaging."

6Center Frequency/Tolerance

| Code | Center Frequency | Tolerance |
| :---: | :---: | :---: |
| A | Center Frequency Mentioned by Specification | $\pm 30 \mathrm{kHz}$ |
| F | Nominal Center Frequency | - |

3dB bandwidth of "F" signifies the frequency difference (both + and -) from reference frequency, which is nominal center frequency.
©1c

| Code | IC |
| :---: | :---: |
| $\mathbf{0 0 1}$ | Applicable IC Control Code |

8Packaging

| Code | Packaging |
| :---: | :---: |
| -BO | Bulk |
| -RO | Embossed Taping $\varnothing=180 \mathrm{~mm}$ |
| -R1 | Embossed Taping $\varnothing=330 \mathrm{~mm}$ |

Radial taping is applied to lead type and embossed taping to chip type. With non-standard products, an alphanumerics indicating "Individual Specification" is added between "(1) " and "8Packaging."

## Crystal Filter


(1)Product ID


2Type-Lead Style

| Code | Type $\cdot$ Lead Style |
| :---: | :---: |
| C | Monolithic SMD |

3Size

| Code | Size |
| :---: | :---: |
| A | 7050 |
| B | 3838 |

(4)Structure

Expressed by one alphabetic character.
(7) Number of Poles

| Code | Number of Poles |
| :---: | :---: |
| A | 2 (1 Element) |
| G | 4 (1 Element) |
| H | 4 (2 Elements) |

8Individual Specification

| Code |  |
| :---: | :---: |
| $* * *$ | Three-digit Alphanumerics Express <br> Individual Specification. |

-Packaging (Packaging quantity is expressed by one-digit number in "*")

| Code | Packaging |
| :---: | :---: |
| $\mathbf{P *} / \mathbf{L}^{*}$ | Plastic Taping $\varnothing 330 \mathrm{~mm}$ |

5Nominal Center Frequency
Expressed by six-digit alphanumeric. The unit is in hertz (Hz).
Decimal point is expressed by capital letter "M".

6Bandwidth

| Code | Bandwidth (3dB) |
| :---: | :---: |
| $\mathbf{M}$ | 6.800 to 8.199 kHz |
| $\mathbf{P}$ | 10.000 to 11.999 kHz |
| $\mathbf{Q}$ | 12.000 to 14.999 kHz |
| $\mathbf{R}$ | 15.000 to 17.999 kHz |

## Ceramic Filters (CERAFIL)

## Chip Type SFECF Series



The SFECF10M7 series for FM receivers are small, high-performance and super thin (1.4mm max.) filters. The piezoelectric element is sandwiched by ceramic substrate. They have 1.4 mm max. thickness and a small mounting area ( $3.45 \times 3.1 \mathrm{~mm}$ ). The SFECF series and CDSCB series (MHz Discriminator) enable customers to make VICS/RKE/TPMS sets very thin and small.

## Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.4 mm max. thickness, and have a small mounting area $(3.45 \times 3.1 \mathrm{~mm})$ enabling flexible PCB design.
3. Various bandwidths are available. Select a suitable type in accordance with the desired characteristics.
4. Operating Temperature Range:
-20 to $+80^{\circ} \mathrm{C}$ (Standard Type)
-40 to $+85^{\circ} \mathrm{C}$ (High-reliability Type)
Storage Temperature Range:
-40 to $+85^{\circ} \mathrm{C}$ (Standard Type)
-55 to $+85^{\circ} \mathrm{C}$ (High-reliability Type)

