

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

Typical unit

FEATURES

- Wide range input voltages 9-36 and 18-75 Vdc
- 1" x 1" x 0.41" Dimensions.
- Adjustable Vout (+10% to -10%)
- High Efficiency
- Positive & Negative logic, Remote On/Off control Option
- Monotonic startup
- Continuous Short Circuit protection
- Over-temperature protection
- Over-Voltage protection
- Low output ripple and noise
- Strong thermal derating characteristics
- Operational Temperature Range –40°C to +85°C
- 1600V I/O isolation
- Packaged in a five-sided EMI shielding metal package with non-conductive base
- Certified to UL 60950-1, CAN/CSA-C22.2 No. 60950-1, IEC60950-1, safety approvals, 2nd edition, with AM1

PRODUCT OVERVIEW

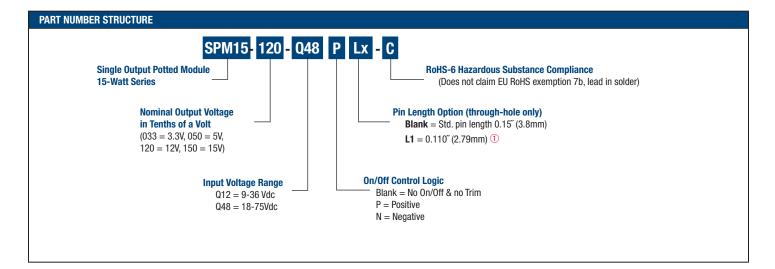
The SPM15 series isolated DC-DC converters represent the next generation in Industrial Potted Module Technology. Featuring a full 15-Watt output in one square inch of board area, the SPM15 series isolated DC-DC converter family offers efficient regulated DC power for printed circuit board mounting. The $1^{"} \times 1^{"} \times 0.41^{"}$ (25.4 x 25.4 x 10.41 mm) converter accepts a wide range of input voltages, ideal for industrial applications.

Intended target markets include transportation, medical systems, electronic test equipment, industrial processing equipment, industrial applications where power modules must meet rugged environmental requirements, high power density, and where isolated output voltages are required. These converters offer a feature/option set including: through-hole mounting, positive or negative logic (remote on/off), over-current & over-temperature protection, under-voltage lockout. The input voltage range covers the standard Industrial requirements with a regulated output voltage and power rating up to 15W.

Modules provide voltage isolation (basic insulation) from input to output of up to 1600V. The Operating Ambient Temperature Range is -40° C to $+85^{\circ}$ C. The Module delivers full output power to $+70^{\circ}$ C with no airflow. These parts are ideal for applications that do not require any heat sinking or forced air cooling.

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters


PERFORMANCE	SPECIF	ICATIO	NS SUN	MARY A	ND ORD	DERING GU	IDE 1 3								
				Outp	out				In	put					
		Іоит	Total	R/N (n	ıVp-p)	Regulation	on (Max.)			lin,	In,	Efficier	1Cy (%)	Dim	ensions
Root Models ①	Vоит (V)	(A, max)	Power (W)	Тур. @	Max.	Line	Load	VIN Nom. (V)	Range (V)	min. load (mA)	full load (A)	Min.	Тур.	Case (inches)	Case (mm)
SPM15-033-Q12	3.3	4.5	14.85	60	100	±0.25	±0.25	24	9-36	100	0.695	86.5	89	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-033-Q48	3.3	5	16.5	30	60	±0.25	±0.25	48	18-75	60	0.76	88.5	90	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-050-Q12	5	3	15	40	70	±0.05%	±0.1%	24	9-36	105	0.71	85.5	88	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-050-Q48	5	3	15	60	95	±0.3%	±0.2%	48	18-75	56	0.35	86.5	88.5	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-120-Q12	12	1.3	15.6	60	120	±0.05%	±0.1%	24	9-36	110	0.77	82.3	84	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-120-Q48	12	1.3	15.6	85	120	±0.075%	±0.05%	48	18-75	56	0.76	82	84	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-150-Q12	15	1.1	16.5	130	175	±0.1%	±0.1%	24	9-36	130	0.82	82.5	84	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41
SPM15-150-Q48	15	1.1	16.5	80	150	±0.1%	±0.075%	48	18-75	60	0.41	83	84.5	1.0 x 1.0 x 0.41	25.4 x 25.4 x 10.41

Notes:

- 0 $\$ Please refer to the part number structure for additional options and complete ordering part numbers.
- 2 Ripple and Noise is shown at 20 MHz bandwidth.

INPUT/OUT	PUT EXTERNAL TEST CAP	ACITORS
Model	Input Capacitor (electrolytic)	Output Capacitor(s)
SPM15-033-Q12	100 µF	
SPM15-033-Q48	4.7 μF	
SPM15-050-Q12	100 µF	
SPM15-050-Q48	4.7 μF	1µF ceramic &
SPM15-120-Q12	100 µF	10µF tantalum
SPM15-120-Q48	4.7 μF	
SPM15-150-Q12	100 µF	
SPM15-150-Q48	4.7 μF	

 $\$ All specifications are at nominal line voltage and full load, +25 °C. unless otherwise noted. See detailed specifications for full conditions.

- ① Special quantity order is required; samples available with standard pin length only.
- ② Some model number combinations may not be available. See website or contact your local Murata sales representative.

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS – MODEL SPM15-033-Q12

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		36	Vdc
Input Voltage, Transient	100 mS max. duration			50	Vdc
Isolation Voltage	Input to output			1600	Vdc
On/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.46		15.07	W
Output Current	Current-limited, no damage, short-circuit protected	0.45		4.5	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
Absolute maximums are stress ratings. Exposur listed in the Performance/Functional Specification INPUT	e of devices to greater than any of these conditions mons Table is not implied or recommended.	nay adversely affect lon	g-term reliability. Proper ope	eration under conditions	other than those
Operating Voltage Range		9	24	36	Vdc
Recommended External Fuse	Fast blow			4	A
Start-up Threshold	Rising input voltage	8	8.5	9	Vdc
Undervoltage Shutdown (50% load)	Falling input voltage	7.7	8.3	8.9	Vdc
Internal Filter Type	i annig nipat totago		C	010	
Input Current			0		
Full Load Input Current	Vin = nominal		0.695	0.726	Α
Low Line Input Current	Vin = minimum		1.89	1.947	A
Inrush Transient	VIII = IIIIIIIIIUII		0.05	1.947	A2-Sec.
Short Circuit Input Current			50	100	A2-Sec.
	laut minimum unit ON		100		
Minimum Load Input Current	lout = minimum, unit=ON			125	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
Reflected (Back) Ripple Current 2	Measured at input with specified filter		30	50	mA, p-p
GENERAL and SAFETY					
Efficiency	Vin = 24V, full load	86.5	89		%
Enclency	Vin = min., full load	86	87.3		%
Isolation					
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance			10		ΜΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950- 1, IEC/60950-1, 2nd edition, with AM1		Yes		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		2		Hours x 10 ⁶
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		325	350	375	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			50	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		60	100	μSec
Dynamic Load Peak Deviation	same as above		±75	±150	mV
FEATURES and OPTIONS					
Remote On/Off Control ③					
"N" suffix			1		1
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain		1		mA
"P" suffix					
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, OFF state	OFF = Ground pin	-0.7		0.7	V
Control Current	Open collector/drain		1		mA

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-033-Q12

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.46	14.85	15.07	W
Voltage					
Nominal Output Voltage	No trim	3.251	3.3	3.35	Vdc
Setting Accuracy	At 50% load, no trim	-1.5		1.5	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom
Overvoltage Protection	Via magnetic feedback	3.7	4.9	5.4	Vdc
Current	· · · · · · · · · · · · · · · · · · ·				
Output Current Range		0.45	4.5	4.5	A
Current Limit Inception	98% of Vnom., after warmup	4.9	7.5	8.5	A
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout		0.321		А
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 24V			±0.25	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=24V		60	90	mV pk-pk
Maximum Capacitive Loading	Low ESR			1000	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	0°
Operating Case Temperature Range	No derating	-40		85	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	0°
Thermal Protection/Shutdown	Measured in center	110	115	120	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic. All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 µF, Cin=33 µF and Lbus=12 µH.