## Standard Type

| Part Number | Center Frequency (fo) (MHz) | Nominal Center Frequency (fn) (MHz) | $\begin{gathered} \text { 3dB } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \\ \hline \end{gathered}$ | Attenuation (kHz) | Insertion Loss <br> (dB) | Ripple <br> (dB) | Spurious Attenuation (1) (dB) | Spurious Attenuation <br> (2) (dB) | Input/Output Impedance (ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SFECF10M7HA00-R0 | $\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$ | - | $180 \pm 40 \mathrm{kHz}$ | 470 max. | $4.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . <br> [within 9 MHz to fo] | $\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7HF00-R0 | - | 10.700 | $\mathrm{fn} \pm 25 \mathrm{~min}$. | 510 max. | 8.0max. [at fn] | 1.0 max. | 30 min . <br> [within 9 MHz to fn ] | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7GA00-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | - | $230 \pm 50 \mathrm{kHz}$ | 510 max. | $3.5 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . <br> [within 9MHz to fo] | 30 min . <br> [within fo to 12 MHz ] | 330 |
| SFECF10M7GF00-R0 | - | 10.700 | $\mathrm{fn} \pm 45 \mathrm{~min}$. | 560 max. | $8.0 \max$. [at fn] | 1.0 max. | 30 min . [within 9MHz to fn] [ | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7FA00-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | - | $280 \pm 50 \mathrm{kHz}$ | 590 max. | $3.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . <br> [within 9 MHz to fo] | 30 min . <br> [within fo to 12 MHz ] | 330 |
| SFECF10M7FF00-R0 | - | 10.700 | $\mathrm{fn} \pm 65 \mathrm{~min}$. | 620 max. | $7.0 \max$. <br> [at fn] | 1.0 max. | 30 min . [within 9MHz to fn] [ | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7EA00-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | - | $330 \pm 50 \mathrm{kHz}$ | 700 max. | $3.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . [within 9MHz to fo] [ | 30 min . <br> [within fo to 12 MHz ] | 330 |
| SFECF10M7DA0001-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | - | 420 min . | 950 max. | $3.0 \pm 2.0 \mathrm{~dB}$ | 3.0 max. | $\left.\begin{array}{c} 35 \mathrm{~min} . \\ {[\text { within } 9 \mathrm{MHz} \text { to fo }]} \end{array}\right]$ | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7DF00-R0 | - | 10.700 | $\mathrm{fn} \pm 150 \mathrm{~min}$. | 990 max. | $6.0 \max$. <br> [at fn] | 3.0 max. | 20 min . [within 9MHz to fn] | 20 min . <br> [within fn to 12 MHz ] | 330 |

Area of Attenuation: [within 20dB]
Area of Insertion Loss: at minimum loss point Area of Ripple: within 3dB B.W.
Center frequency (fo) defined by the center of 3 dB bandwidth.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in the packaging page.

High-reliability Type

| Part Number | Center Frequency <br> (fo) (MHz) | Nominal Center Frequency (fn) (MHz) | $\begin{gathered} \text { 3dB } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$ | Attenuation (kHz) | Insertion Loss <br> (dB) | Ripple <br> (dB) | Spurious Attenuation <br> (1) (dB) | Spurious Attenuation <br> (2) (dB) | Input/Output Impedance (ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SFECF10M7HA00S0-R0 | $\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$ | - | $180 \pm 40 \mathrm{kHz}$ | 470 max. | $4.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . <br> [within 9 MHz to fo] | $\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7HF00S0-R0 | - | 10.700 | $\mathrm{fn} \pm 25 \mathrm{~min}$. | 510 max. | $8.0 \max$. <br> [at fn] | 1.0 max. | 30 min . [within 9 MHz to fn] | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7GA00S0-R0 | $\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$ | - | $230 \pm 50 \mathrm{kHz}$ | 510 max. | $3.5 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . [within 9 MHz to fo] | $\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7GF00S0-R0 | - | 10.700 | $\mathrm{fn} \pm 45 \mathrm{~min}$. | 560 max. | $8.0 \max$. [at fn] | 1.0 max. | 30 min . [within 9MHz to fn] | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7FA00S0-R0 | $\begin{gathered} 10.700 \\ \pm 30 \mathrm{kHz} \end{gathered}$ | - | $280 \pm 50 \mathrm{kHz}$ | 590 max. | $3.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min . [within 9 MHz to fo] | $\begin{gathered} 30 \mathrm{~min} . \\ {[\text { within fo to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7FF00S0-R0 | - | 10.700 | $f \mathrm{n} \pm 65 \mathrm{~min}$. | 630 max. | 7.0 max . <br> [at fn] | 1.0 max. | 30 min. [within 9 MHz to fn ] | $\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |
| SFECF10M7EA00S0-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | - | $330 \pm 50 \mathrm{kHz}$ | 700 max. | $3.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 30 min. $[$ within 9 MHz to fo] | 30 min . <br> [within fo to 12 MHz ] | 330 |
| SFECF10M7DF00S0-R0 | - | 10.700 | $\mathrm{fn} \pm 145 \mathrm{~min}$. | 990 max. | 6.0 max . <br> [at fn] | 3.0 max. | 20 min . [within 9 MHz to fn] | $\begin{gathered} 20 \mathrm{~min} . \\ {[\text { within fn to } 12 \mathrm{MHz}]} \end{gathered}$ | 330 |

Area of Attenuation: [within 20dB]
Area of Insertion Loss: at minimum loss point Area of Ripple: within 3dB B.W.
Center frequency (fo) defined by the center of 3 dB bandwidth.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in the packaging page.