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

TYPICAL PERFORMANCE DATA, SPM15-033-Q12 Efficiency vs. Line Voltage and Load Current @ 25°C Power Dissipation 2.50 90 88 86 84 80 78 76 74 72 70 68 66 64 62 66 58 66 4 52 0.5 2.25 2.00 $V_{IN} = 9V$ Power Dissipation (Watts) $V_{IN} = 12V$ Efficiency (%) 1.75 VIN = 24V1.50 VIN = 36V 1.25 $V_{IN} = 9V$ $V_{IN} = 12V$ 1.00 $V_{IN} = 24V$ 0.75 $V_{IN} = 36V$ 0.50 0.9 1.4 1.8 2.3 2.7 3.2 3.6 4.1 4.5 0.5 0.9 1.4 1.8 2.3 2.7 3.2 3.6 4.1 4.5 **Output Load Current (Amps)** Load Current (Amps) Maximum Current Temperature Derating at sea level Maximum Current Temperature Derating at sea level Vin = 36V (air flow from Pin J1 to Pin J2 on PCB) Vin = 9V, 12V, or 24V (air flow from Pin J1 to Pin J2 on PCB) 5 5 .5 m/s (100 LFM) 4 Δ Natural Convection Output Current (Amps) Output Current (Amps) 3 3 2 2 1 1 0 0 35 40 45 50 55 60 65 70 75 80 85 35 40 45 55 65 70 75 80 85 30 30 50 60 Ambient Temperature (°C) Ambient Temperature (°C)

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS – MODEL SPM15-033-Q48

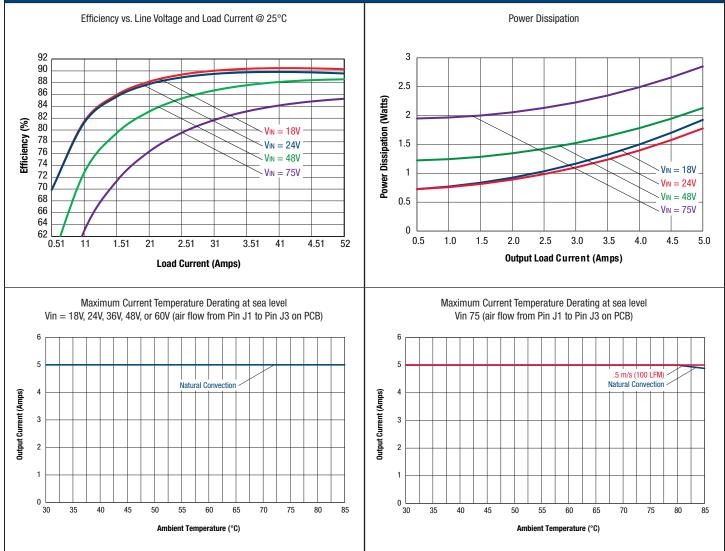
ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		80	Vdc
Input Voltage, Transient	100 mS max. duration			100	Vdc
Isolation Voltage	Input to output			1600	Vdc
On/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.63		16.75	W
Output Current	Current-limited, no damage, short-circuit protected	0.5		5	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
Absolute maximums are stress ratings. Exposur	e of devices to greater than any of these conditions ma	ay adversely affect long	-term reliability. Proper ope	ration under conditions	other than those
listed in the Performance/Functional Specificati		,	, ,		
INPUT	· · · · · · · · · · · · · · · · · · ·				
Operating Voltage Range		18	48	75	Vdc
Recommended External Fuse	Fast blow			2	A
Start-up Threshold	Rising input voltage	15.5	16.9	17.9	Vdc
Undervoltage Shutdown (50% load)	Falling input voltage	15	16	16.8	Vdc
Internal Filter Type		10	C	10.0	Vuo
Input Current			0		
Full Load Input Current	Vin = 24V		0.764	0.788	Α
Full Load Input Current	Vin = 24V Vin = 48V		0.388	0.403	A
Low Line Input Current	Viii = 48V Vin = minimum		1.03	1.04	A
Inrush Transient	VIII = IIIIIIIIIII		0.05	1.04	A2-Sec.
Short Circuit Input Current			0.05	0.1	A2-Sec.
•	laut minimum unit ON		60	90	-
Minimum Load Input Current	lout = minimum, unit=ON				mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
Reflected (Back) Ripple Current 2	Measured at input with specified filter		30		mA, p-p
GENERAL and SAFETY					
Efficiency	Vin = 24V, full load	88.5	90		%
•	Vin = 48V, full load	86.5	88.5		%
Isolation			1		1
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance			10		MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950- 1, IEC/60950-1, 2nd edition, with AM1		Yes		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground		2,000,000		Hours
	fixed, Tambient = $+25^{\circ}C$		2,000,000		nouis
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		325	350	375	KHz
Startup Time	Power on to Vout regulated		10	50	mS
Startup Time	Remote ON to Vout regulated		10	50	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		75	150	μSec
Dynamic Load Peak Deviation	same as above		±75	±125	mV
FEATURES and OPTIONS					
Remote On/Off Control ③					
"N" suffix					
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain	10	1	10	mA
"P" suffix	Open collector/uran		I		IIIA
Positive Logic, ON state	ON Dis anos	10		15	V
PUSITIVE LOGIC, UN STATE	ON = Pin open	10		15	
Destition Lewis OFF state					
Positive Logic, OFF state Control Current	OFF = Ground pin Open collector/drain	-0.7	1	0.7	V mA

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-033-Q48

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.63	16.5	16.75	W
Voltage					
Nominal Output Voltage	No trim	3.2505	3.3	3.3495	Vdc
Setting Accuracy	At 50% load, no trim		1.5		% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom
Overvoltage Protection	Via magnetic feedback	4	5	5.6	Vdc
Current			1		
Output Current Range		0.5	5	5	A
Current Limit Inception	98% of Vnom., after warmup	5.9	7.3	8.4	Α
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 48V			±0.25	% of Vout
Ripple and Noise	20 MHz BW, Vin = 48V		30	60	mV pk-pk
Temperature Coefficient	At all outputs		0.02		% of Vnom./°C
Maximum Capacitive Loading	Low ESR			5000	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	120	130	140	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		


Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic. All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 µF, Cin=33 µF and Lbus=12 µH.

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

TYPICAL PERFORMANCE DATA, SPM15-033-Q48

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS – MODEL SPM15-050-Q12

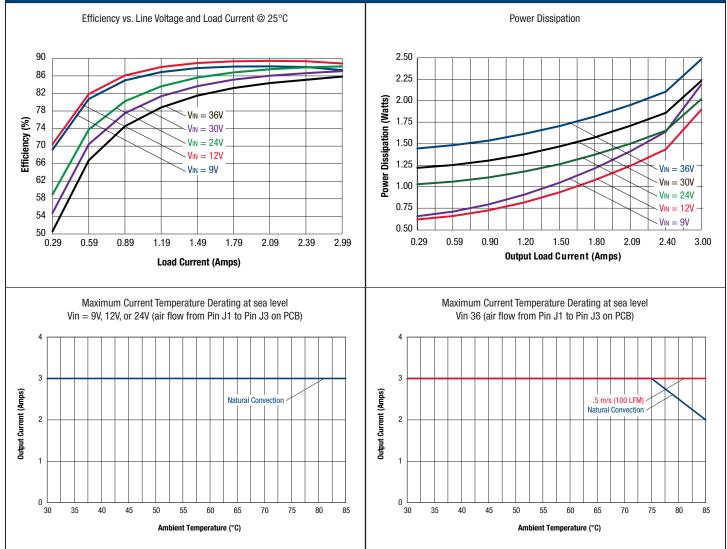
100 mS max. duration Input to output Power on, referred to -Vin Current-limited, no damage, short-circuit protected Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum Measured at input with specified filter	0 0 1.48 0.30 -55 nay adversely affect long 9 8 9.5 7.8	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	36 50 1600 15 15.23 3 125 eration under conditions 36 4 9 10.5 9 0.73 1.97 0 100 135 2	Vdc Vdc Vdc W A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc Vdc Vdc A A A A A A A A A A A A A A A A A A A
Input to output Power on, referred to -Vin Current-limited, no damage, short-circuit protected Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum Iout = minimum, unit=ON	1.48 0.30 -55 nay adversely affect long 9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	1600 15 15.23 3 125 eration under conditions 36 4 9 10.5 9 0.73 1.97 100 135	Vdc Vdc W A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc Vdc Vdc R A A A A A A A A A A A A A A A A A A
Power on, referred to -Vin Current-limited, no damage, short-circuit protected Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	1.48 0.30 -55 nay adversely affect long 9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	15 15.23 3 125 rration under conditions 36 4 9 10.5 9 0.73 1.97 	Vdc W A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc R A A A A A A A A A A A A A A A A A A
Current-limited, no damage, short-circuit protected Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	1.48 0.30 -55 nay adversely affect long 9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	15.23 3 125 rration under conditions 36 4 9 10.5 9 0.73 1.97 	W A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc Vdc Vdc A A A 2-Sec. mA mA
Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	0.30 -55 nay adversely affect long 9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	3 125 rration under conditions 36 4 9 10.5 9 0.73 1.97 	A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc A A A A A A 2-Sec. mA mA
Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	-55 nay adversely affect long 9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	125 eration under conditions 36 4 9 10.5 9 0.73 1.97 	°C other than those Vdc Vdc Vdc Vdc Vdc Vdc A A A A 2-Sec. mA mA
Vin = Zero (no power) f devices to greater than any of these conditions m Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	nay adversely affect long 9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	236 36 4 9 10.5 9 0.73 1.97 	Vdc A Vdc Vdc Vdc Vdc Vdc Vdc A A A A A A A A A A A A A A A A A A A
f devices to greater than any of these conditions in Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	36 4 9 10.5 9 	Vdc A Vdc Vdc Vdc Vdc A A A A A A 2-Sec. MA MA
Table is not implied or recommended. Fast blow Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	9 8 9.5	24 8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	36 4 9 10.5 9 	Vdc A Vdc Vdc Vdc Vdc A A A A A A 2-Sec. MA MA
Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	8 9.5	8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	4 9 10.5 9 0.73 1.97 100 135	A Vdc Vdc Vdc A A A A ² -Sec. mA mA
Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	8 9.5	8.6 10.0 8.25 C 0.71 1.91 0.05 50 105 1	4 9 10.5 9 0.73 1.97 100 135	A Vdc Vdc Vdc A A A A ² -Sec. mA mA
Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	9.5	10.0 8.25 C 0.71 1.91 0.05 50 105 1	9 10.5 9 0.73 1.97 100 135	Vdc Vdc Vdc A A A ² -Sec. mA mA
Rising input voltage @-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	9.5	10.0 8.25 C 0.71 1.91 0.05 50 105 1	9 10.5 9 0.73 1.97 100 135	Vdc Vdc Vdc A A A ² -Sec. mA mA
©-40°C Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON	9.5	10.0 8.25 C 0.71 1.91 0.05 50 105 1	0.5 9 0.73 1.97 100 135	Vdc Vdc A A A ² -Sec. mA mA
Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON		8.25 C 0.71 1.91 0.05 50 105 1	9 0.73 1.97 100 135	A A A ² -Sec. mA mA
Vin = nominal Vin = minimum lout = minimum, unit=ON		C 0.71 1.91 0.05 50 105 1	0.73 1.97 100 135	A A A ² -Sec. mA mA
Vin = minimum lout = minimum, unit=ON		0.71 1.91 0.05 50 105 1	1.97 100 135	A A²-Sec. mA mA
Vin = minimum lout = minimum, unit=ON		1.91 0.05 50 105 1	1.97 100 135	A A²-Sec. mA mA
Vin = minimum lout = minimum, unit=ON		1.91 0.05 50 105 1	1.97 100 135	A A ² -Sec. mA mA
lout = minimum, unit=ON		0.05 50 105 1	100 135	A ² -Sec. mA mA
		50 105 1	135	mA mA
		105 1	135	mA
		1		
Measured at input with specified filter			2	MA
Measured at input with specified filter				
1		30		mA, p-p
				%
Vin = min., full load	86	87.3		%
		1		r
Input to output	1600			Vdc
				MΩ
		1500		pF
1, IEC/60950-1, 2nd edition, with AM1		Yes		
		6.2		Hours x 10 ⁶
fixed, Tambient = $+25^{\circ}C$		0.2		TIOUTS X TO
	330	350	370	KHz
Power on to Vout regulated			50	mS
Remote ON to Vout regulated			50	mS
50-75-50% load step, settling time to within 1% of Vout		100	150	μSec
same as above		±85	±125	mV
		· · · · · · · · · · · · · · · · · · ·		·
ON = Ground pin	-0.7		0.8	V
				V
	ſŬ	1	١J	mA
Open conector/urani		1		IIIA
ON - Din onen	10		15	V
				V
	-U./		U./	MA W
	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C Power on to Vout regulated Remote ON to Vout regulated 50-75-50% load step, settling time to within 1% of Vout	Vin = min., full load 86 Input to output 1600 Certified to UL-60950-1, CSA-C22.2 No. 60950- 1, IEC/60950-1, 2nd edition, with AM1 1600 Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C 330 Power on to Vout regulated 330 Power on to Vout regulated 50-75-50% load step, settling time to within 1% of Vout Same as above 10 ON = Ground pin -0.7 OFF = Pin open 10 Open collector/drain 10 OFF = Ground pin -0.7	Vin = min., full load 86 87.3 Input to output 1600 10 Certified to UL-60950-1, CSA-C22.2 No. 60950- 1, IEC/60950-1, 2nd edition, with AM1 Yes Yes Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C 6.2 6.2 330 350 9 Power on to Vout regulated 100 100 50-75-50% load step, settling time to within 1% of Vout 100 100 Same as above ±85 100 100 ON = Ground pin -0.7 0 0 0 ON = Ground pin 10 1 0 0 ON = Pin open 10 1 0 0 ON = Pin open 10 0 0 0 0 ON = Pin open 10 0	Vin = min., full load 86 87.3 Input to output 1600 10 10 1500 1500 Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1 Yes 6.2 Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C 6.2 50 Semote ON to Vout regulated 50 50 Solor 75-50% load step, settling time to within 1% of Vout 100 150 Same as above ±85 ±125 ON = Ground pin -0.7 0.8 OFF = Pin open 10 15 OPer collector/drain 1 15 ON = Ground pin -0.7 0.8 ON = Pin open 10 15 ON = Pin open 10 15 OFF = Ground pin -0.7 0.7

SPM15 Series

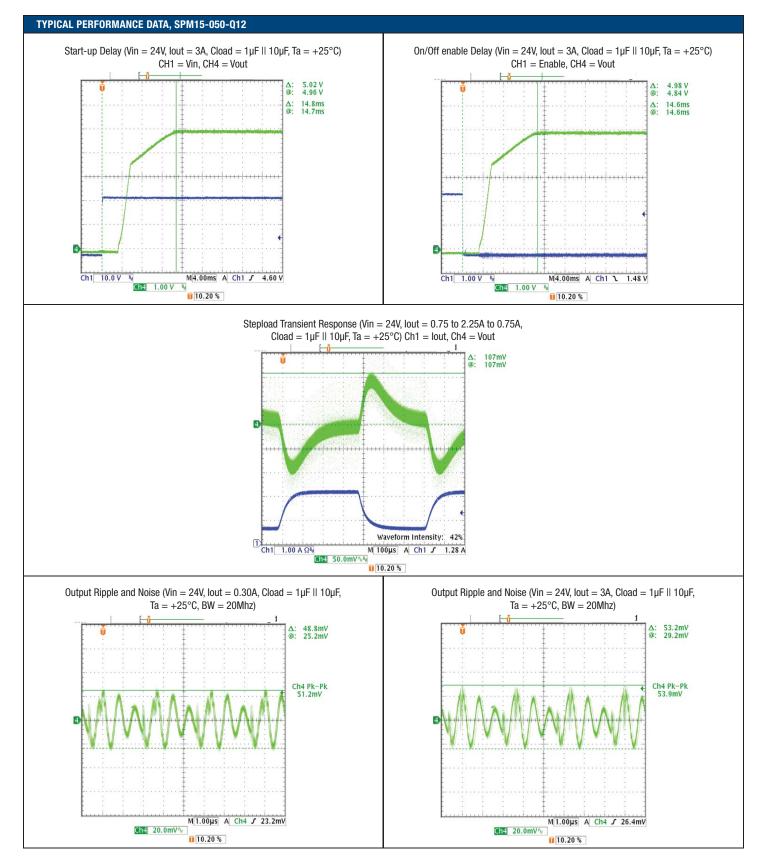
Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-050-Q12

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.48	15	15.23	W
Voltage					
Nominal Output Voltage	No trim	4.925	5	5.075	Vdc
Setting Accuracy	At 50% load, no trim	-1.5		1.5	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	5.75	5.9	7	Vdc
Current			1		
Output Current Range		0.3	3	3	Α
Current Limit Inception	98% of Vnom., after warmup	3.5	4.75	6.5	A
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	А
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.05	% of Vout
Load Regulation	lout = min. to max., Vin = 24V			±0.1	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=24V		40	70	mV pk-pk
Temperature Coefficient	At all outputs		±0.02		% of Vnom./°C
Maximum Capacitive Loading	Low ESR			1000	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		105	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	110	115	120	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		


Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic. All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 μF, Cin=33 μF and Lbus=12 μH.


SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

TYPICAL PERFORMANCE DATA, SPM15-050-Q12

SPM15 Series

SPM15 Series

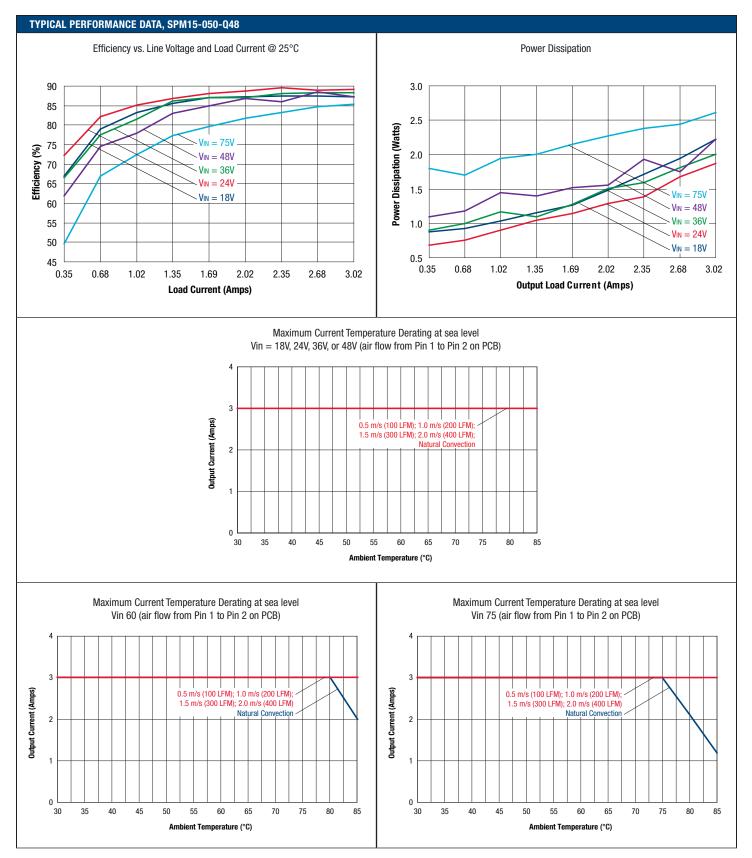
Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS – MODEL SPM15-050-Q48