## Standard Center Frequency Rank Code

| CODE | 30 kHz Step | 25 kHz Step |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $10.700 \mathrm{MHz} \pm 30 \mathrm{kHz}$ | $10.700 \mathrm{MHz} \pm 25 \mathrm{kHz}$ |

## Standard Land Pattern Dimensions


(1): Input
(2)(5): Ground
(3)(4): No connection
$\boxed{Z}$ Indicates solder resist land pattern.
(6): Output
(in mm)

## Test Circuit



## Frequency Characteristics Standard Type

SFECF10M7HA00-R0/SFECF10M7HF00-RO


SFECF10M7FA00-R0/SFECF10M7FF00-R0


SFECF10M7DA0001-R0


SFECF10M7GA00-R0/SFECF10M7GF00-RO


SFECF10M7EA00-R0


SFECF10M7DF00-R0


## Frequency Characteristics High-reliability Type

SFECF10M7HA00S0-R0/SFECF10M7HF00SO-RO


SFECF10M7FA00S0-R0/SFECF10M7FF00S0-R0


SFECF10M7DF00S0-R0


## SFECF10M7GA00S0-R0/SFECF10M7GF00S0-R0



SFECF10M7EA00S0-R0


## Frequency Characteristics (Spurious) Standard Type



SFECF10M7FA00-R0/SFECF10M7FF00-R0




SFECF10M7EA00-R0

SFECF10M7DA0001-R0/SFECF10M7DF00-R0


## Frequency Characteristics (Spurious) High-reliability Type

SFECF10M7HA00S0-R0/SFECF10M7HF00S0-RO


SFECF10M7FA00S0-R0/SFECF1OM7FF00SO-RO


SFECF10M7DF00S0-R0


SFECF10M7GA00S0-R0/SFECF10M7GF00S0-RO


SFECF10M7EA00S0-R0


## Notice

## Ceramic Filters (CERAFIL) Chip Type SFECF Series

## - Soldering and Mounting -

## 1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.

## (2) Soldering Iron

Filter is soldered at $+350 \pm 5^{\circ} \mathrm{C}$ for $3.0 \pm 0.5$ seconds. The soldering iron should not touch the filter while soldering.
(3) Conditions for Placement Machines

The component is recommended for use with placement machines that employ optical placement capabilities. The component might be damaged by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated on positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component. Depending on the soldering conditions, the effective area of terminations may be reduced. Solder containing Ag should be used to prevent electrode erosion.
(f) Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.


## [Component Direction]



Place the component lateral to the direction in which stress acts. [Component Layout Close to Board]


Susceptibility to stress is in the order of: $A>C>B$

## Notice

Continued from the preceding page. $\searrow$

## 2. Wash

Do not clean or wash the component as it is not hermetically sealed.

## 3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

## - Storage and Operating Conditions -

1. Product Storage Conditions

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85\% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because quality and solderability may be degraded due to storage in a chemical atmosphere.

## - Rating -

The component may be damaged if excessive mechanical stress is applied.

## - Handling -

1. Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
2. The components, packed in a moisture proof bag (dry pack), are sensitive to moisture. The following treatment is required before applying reflow soldering, to avoid reliability degradation caused by thermal stress. When unpacked, store the component in an atmosphere of reflow $30^{\circ} \mathrm{C}$ and below $60 \%$ R.H., and solder within 1 week.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after package is opened, because quality and solderability may be degraded due to storage under poor conditions.
(5) To avoid cracking of the ceramic element, please do not drop the products.
3. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

## Packaging

| Embossed Tape ø180mm |  |
| :---: | :---: |
| 2,000 | (pcs.) |



## Dimensions of Carrier Tape



## Ceramic Filters (CERAFIL)

## Chip Type SFECV/SFECK Series

## Features

1. The piezoelectric element is sandwiched by heat resistant substrate, thus it has excellent mechanical strength, and it is suitable for automatic mounting.

. : Marking
(1) : Input
(2): Ground
(2): Ground
(3): Output

* : EIAJ Monthly Code
**: Center Frequency Rank Code
(in mm)

2. Various bandwidths are available. Select a suitable type in accordance with the desired characteristics.
3. Operating Temperature Range:
-20 to $+80^{\circ} \mathrm{C}$ (Standard Type)
-40 to $+85^{\circ} \mathrm{C}$ (High-reliability Type)
Storage Temperature Range:
-40 to $+85^{\circ} \mathrm{C}$ (Standard Type)
-55 to $+85^{\circ} \mathrm{C}$ (High-reliability Type)