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		80	Vdc
Input Voltage, Transient	100 mS max. duration			100	Vdc
Isolation Voltage	Input to output			1600	Vdc
On/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power	,	1.48		15.23	W
Output Current	Current-limited, no damage, short-circuit protected	0.3		3	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
Absolute maximums are stress ratings. Exposu	e of devices to greater than any of these conditions m	ay adversely affect long	g-term reliability. Proper ope	eration under conditions	other than those
listed in the Performance/Functional Specificati		, , ,	, , , , , , , , , , , , , , , , , , ,		
INPUT					
Operating Voltage Range		18	48	75	Vdc
Recommended External Fuse	Fast blow			1.5	A
Start-up Threshold	Rising input voltage	16	16.9	17.9	Vdc
Undervoltage Shutdown	Falling input voltage	15	16	17.5	Vdc
Internal Filter Type	r anny nput volago	10	C	11.0	140
Input Current			Ŭ		
Full Load Input Current	Vin = nominal		0.35	0.37	Α
Low Line Input Current	Vin = noninal Vin = minimum		0.93	0.97	A
Inrush Transient	viii – minimum		0.05	0.97	A ² -Sec.
Short Circuit Input Current			0.05	0.1	mA
Minimum Load Input Current	lout = minimum, unit=ON		56	90	mA
Shut-Down Input Current (Off, UV, OT)	iout = minimum, unit=ON			<u> </u>	-
			1	Ζ	mA
Reflected (Back) Ripple Current @	Measured at input with specified filter		30		mA, p-p
GENERAL and SAFETY					
Efficiency	Vin = 48V, full load	86.5	88.5		%
-	Vin = min., full load	87.5	89.5		%
Isolation					
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance			10		MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950-		Yes		
Salety	1, IEC/60950-1, 2nd edition, with AM1		165		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground		2		Hours x 10 ⁶
	fixed, Tambient = $+25^{\circ}C$		۷۲		HOUIS X 10 ⁻
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		320	345	375	KHz
Startup Time	Power on to Vout regulated		10	50	mS
Startup Time	Remote ON to Vout regulated		10	100	mS
•	50-75-50% load step, settling time to within				
Dynamic Load Response	1% of Vout		60	120	μSec
Dynamic Load Peak Deviation	same as above		±50	±150	mV
FEATURES and OPTIONS					
Remote On/Off Control ③					
"N" suffix					
Negative Logic, ON state	ON = Ground pin	-0.7	1	0.8	V
Negative Logic, ON state	OFF = Pin open	-0.7		15	V
Control Current		10	1	10	_
	Open collector/drain				mA
"P" suffix		10	1	45	
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, OFF state	OFF = Ground pin	-0.7		0.7	V
Control Current	Open collector/drain		1		mA

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters


FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-050-Q48

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.48	15	15.23	W
Voltage					•
Nominal Output Voltage	No trim	4.925	5	5.075	Vdc
Setting Accuracy	At 50% load, no trim	-1.5		1.5	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	6	7	8	Vdc
Current					
Output Current Range		0.3	3	3	A
Current Limit Inception	98% of Vnom., after warmup	3.75	4.5	5.5	A
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	А
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.3	% of Vout
Load Regulation	lout = min. to max., Vin = 48V			±0.2	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=48V		60	95	mV pk-pk
Maximum Capacitive Loading	Low ESR			470	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		85	٥C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	130	135	150	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic. All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 µF, Cin=33 µF and Lbus=12 µH.

SPM15 Series

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS – MODEL SPM15-120-Q12

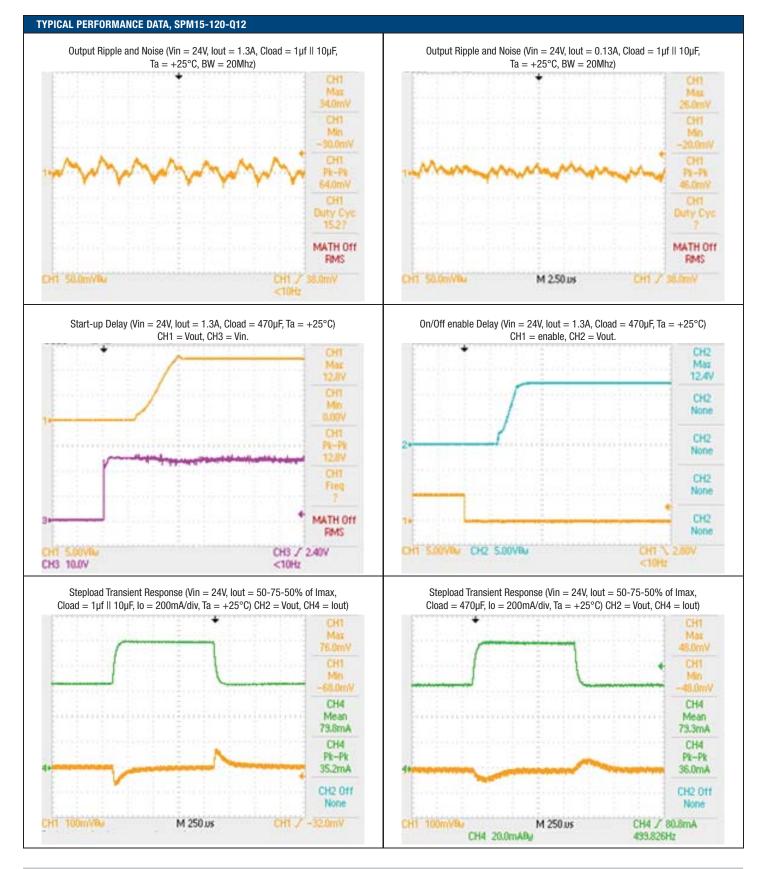
torage Temperature Range bsolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is I INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown iternal Filter Type put Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current Shut-Down Input Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Resistance Isolation Capacitance afety Certified 1, IE	100 mS max. duration Input to output Power on, referred to -Vin mited, no damage, short-circuit protected Vin = Zero (no power) to greater than any of these conditions r not implied or recommended. Fast blow Rising input voltage Falling input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load Vin = min., full load	-55 may adversely affect lon 9 8 7.9	24 24 24 8.5 8.2 C 0.77 2.05 0.05 50 105 1 30	36 50 1600 15 15.76 1.3 125 ration under conditions 36 4 9 8.7 0.8 2.11 120 130 2.5	Vdc Vdc Vdc W A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc A A 2 C c other than those
Solation Voltage n/Off Remote Control utput Power utput Current utput Current Current-li bsolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is in INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown thernal Filter Type nput Current Full Load Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance Isolation Capacitance afety 1, IE alculated MTBF Per Telo DYNAMIC CHARACTERISTICS	Input to output Power on, referred to -Vin mited, no damage, short-circuit protected Vin = Zero (no power) to greater than any of these conditions r not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum Iout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	1.54 0.13 -55 may adversely affect lon 9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	1600 15 15.76 1.3 125 ration under conditions 36 4 9 8.7 0.8 2.11 120 130	Vdc Vdc W A °C other than those Vdc A Vdc Vdc Vdc Vdc Vdc Vdc N dc N dc N dc
n/Off Remote Control utput Power utput Current torage Temperature Range bsolute maximums are stress ratings. Exposure of devices stein the Performance/Functional Specifications Table is in INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown nternal Filter Type mput Current Full Load Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current Shut-Down Input Current Shut-Down Input Current (Off, UV, OT) effected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance Isolation Capacitance afety Certified 1, IE alculated MTBF DYNAMIC CHARACTERISTICS	Power on, referred to -Vin mited, no damage, short-circuit protected Vin = Zero (no power) to greater than any of these conditions not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	1.54 0.13 -55 may adversely affect lon 9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	15 15.76 1.3 125 ration under conditions 36 4 9 8.7 0.8 2.11 120 130	Vdc W A °C other than those Vdc A Vdc Vdc Vdc Vdc A A A 2-Sec. mA mA
utput Power Current utput Current Current-li torage Temperature Range bsolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is in INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown nternal Filter Type nput Current Full Load Input Current Low Line Input Current Nort Circuit Input Current Minimum Load Input Current Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current Minimum Load SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	mited, no damage, short-circuit protected Vin = Zero (no power) to greater than any of these conditions i not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON issured at input with specified filter Vin = 24V, full load	1.54 0.13 -55 may adversely affect lon 9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	15.76 1.3 125 ration under conditions 36 4 9 8.7 0.8 2.11 120 130	W A °C other than those Vdc A Vdc Vdc Vdc Vdc A A A A 2-Sec. mA mA
utput Current Current-lit torage Temperature Range bsolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is in INPUT perating Voltage Range ecommended External Fuse ecommended External Fuse tart-up Threshold indervoltage Shutdown internal Filter Type internal Filter Type internal Filter Type put Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Mainimum Load Input Current Minimum Load Input Current Mea GENERAL and SAFETY fficiency stolation Voltage Isolation Capacitance Isolation Capacitance afety alculated MTBF Per Telo	Vin = Zero (no power) to greater than any of these conditions in not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	0.13 -55 may adversely affect lon 9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	1.3 125 ration under conditions 36 4 9 8.7 0.8 2.11 120 130	A °C other than those Vdc A Vdc Vdc Vdc Vdc A A A 2-Sec. mA mA
torage Temperature Range bsolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is in INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown internal Filter Type put Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current Shut-Down Input Current (Off, UV, OT) effected (Back) Ripple Current @ Maininum Load Input Current Solation Isolation Voltage Isolation Capacitance Isolation Capacitance afety Certified 1, IE alculated MTBF DYNAMIC CHARACTERISTICS	Vin = Zero (no power) to greater than any of these conditions in not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	-55 may adversely affect lon 9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	125 ration under conditions 36 4 9 8.7 0.8 2.11 120 130	°C other than those Vdc A Vdc Vdc Vdc Vdc A A A ² -Sec. mA mA
torage Temperature Range bsolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is in INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown iternal Filter Type put Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) effected (Back) Ripple Current @ Maininum Load Input Current Solation Isolation Voltage Isolation Capacitance Isolation Capacitance afety Certified 1, IE alculated MTBF DYNAMIC CHARACTERISTICS	Vin = Zero (no power) to greater than any of these conditions in not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	-55 may adversely affect lon 9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	36 4 9 8.7 0.8 2.11 120 130 130	Vdc A Vdc Vdc Vdc Vdc A A A A 2-Sec. mA mA
boolute maximums are stress ratings. Exposure of devices sted in the Performance/Functional Specifications Table is I INPUT perating Voltage Range ecommended External Fuse tart-up Threshold ndervoltage Shutdown nternal Filter Type put Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) effected (Back) Ripple Current 2 Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	to greater than any of these conditions r not implied or recommended. Fast blow Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	9 8 7.9	24 8.5 8.2 C 0.77 2.05 0.05 50 105 1	36 4 9 8.7 0.8 2.11 120 130	Vdc A Vdc Vdc Vdc A A A 2-Sec. mA mA
ecommended External Fuse tart-up Threshold ndervoltage Shutdown iternal Filter Type iput Current Full Load Input Current Low Line Input Current Minimum Load Input Current Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current ② Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety Certified alculated MTBF DYNAMIC CHARACTERISTICS	Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	8 7.9	8.5 8.2 C 0.77 2.05 0.05 50 105 1	4 9 8.7 0.8 2.11 120 130	A Vdc Vdc A A A ² -Sec. mA mA
tart-up Threshold ndervoltage Shutdown internal Filter Type iput Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety Certified alculated MTBF DYNAMIC CHARACTERISTICS	Rising input voltage Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON sured at input with specified filter Vin = 24V, full load	7.9	8.2 C 0.77 2.05 0.05 50 105 1	9 8.7 0.8 2.11 120 130	Vdc Vdc A A A ² -Sec. mA mA
ndervoltage Shutdown nternal Filter Type nput Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON usured at input with specified filter Vin = 24V, full load	7.9	8.2 C 0.77 2.05 0.05 50 105 1	8.7 0.8 2.11 120 130	Vdc A A A ² -Sec. mA mA
ndervoltage Shutdown nternal Filter Type nput Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Falling input voltage Vin = nominal Vin = minimum lout = minimum, unit=ON usured at input with specified filter Vin = 24V, full load		8.2 C 0.77 2.05 0.05 50 105 1	0.8 2.11 120 130	Vdc A A A ² -Sec. mA mA
Internal Filter Type nput Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Meage GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Vin = nominal Vin = minimum lout = minimum, unit=ON Isured at input with specified filter Vin = 24V, full load		C 0.77 2.05 0.05 50 105 1	0.8 2.11 120 130	A A A ² -Sec. mA mA
put Current Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) efflected (Back) Ripple Current @ GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Vin = minimum lout = minimum, unit=0N usured at input with specified filter Vin = 24V, full load		0.77 2.05 0.05 50 105 1	2.11 120 130	A A ² -Sec. mA mA
Full Load Input Current Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Vin = minimum lout = minimum, unit=0N usured at input with specified filter Vin = 24V, full load		2.05 0.05 50 105 1	2.11 120 130	A A ² -Sec. mA mA
Low Line Input Current Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Vin = minimum lout = minimum, unit=0N usured at input with specified filter Vin = 24V, full load		2.05 0.05 50 105 1	2.11 120 130	A A ² -Sec. mA mA
Inrush Transient Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY Mea fficiency solation Isolation Voltage Isolation Capacitance Isolation Capacitance Certified afety 1, IE alculated MTBF Per Telo	lout = minimum, unit=0N Isured at input with specified filter Vin = 24V, full load		0.05 50 105 1	120 130	A ² -Sec. mA mA
Short Circuit Input Current Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current @ Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	sured at input with specified filter Vin = 24V, full load		50 105 1	130	mA mA
Minimum Load Input Current Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current ② Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety afety alculated MTBF DYNAMIC CHARACTERISTICS	sured at input with specified filter Vin = 24V, full load		105 1	130	mA
Shut-Down Input Current (Off, UV, OT) eflected (Back) Ripple Current ② GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety afety alculated MTBF DYNAMIC CHARACTERISTICS	sured at input with specified filter Vin = 24V, full load		1		
eflected (Back) Ripple Current ② Mea GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Vin = 24V, full load		-	2.0	IIIA
GENERAL and SAFETY fficiency solation Isolation Voltage Isolation Resistance Isolation Capacitance afety afety Certified 1, IE alculated MTBF DYNAMIC CHARACTERISTICS	Vin = 24V, full load	00.5	30		
fficiency	,	00.5			mA, p-p
solation Isolation Voltage Isolation Resistance Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	,		at		
solation Isolation Voltage Isolation Resistance Isolation Capacitance afety alculated MTBF DYNAMIC CHARACTERISTICS	Vin – min full load	82.5	84		%
Isolation Voltage Isolation Resistance Isolation Capacitance afety Certified 1, IE alculated MTBF DYNAMIC CHARACTERISTICS	viii – iiiii., iuii ludu	83	84.5		%
Isolation Resistance Isolation Capacitance afety Certified 1, IE alculated MTBF DYNAMIC CHARACTERISTICS		1	1		
Isolation Capacitance Certified afety Certified alculated MTBF Per Telo DYNAMIC CHARACTERISTICS	Input to output	1600			Vdc
afety Certified 1, IE alculated MTBF Per Telc DYNAMIC CHARACTERISTICS			10		MΩ
atery 1, IE alculated MTBF Per Tel DYNAMIC CHARACTERISTICS			1500		pF
DYNAMIC CHARACTERISTICS	to UL-60950-1, CSA-C22.2 No. 60950- C/60950-1, 2nd edition, with AM1		Yes		
	ordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		TBD		Hours x 10 ⁶
ixed Switching Frequency					
		300	330	360	KHz
tartup Time	Power on to Vout regulated		5	50	mS
tartup Time	Remote ON to Vout regulated		5	50	mS
ynanne Luau nespunse	50% load step, settling time to within 1% of Vout		60	120	μSec
ynamic Load Peak Deviation	same as above		±100	±150	mV
FEATURES and OPTIONS					
emote On/Off Control ③					
N" suffix					
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current			1		mA
P" suffix	Upen collector/drain	1			1
Positive Logic, ON state	Open collector/drain				V
Positive Logic, OFF state	•	10		15	
Control Current	Open collector/drain ON = Pin open OFF = Ground pin	10 -0.7		15 0.7	V

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters


FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-120-Q12

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.54	15.6	15.76	W
Voltage	•				
Nominal Output Voltage	No trim	11.88	12	12.12	Vdc
Setting Accuracy	At 50% load, no trim	-1		1	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	15.5	17.2	19.5	Vdc
Current					- 1
Output Current Range		0.13	1.3	1.3	Α
Current Limit Inception	98% of Vnom., after warmup	1.5	2.1	2.6	Α
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.05	% of Vout
Load Regulation	lout = min. to max., Vin = 24V			±0.1	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=24V		60	120	mV pk-pk
Temperature Coefficient	At all outputs		±0.02		% of Vnom./°C
Maximum Capacitive Loading	Low ESR			470	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		105	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	٥°
Thermal Protection/Shutdown	Measured in center	110	115	120	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		


Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic. All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 μF, Cin=33 μF and Lbus=12 μH.