## Applications

1. Small, thin radios
2. Automotive radios
3. Headphone stereos

## Standard Type

| Part Number | Center Frequency (fo) (MHz) | 3dBBandwidth <br> $(\mathrm{kHz})$ | Attenuation (kHz) | Insertion Loss <br> (dB) | Ripple <br> (dB) | Spurious Attenuation <br> (1) (dB) | Spurious Attenuation (2) (dB) | Input/Output Impedance (ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SFECV15M0EQ0001-R0 | $\begin{aligned} & 15.000 \\ & \pm 50 \mathrm{kHz} \end{aligned}$ | 300 min . | 750 max. | 7.0max. | 1.0 max. | [within $\begin{gathered}30 \mathrm{~min} . \\ 14 \mathrm{MHz} \text { to fo] }\end{gathered}$ | $30 \mathrm{~min} .$ <br> [within fo to 16 MHz ] | 330 |
| SFECV10M7KA00-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | $110 \pm 30 \mathrm{kHz}$ | 320 max. | $6.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | 35 min. [within 9 MHz to fo] | $35 \mathrm{~min} .$ <br> [within fo to 12 MHz ] | 330 |
| SFECV10M7JA00-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | $150 \pm 40 \mathrm{kHz}$ | 380 max. | $5.5 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | $35 \mathrm{~min} .$ <br> [within 9MHz to fo] | $35 \mathrm{~min} .$ <br> [within fo to 12 MHz ] | 330 |

Area of Attenuation: [within 20 dB ]
Area of Insertion Loss: at minimum loss point
Center frequency (fo) defined by the center of 3 dB bandwidth.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in the packaging page.
High-reliability Type

| Part Number | Center Frequency (fo) (MHz) | 3 dB <br> Bandwidth <br> $(\mathrm{kHz})$ | Attenuation (kHz) | $\begin{array}{\|c\|} \hline \text { Insertion Loss } \\ \text { (dB) } \end{array}$ | Ripple <br> (dB) | Spurious Attenuation <br> (1) (dB) | Spurious Attenuation (2) (dB) | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Input/Output } \\ \text { Impedance } \\ \text { (ohm) } \end{array} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SFECK10M7KA00S0-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | $110 \pm 30 \mathrm{kHz}$ | 320 max. | $6.0 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | $35 \mathrm{~min} .$ <br> [within 9MHz to fo] | 35 min. [within fo to 12 MHz ] | 330 |
| SFECK10M7JA00S0-R0 | $\begin{aligned} & 10.700 \\ & \pm 30 \mathrm{kHz} \end{aligned}$ | $150 \pm 40 \mathrm{kHz}$ | 380 max. | $5.5 \pm 2.0 \mathrm{~dB}$ | 1.0 max. | $35 \mathrm{~min} .$ <br> [within 9MHz to fo] | 35 min. [within fo to 12 MHz ] | 330 |

[^0]
## Standard Center Frequency Rank Code

| CODE | 30 kHz Step | 25kHz Step |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $10.700 \mathrm{MHz} \pm 30 \mathrm{kHz}$ | $10.700 \mathrm{MHz} \pm 25 \mathrm{kHz}$ |

## Standard Land Pattern Dimensions

Frequency Characteristics Standard Type

SFECV15M0EQ0001-R0


SFECV10M7JA00-R0


Test Circuit



SFECV10M7KA00-R0

## Frequency Characteristics High-reliability Type

SFECK10M7KA00SO-RO


SFECK10M7JA00S0-R0


## Frequency Characteristics (Spurious) Standard Type

SFECV15M0EQ0001-R0


SFECV10M7JA00-R0


SFECV10M7KA00-RO


Frequency Characteristics (Spurious) High-reliability Type

SFECK10M7KA00SO-RO


SFECK10M7JA00S0-RO


## Notice

## Ceramic Filters (CERAFIL) Chip Type SFECV/SFECK Series

## - Soldering and Mounting -

## 1. Standard Reflow Soldering Conditions

## (1) Reflow

Filter is soldered twice within the following temperature conditions.

## (2) Soldering Iron

Filter is soldered at $+350 \pm 5^{\circ} \mathrm{C}$ for $3.0 \pm 0.5$ seconds. The soldering iron should not touch the filter while soldering.
(3) Conditions for Placement Machines

The component is recommended for use with placement machines that employ optical placement capabilities. Damage may result from excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated to one positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component. Depending on the soldering conditions, the effective area of terminations may be reduced. Solder containing Ag should be used to prevent electrode erosion.
(f) Do not use strong acidity flux, more than $0.2 \mathrm{wt} \%$ chlorine content, in reflow soldering.

## [Component Direction]



Put the component lateral to the direction in which stress acts.
[Component Layout Close to Board]


Susceptibility to stress is in the order of: $A>C>B$

## Notice

Continued from the preceding page. 】
2. Wash

Do not clean or wash the component as it is not hermetically sealed.

## 3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

## - Storage and Operating Conditions -

## 1. Product Storage Conditions

Please store the products in room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85\% R.H.
2. Expiration Date on Storage

Expiration date (Shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because the products may be degraded in solderability due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because quality and solderability may be degraded due to the storage in a chemical atmosphere.

## - Rating -

The component may be damaged if excessive mechanical stress is applied.

## - Handling -

Accurate test circuit values are required to measure electrical characteristics.
Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in the places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after package is opened, because quality and solderability may be degraded due to storage under the poor conditions.
(5) To avoid cracking of the ceramic element, please do not drop the products.
4. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

## Packaging

## Minimum Quantity/Dimensions of Reel

| Embossed Tape $\boldsymbol{\varnothing 1 8 0 m m}$ |  |
| :---: | :---: |
| 2,000 |  |



## Dimensions of Carrier Tape



## Ceramic Discriminator (CERAFIL)

## Chip Type CDSCB Series

The CDSCB10M7 series forms a resonator on a piezoelectric ceramic substrate. In combination with ICs, this type obtains stable demodulation characteristics in a wide bandwidth.
They have 1.0 mm max. thickness and small mounting area ( $4.5 \times 2.0 \mathrm{~mm}$ ).

## Features

1. Compact and high reliability and recommended for automotive applications.
2. Can be combined with various ICs. The IC is determined by the last number in the part number.
3. Stable demodulation characteristics can be obtained without adjustment.
4. Stable temperature characteristics.
5. Available lead (Pb) free solder reflow.

| Center <br> Frequency (fo) <br> $(\mathrm{MHz})$ | Recovered <br> Audio 3dB BW <br> $(\mathrm{kHz})$ | Recovered <br> Audio Output <br> $(\mathrm{mV})$ | Distortion <br> $(\%)$ | S Curve <br> $(\mathrm{mV})$ | IC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

(fn) indicates nominal center frequency $(10.700 \mathrm{MHz})$.
For safety purposes, avoid applying a direct current between the terminals.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in the packaging page.

## Standard Center Frequency Rank Code

| CODE | 30 kHz Step | 25 kHz Step |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $10.700 \mathrm{MHz} \pm 30 \mathrm{kHz}$ | $10.700 \mathrm{MHz} \pm 25 \mathrm{kHz}$ |

## Standard Land Pattern Dimensions


(in mm)

Test Circuit

CDSCB10M7GA105A-R0


CDSCB10M7GA119-R0


CDSCB10M7GA121-R0


## Test Circuit



CDSCB10M7GF072-R0


CDSCB10M7GF123-R0


CDSCB10M7GA136-RO


CDSCB10M7GF109-R0


CDSCB10M7GF126-R0


## Recovered Audio Curve




CDSCB10M7GA135-RO


CDSCB10M7GA113-R0


CDSCB10M7GA121-RO


CDSCB10M7GA136-RO


Continued on the following page. $\boldsymbol{\nearrow}$

## Recovered Audio Curve

CDSCB10M7GF072-R0


CDSCB10M7GF109-RO


S Curve

CDSCB10M7GF123-RO


CDSCB10M7GF126-RO


## Notice

## Ceramic Discriminator (CERAFIL) Chip Type CDSCB Series

## - Soldering and Mounting -

## 1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.

## (2) Soldering Iron

Filter is soldered at $+300 \pm 5^{\circ} \mathrm{C}$ for $3.0 \pm 0.5$ seconds. The soldering iron should not touch the filter while soldering.
(3) Conditions for Placement Machines

The component is recommended for use with placement machines that employ optical placement capabilities. The component might be damaged by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines that utilize mechanical positioning. Please contact Murata for details beforehand.
(4) Other
(a) The component may be damaged if excess mechanical stress is applied to it mounted on the printed circuit board.
(b) Design layout of components on the PC board to minimize the stress imposed on the warp or flexure of the board.
(c) After installing components, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to degrade. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.
(d) When the positioning claws and pick-up nozzle are worn, the load is applied to the components while positioning is concentrated on positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble.
(e) When correcting components with a soldering iron, the tip of the soldering iron should not directly touch the component. Depending on the soldering conditions, the effective area of terminations may be reduced. Solder containing Ag should be used to prevent electrode erosion.



## Notice

Continued from the preceding page. \
2. Wash

Do not clean or wash the component as it is not hermetically sealed.

## 3. Coating

In case of overcoating the component, conditions such as material of resin, cure temperature, and so on should be evaluated well.