SPM15 Series

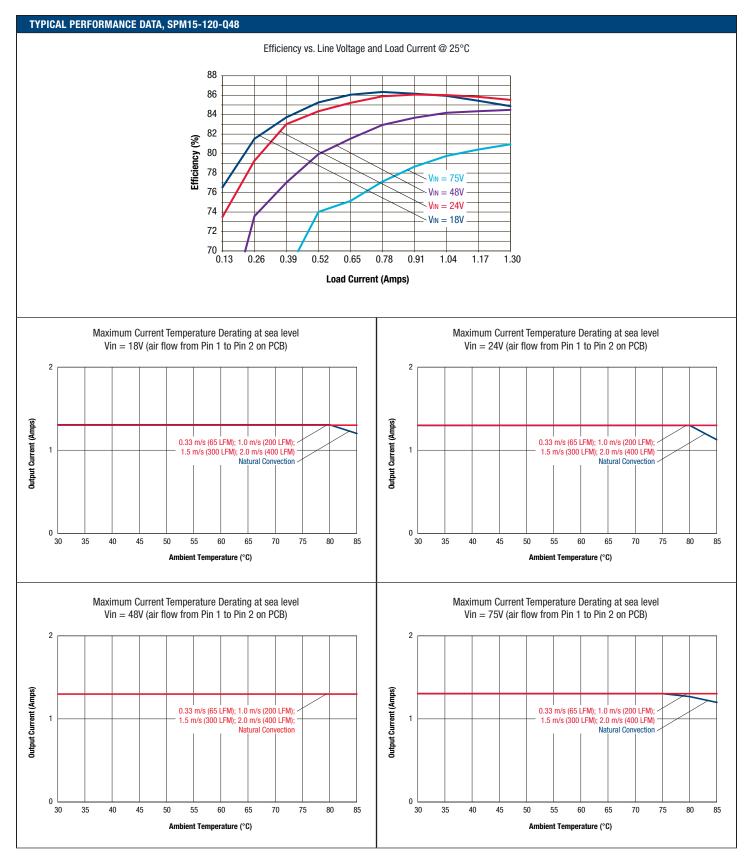
Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS – MODEL SPM15-120-Q48

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		80	Vdc
Input Voltage, Transient	100 mS max. duration			100	Vdc
solation Voltage	Input to output			1600	Vdc
Dn/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Dutput Power		1.54		15.76	W
Output Current	Current-limited, no damage, short-circuit protected	0.13		1.3	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	D°
Absolute maximums are stress ratings. Exposure	of devices to greater than any of these conditions m	ay adversely affect long	-term reliability. Proper ope	ration under conditions	other than thos
isted in the Performance/Functional Specification	s Table is not implied or recommended.				
INPUT					
Operating voltage range		18	48	75	Vdc
Recommended External Fuse	Fast blow			1.5	A
Start-up threshold	Rising input voltage	16	16.75	17.5	Vdc
Jndervoltage shutdown	Falling input voltage	15	16	17	Vdc
Furn-On/Turn-Off Hysteresis	·		1.5		Vdc
nternal Filter Type			LC		
nput current			20		
Full Load Input Current	Vin = 24V		0.76	0.782	A
Full Load Input Current	Vin = 24V Vin = 48V		0.387	0.400	A
Low Line Input Current	Vin = winimum		1.032	1.042	
Inrush Transient	VIII – Minimum		0.05	1.042	A ² -Sec.
Short Circuit Input Current			50	100	mA
Minimum Load Input Current	lout = minimum, unit = ON		56	90	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
	Measured at input with encoified filter		30	2	
Reflected (back) ripple current ②	Measured at input with specified filter		30		mA, p-p
GENERAL and SAFETY			05.5		
Efficiency	Vin = 48V, full load	82	85.5		%
· · · ·	Vin = 24V., full load	84	84		%
solation		1000			
Isolation Voltage	Input to output	1600	10		Vdc
Isolation Resistance			10		MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950-		Yes		
-	1, IEC/60950-1, 2nd edition, with AM1				
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground		6.4		Hours x 10
	fixed, Tambient = $+25^{\circ}C$				
DYNAMIC CHARACTERISTICS		000	005	070	1411
Fixed Switching Frequency	Device an to V. J. J. J. J.	300	335	370	KHz
Startup Time	Power on to Vout regulated		10	50	mS
Startup Time	Remote ON to Vout regulated		10	50	mS
Dynamic Load Response	50-75-50% load step, settling time to within		50	100	µSec
	1% of Vout				
Dynamic Load Peak Deviation	same as above		±125	±200	mV
FEATURES and OPTIONS					
'N" suffix					
'N" suffix Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
'N" suffix	ON = Ground pin OFF = Pin open	-0.7 10		0.8 15	V V
'N" suffix Negative Logic, ON state	· · · · · · · · · · · · · · · · · · ·		1		
'N" suffix Negative Logic, ON state Negative Logic, OFF state Control Current	OFF = Pin open		1		V
'N" suffix Negative Logic, ON state Negative Logic, OFF state Control Current	OFF = Pin open		1		V
Negative Logic, OFF state Control Current 'P" suffix	OFF = Pin open Open collector/drain	10	1	15	V mA

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters


FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-120-Q48

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.54	15.6	15.76	W
Voltage	· · ·				·
Nominal Output Voltage	No trim	11.88	12	12.12	Vdc
Setting Accuracy	At 50% load, no trim	-1		1	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	14.5	16.5	17.5	Vdc
Current					
Output Current Range		0.13	1.3	1.3	Α
Current Limit Inception	98% of Vnom., after warmup	1.5	1.9	2.3	A
Short Circuit	· · ·				·
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			TBD	А
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.075	% of Vout
Load Regulation	lout = min. to max., Vin = 48V			±0.05	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=48V		85	120	mV pk-pk
Temperature Coefficient	At all outputs		±0.02		% of Vnom./°C
Maximum Capacitive Loading	Low ESR			470	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See Derating	-40		85	٥°
Operating Case Temperature Range	No derating	-40		105	٥°
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	130	135	150	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 4.7 μF . All capacitors are low-ESR types wired close to the converter.
- @ Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 $\mu F,$ Cin=33 μF and Lbus=12 $\mu H.$

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

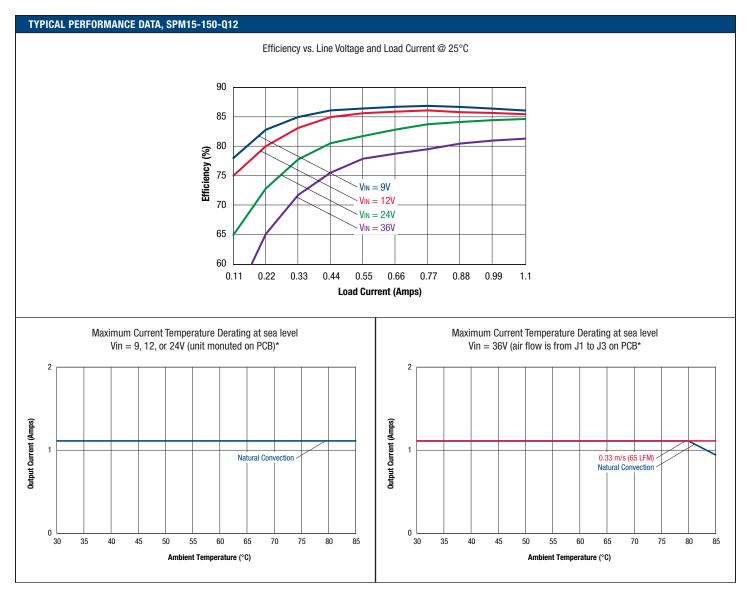
FUNCTIONAL SPECIFICATIONS – MODEL SPM15-150-Q12

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		36	Vdc
Input Voltage, Transient	100 mS max. duration			50	Vdc
solation Voltage	Input to output			1600	Vdc
Dn/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.63		16.67	W
Dutput Current	Current-limited, no damage, short-circuit protected	0.11		1.1	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
Absolute maximums are stress ratings. Exposur	e of devices to greater than any of these conditions ma	v adverselv affect long	-term reliability. Proper ope	ration under conditions	other than thos
isted in the Performance/Functional Specification		,,	,		
INPUT					
Dperating voltage range		9	24	36	Vdc
Recommended External Fuse	Fast blow	-		4	A
Start-up threshold (@+25°C and -40°C)	Rising input voltage	8	8.5	9	Vdc
Undervoltage shutdown	Falling input voltage	7.8	8.25	9	Vdc
nternal Filter Type		1.0	C	0	Vuo
nput current			0		1
Full Load Input Current	Vin = nominal		0.82	0.84	A
Low Line Input Current	Vin = noninal Vin = minimum		2.13	2.19	A
Inrush Transient	VIII = IIIIIIIIIUIII		0.05	2.19	A ² -Sec.
Short Circuit Input Current			50	100	mA
•	laut minimum unit ON				
Minimum Load Input Current	lout = minimum, unit = ON		130	150	mA
Shut-Down Input Current (Off, UV, OT)			1	2.5	mA
Reflected (back) ripple current ②	Measured at input with specified filter		30		mA, p-p
GENERAL and SAFETY					
Efficiency	Vin = 24V, full load	82.5	84		%
Linclency	Vin = min., full load	84.5	86		%
Isolation					
Isolation Voltage	Input to output	1600			Vdc
Insulation Safety Rating			basic		
Isolation Resistance			10		MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950- 1, IEC/60950-1, 2nd edition, with AM1		Yes		
	Per Telcordia SR332, issue 1, class 3, ground		TDD		11
Calculated MTBF	fixed, Tambient = $+25^{\circ}C$		TBD		Hours x 10 ⁶
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		300	330	360	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote on to Vout regulated			50	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		100	150	μSec
Dynamic Load Peak Deviation	same as above		±150	±250	mV
FEATURES and OPTIONS					
Remote On/Off Control ③					
"N" suffix					
	ON Cround nin	0.7		0.0	V
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	-
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain		1		mA
'P" suffix					
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, OFF state	OFF = Ground pin	-0.7		0.7	V
Control Current	Open collector/drain		1		mA