## - Storage and Operating Conditions -

1. Product Storage Conditions

Please store the products in a room where the temperature/humidity is stable, and avoid places where there are large temperature changes. Please store the products under the following conditions:
Temperature: -10 to $+40^{\circ} \mathrm{C}$
Humidity: 15 to 85\% R.H.
2. Expiration Date on Storage

Expiration date (shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because solderability may be degraded due to storage under poor conditions.
Please confirm solderability and characteristics for the products regularly.
3. Notice on Product Storage
(1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because quality and solderability may be degraded due to storage in a chemical atmosphere.
(2) Please do not put the products directly on the floor

## - Rating -

The component may be damaged if excessive mechanical stress is applied.

## - Handling -

Accurate test circuit values are required to measure electrical characteristics. Miscorrelation may be caused if there is any deviation, especially stray capacitance, from the test circuit in the specification.
without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after package is opened, because quality and solderability may be degraded due to storage under poor conditions.
(5) To avoid cracking of the ceramic element, please do not drop the products.
4. Other

Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

## Packaging

| Embossed Tape $\boldsymbol{\varnothing 1 8 0 m m}$ |  |
| :---: | :---: |
| 2,000 |  |



## Dimensions of Carrier Tape



## Crystal Filters

## Chip Type XDCAF/XDCAG/XDCAH/XDCBA Series



XDCAF


XDCAG


Pin Connection
(1): IN
(2): GND
(3): (3): GND
(4): OUT (4): OUT (5): GND
(6): GND (6): GND
(...: Marking
(in mm )

## Applications

1. Radio communication
2. Base Station
3. Communication (IF) other


XDCAH


Pin Connection
(1): $1 \mathbb{N}$
(2): GND
(3): Coupling CAP (4): OUT
(5): GND (6): Coupling CAP ..... Marking
(in mm)

Pin Connection
(1): $\operatorname{IN}$
(3): Coupling CAP
(3): Coupling CAP
(4): OUT
(5): GND
(6): Coupling CAP
(in mm)

## Series

| Series | Size | Center Frequency <br> $(\mathrm{MHz})$ | Number <br> of Poles |
| :--- | :---: | :---: | :---: |
| XDCAF |  |  | 2 |
| XDCAG | 7050 | 20 to 150 | 4 |
| XDCAH |  |  | 4 |
| XDCBA | 3838 | 45 to 150 | 2 |

## Part Number List

## XDCAF/XDCAG/XDCAH 7050 Size (11PN)

| Part Number | Center Frequency (MHz) | Overtone Order | Number of Poles | 3 dB Bandwidth (kHz min.) | Stop Band Width (kHz max.) | Guaranteed Attenuation (dB min.) [fo-910kHz] | Spurious (dB min.) within fo $\pm 1 \mathrm{MHz}$ | Insertion Loss (dB max.) | Ripple (dB max.) | Operating <br> Temperature <br> Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XDCAF21M400RAA00PO | 21.4000 | Fundamental | 2 | $\pm 7.5$ | $\pm 25$ @18dB | 70 | 10 | 2.0 | 1.0 | -20 to +70 |
| XDCAF21M700MAA00PO | 21.7000 | Fundamental | 2 | $\pm 3.75$ | $\pm 20$ @18dB | 70 | 18 | 2.0 | 1.0 | -20 to +70 |
| XDCAG38M850PGA00P0 | 38.8500 | Fundamental | 4 | $\pm 5.0$ | $\pm 25$ @45dB | 70 | 40 | 5.0 | 1.0 | -20 to +70 |
| XDCAG44M850QGA00PO | 44.8500 | Fundamental | 4 | $\pm 6.5$ | $\pm 12.5$ @ 20 dB | 70 | 40 | 3.0 | 1.0 | -20 to +70 |
| XDCAG45M000RGA00PO | 45.0000 | Fundamental | 4 | $\pm 7.5$ | $\pm 25$ @25dB | 70 | 40 | 3.0 | 1.0 | -20 to +70 |
| XDCAG46M350PGA00PO | 46.3500 | Fundamental | 4 | $\pm 5.0$ | $\pm 20$ @ 35 dB | 70 | 40 | 5.0 | 1.0 | -20 to +70 |
| XDCAG49M950PGA00PO | 49.9500 | Fundamental | 4 | $\pm 5.0$ | $\pm 20$ @ 40 dB | 70 | 40 | 5.0 | 1.0 | -20 to +70 |
| XDCAG51M650PGA00PO | 51.6500 | Fundamental | 4 | $\pm 5.0$ | $\pm 12.5$ @ 20 dB | 70 | 40 | 5.0 | 1.0 | -20 to +70 |
| XDCAG58M050MGA00PO | 58.0500 | Fundamental | 4 | $\pm 4.0$ | $\pm 20$ @ 38 dB | 70 | 40 | 5.0 | 1.0 | -20 to +70 |
| XDCAH50M850PHA00PO | 50.8500 | Fundamental | 4 | $\pm 5.0$ | $\pm 25$ @45dB | 80 | 60 | 5.0 | 1.0 | -20 to +70 |
| XDCAH73M350QHA03PO | 73.3500 | Fundamental | 4 | $\pm 6.0$ | $\pm 25$ @ 40 dB | 80 | 60 | 4.0 | 1.0 | -20 to +70 |