SPM15 Series

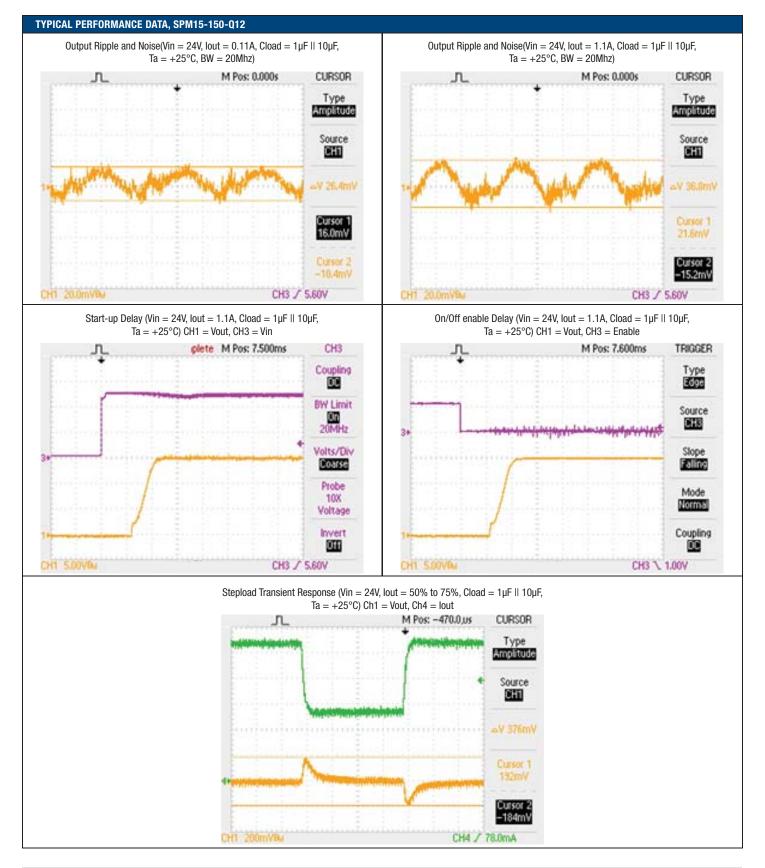
Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-150-Q12


OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.63	16.5	16.67	W
Voltage					·
Nominal Output Voltage	No trim	14.85	15	15.15	Vdc
Setting Accuracy	At 50% load, no trim	1		1	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	17	19.5	22.5	Vdc
Current					
Output Current Range		0.11	1.1	1.1	A
Current Limit Inception	98% of Vnom., after warmup	1.2	1.6	2	Α
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.1	% of Vout
Load Regulation	lout = min. to max., Vin = 24V			±0.1	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=24V		130	175	mV pk-pk
Temperature Coefficient	At all outputs		±0.02		% of Vnom./°C
Maximum Capacitive Loading	Low ESR			470	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See Derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		105	٥°
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	110	115	120	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes

- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic. All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 μF, Cin=33 μF and Lbus=12 μH.



Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

*Using Burn in board, connection with solder

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

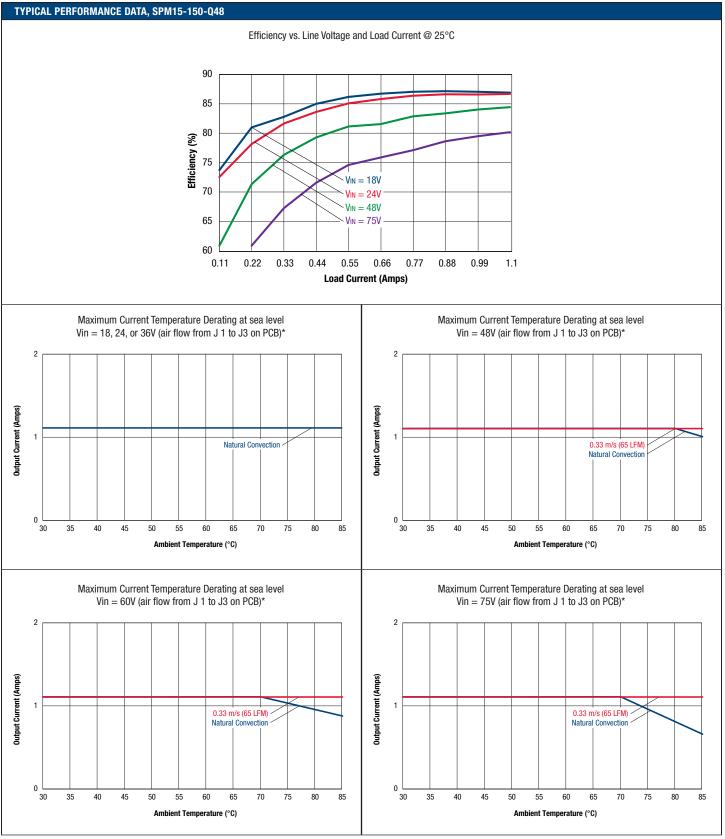
FUNCTIONAL SPECIFICATIONS – MODEL SPM15-150-Q48

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		80	Vdc
Input Voltage, Transient	100 mS max. duration			100	Vdc
solation Voltage	Input to output			1600	Vdc
Dn/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Dutput Power		1.63		16.67	W
Dutput Current	Current-limited, no damage, short-circuit protected	0.11		1.1	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
Absolute maximums are stress ratings. Exposu	re of devices to greater than any of these conditions ma	ay adversely affect lon	g-term reliability. Proper ope	ration under conditions	other than thos
listed in the Performance/Functional Specificati		· · · · · · · · · · · · · · · · · · ·	5 · · · · · · · · · · · · ·		
INPUT					
Operating voltage range		18	48	75	Vdc
Recommended External Fuse	Fast blow			2	A
Start-up threshold	Rising input voltage	16	16.7	17.9	Vdc
Undervoltage shutdown	Falling input voltage	15	16.2	17.5	Vdc
Internal Filter Type		10	C	17.0	Vuo
Input current					1
Full Load Input Current	Vin = nominal		0.41	0.42	Α
Low Line Input Current	Vin = nominal Vin = minimum		1.06	1.09	A
Low Line input current Inrush Transient	viii = i/ii/ii/ii/ii/ii		0.05	1.09	A ² -Sec.
				100	
Short Circuit Input Current			50		mA
Minimum Load Input Current	lout = minimum, unit = ON		60	85	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
Reflected (back) ripple current ②	Measured at input with specified filter		30		mA, p-p
GENERAL and SAFETY					
Efficiency	Vin = 48V, full load	83	85.5		%
Enclency	Vin = min., full load	85	86.5		%
Isolation					
Isolation Voltage	Input to output	1600			Vdc
Insulation Safety Rating			basic		
Isolation Resistance			10		MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950- 1, IEC/60950-1, 2nd edition, with AM1		Yes		
	Per Telcordia SR332, issue 1, class 3, ground		тор		Hours v 106
Calculated MTBF	fixed, Tambient = $+25^{\circ}C$		TBD		Hours x 10 ⁶
DYNAMIC CHARACTERISTICS					·
Fixed Switching Frequency		300	330	360	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote on to Vout regulated			50	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		60	120	μSec
Dynamic Load Peak Deviation	same as above		±150	±250	mV
FEATURES and OPTIONS					
Remote On/Off Control ③					
"N" suffix	ON Cround air	07		0.0	N/
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain		1		mA
"P" suffix			- <u>1</u>		1
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, OFF state	OFF = Ground pin	-0.7		0.7	V
Control Current	Open collector/drain		1		mA