XDCBA 3838 Size (3PN)

| Part Number | Center Frequency (MHz) | Overtone Order | Number of Poles | 3 dB <br> Bandwidth <br> (kHz min.) | Stop Band Width (kHz max.) | Guaranteed Attenuation (dB min.) [fo-910kHz] | Spurious (dB min.) within fo $\pm 1 \mathrm{MHz}$ | $\begin{gathered} \text { Insertion } \\ \text { Loss } \\ \text { (dB max.) } \end{gathered}$ | $\begin{gathered} \text { Ripple } \\ \text { (dB max.) } \end{gathered}$ | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XDCBA47M250RAA02PO | 47.2500 | Fundamental | 2 | $\pm 7.5$ | $\pm 25$ @15dB | 60 | $\begin{gathered} 10 \\ {[\mathrm{fo}+30 \mathrm{kHz} \text { to } 1000 \mathrm{kHz}]} \end{gathered}$ | 2.0 | 1.0 | -20 to +70 |
| XDCBA50M000MAA01P0 | 50.0000 | Fundamental | 2 | $\pm 3.75$ | $\pm 16$ @15dB | 50 | $\begin{gathered} 20 \\ {[\mathrm{fo}+100 \mathrm{kHz} \text { to } 1000 \mathrm{kHz}]} \end{gathered}$ | 3.0 | 1.0 | -20 to +70 |
| XDCBA70M200TAA01P0 | 70.2000 | Fundamental | 2 | $\pm 12.5$ | $\pm 60$ @18dB | 50 | $\begin{gathered} 5 \\ {[\mathrm{fo}+100 \mathrm{kHz} \text { to } 1000 \mathrm{kHz}]} \end{gathered}$ | 2.5 | 1.0 | -20 to +70 |

Test circuit


| Part Number | R1 $(\Omega)$ | C1 $(\mathrm{pF})$ |
| :---: | :---: | :---: |
| XDCAF21M400RAA00PO | 1450 | 2.5 |
| XDCAF21M700MAA00PO | 800 | 8.0 |



| Part Number | $\mathrm{R} 1(\Omega)$ | $\mathrm{C} 1(\mathrm{pF})$ | $\mathrm{Cc}(\mathrm{pF})$ |
| :---: | :---: | :---: | :---: |
| XDCAH50M850PHA00PO | 510 | 4.0 | 11.0 |
| XDCAH73M350QHA03PO | 400 | 4.0 | 9.2 |



| Part Number | R1 $(\Omega)$ | $\mathrm{C1}(\mathrm{pF})$ | $\mathrm{Cc}(\mathrm{pF})$ |
| :---: | :---: | :---: | :---: |
| XDCAG38M850PGA00P0 | 560 | 3.0 | 14.0 |
| XDCAG58M050MGA00PO | 200 | 7.3 | 21.7 |



| Part Number | R1 $(\Omega)$ | $\mathrm{C} 1(\mathrm{pF})$ |
| :---: | :---: | :---: |
| XDCBA47M250RAA02P0 | 420 | 6.0 |
| XDCBA50M000MAA01PO | 220 | 7.5 |
| XDCBA70M200TAA01PO | 680 | -1.0 |

## Frequency Characteristics

XDCAF21M400RAA00PO
■1: LOG 1 dB/


XDCAG38M850PGA00P0
■1:LOG 1 dB/

XDCAH50M850PHA00PO
■1: LOG 1 dB/


XDCBA50M000MAA01PO
■1:LOG $1 \mathrm{~dB} /$



XDCAF21M700MAA00PO

## 1: LOG 1 dB/



XDCAG58M050MGA00PO


XDCAH73M350QHA03PO
■1:LOG $1 \mathrm{~dB} /$


## Spurious

XDCAF21M400RAA00PO


XDCAG38M850PGA00P0


XDCAH50M850PHA00PO


XDCBA50M000MAA01PO


XDCAF21M700MAA00PO


XDCAG58M050MGA00P0


XDCAH73M350QHA03PO


## Notice

## Crystal Filters Chip Type XDCAF/XDCAG/XDCAH/XDCBA Series

## - Soldering and Mounting -

## 1. Standard Reflow Soldering Conditions

(1) Reflow

Filter is soldered twice within the following temperature conditions.
Flux: Please use rosin based flux, but do not use water soluble flux.


|  | Condition |
| :---: | :---: |
| Heating of the Soldering Iron | $350^{\circ} \mathrm{C}$ max. |
| Soldering Time | 5 sec. max. |

(2) Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.
(3) Please do not store the products in places such as a damp heated place or any place exposed to direct sunlight or excessive vibration.
(4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality and/or be degraded in solderability due to storage under poor conditions.
(5) Please do not drop the products to avoid cracking of the ceramic element.
4. Other
(1) Please be sure to consult with our sales representative or engineer whenever the products are to be used in conditions not listed above.

## Notice

Continued from the preceding page. \}

## - Rating -

The component may be damaged if excessive mechanical stress is applied.

## - Handling -

(1) For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of filters.
(2) The component is recommended for placement machines employing optical placement capabilities. The component might be damaged by mechanical force depending on placement machine and condition. Make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines employing mechanical positioning. Please contact Murata for details beforehand.
(3) Do not reuse components once mounted onto a circuit board.
(4) Crystal Filter

You are requested to approve our data sheet and confirm the environment surrounding a crystal filter as well.
In order to demonstrate sufficient performance, please read the following notes.
(4)-1 Necessity for LC Tuned Circuit

When the stray capacitance of the PCB that mounts a crystal filter is large, a tuned circuit for offsetting the stray capacitance may be needed.
(4)-2 Termination Impedance

The original characteristic in a pass band, insertion loss, ripple and bandwidth characteristic are no longer acquired when termination impedance differs from a rated value. The circuit impedance shall be measured accurately and it has consistency to match on termination conditions.
Please keep in mind that a passage region will move in particular, if termination impedance does not match.
(4)-3 Maximum Level

An input level shall be less than a rated value.
If the input level beyond a rated value impressed, a crystal resonance characteristic will be deteriorated and the original characteristic will no longer be acquired as a crystal filter.
(4)-4 Separation between Input and Output In order to prevent electromagnetic combination between input and output, please have shielded certainly. If it has the combination between input and output, the incoming signal may go to the output side directly in the attenuation domain. The amount of guarantee attenuation will less achievable and the original characteristic of crystal filter will no longer be acquired.
There is grounding as one of the method. It enables to have the crystal filter grounded with attachment screw or grounding terminal.
The internal part of crystal filter may be damaged, if it solders to a case directly. In addition the case of a crystal filter is grounded certainly because potential difference can be eliminated at the circuit side.
(4)-5 Direct-Current Superposition

When you charge direct-current, please do not have the current beyond a rated current value. Internal transformer will generate a heat and it will create a cause of bad insulation or disconnection, if excess direct current goes through filter than the rated value.

## Packaging

Minimum Quantity/Dimensions of Reel (XDCAF/XDCAG/XDCAH Series)

| Embossed Tape $\boldsymbol{3 3 0 \mathrm { mm }}$ |  |
| :---: | :---: |
| 3,000 |  |



## Dimensions of Carrier Tape



## Packaging

Minimum Quantity/Dimensions of Reel (XDCBA Series)

| Embossed Tape $\boldsymbol{1 8 0 m m}$ |  |
| :---: | :---: |
| 1,000 |  |


(in mm)

## Dimensions of Carrier Tape



## Global Locations

For details please visit www.murata.com


## © Note

## 1 Export Control

For customers outside Japan:
No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For customers in Japan:
For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export

BPlease contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
(1) Aircraft equipment
(2) Aerospace equipment
(3) Undersea equipment
(4) Power plant equipment
(5) Medical equipment
(6) Transportation equipment (vehicles, trains, ships, etc.)
(7) Traffic signal equipment
(8) Disaster prevention / crime prevention equipment
(9) Data-processing equipment
(10) Application of similar complexity and/or reliability requirements to the applications listed above

3
Product specifications in this catalog are as of October 2019. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.

4
Please read rating and $\triangle$ CAUTION (for storage operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

- 

Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.

No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Murata manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E1305$\underline{3}$ 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 TP-102-PIN TP-103-PIN BD1222J50200AHF


[^0]:    Area of Attenuation: [within 20dB]
    Area of Insertion Loss: at minimum loss point
    Center frequency (fo) defined by the center of 3dB bandwidth.
    For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
    The order quantity should be an integral multiple of the "Minimum Quantity" shown in the packaging page.