SPM15 Series

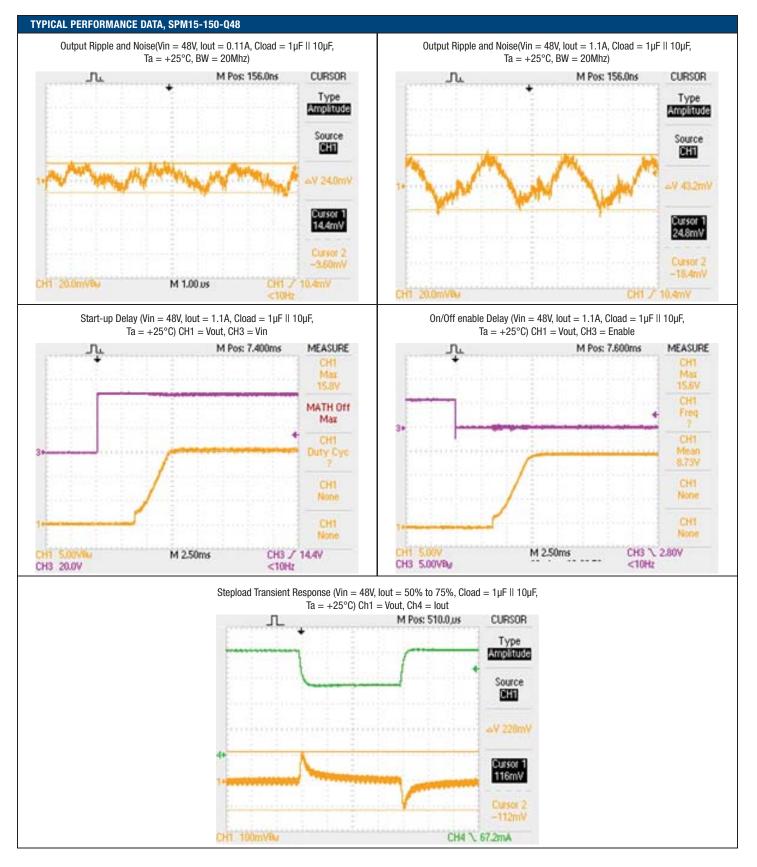
Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL SPM15-150-Q48


OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.63	16.5	16.67	W
Voltage					
Nominal Output Voltage	No trim	14.85	15	15.15	Vdc
Setting Accuracy	At 50% load, no trim	1		1	% of Vnom
Output Voltage Range	User-adjustable	-10		10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	19	20	21.5	Vdc
Current			1		
Output Current Range		0.11	1.1	1.1	A
Current Limit Inception	98% of Vnom., after warmup	1.3	1.7	2.2	Α
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.1	% of Vout
Load Regulation	lout = min. to max., Vin = 48V			±0.075	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=24V		80	150	mV pk-pk
Temperature Coefficient	At all outputs		±0.02		% of Vnom./°C
Maximum Capacitive Loading	Low ESR			470	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.41		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.41		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See Derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		105	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	110	115	120	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22	· ·		В		Class
RoHS rating			RoHS-6		

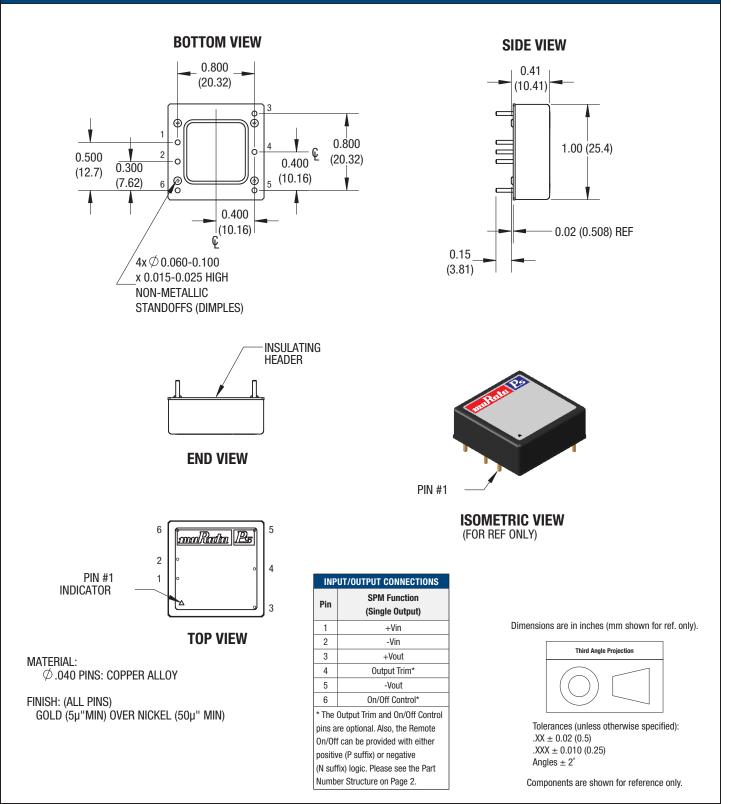
Notes

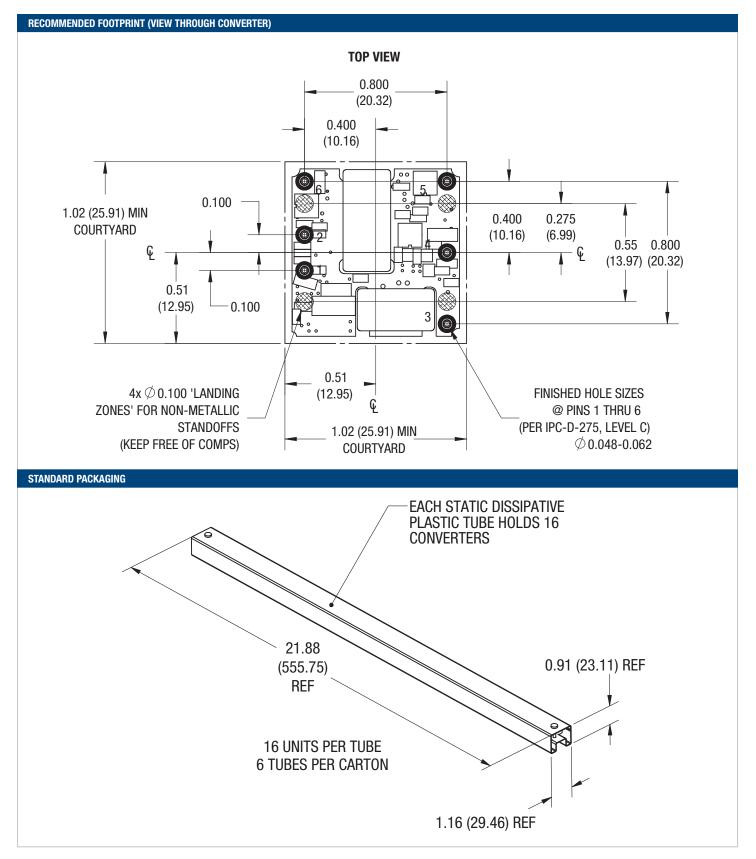
- \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 4.7 μF . All capacitors are low-ESR types wired close to the converter.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 µF, Cin=33 µF and Lbus=12 µH.


Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

*Using Burn in board, connection with solder

www.murata-ps.com/support


SPM15 Series


SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

MECHANICAL SPECIFICATIONS

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

TECHNICAL NOTES

Input Fusing

Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current-limited. For greatest safety, we recommend a fast blow fuse installed in the ungrounded input supply line.

The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard.

Input Under-Voltage Shutdown and Start-Up Threshold

Under normal start-up conditions, converters will not begin to regulate properly until the rising input voltage exceeds and remains at the Start-Up Threshold Voltage (see Specifications). Once operating, converters will not turn off until the input voltage drops below the Under-Voltage Shutdown Limit. Subsequent restart will not occur until the input voltage rises again above the Start-Up Threshold. This built-in hysteresis prevents any unstable on/off operation at a single input voltage.

Users should be aware however of input sources near the Under-Voltage Shutdown whose voltage decays as input current is consumed (such as capacitor inputs), the converter shuts off and then restarts as the external capacitor recharges. Such situations could oscillate. To prevent this, make sure the operating input voltage is well above the UV Shutdown voltage AT ALL TIMES.

Start-Up Delay

Assuming that the output current is set at the rated maximum, the Vin to Vout Start-Up Delay (see Specifications) is the time interval between the point when the rising input voltage crosses the Start-Up Threshold and the fully loaded regulated output voltage enters and remains within its specified regulation band. Actual measured times will vary with input source impedance, external input capacitance, input voltage slew rate and final value of the input voltage as it appears at the converter.

These converters include a soft start circuit to moderate the duty cycle of the PWM controller at power up, thereby limiting the input inrush current.

The On/Off Remote Control interval from inception to V_{0UT} regulated assumes that the converter already has its input voltage stabilized above the Start-Up Threshold before the On command. The interval is measured from the On command until the output enters and remains within its specified regulation band. The specification assumes that the output is fully loaded at maximum rated current.

Input Source Impedance

These converters will operate to specifications without external components, assuming that the source voltage has very low impedance and reasonable input voltage regulation. Since real-world voltage sources have finite impedance, performance is improved by adding external filter components. Sometimes only a small ceramic capacitor is sufficient. Since it is difficult to totally characterize all applications, some experimentation may be needed. Note that external input capacitors must accept high speed switching currents. Because of the switching nature of DC/DC converters, the input of these converters must be driven from a source with both low AC impedance and adequate DC input regulation. Performance will degrade with increasing input inductance. Excessive input inductance may inhibit operation. The DC input regulation specifies that the input voltage, once operating, must never degrade below the Shut-Down Threshold under all load conditions. Be sure to use adequate trace sizes and mount components close to the converter.

I/O Filtering, Input Ripple Current and Output Noise

All models in this converter series are tested and specified for input reflected ripple current and output noise using designated external input/output components, circuits and layout as shown in the figures below. External input capacitors (CN in the figure) serve primarily as energy storage elements, minimizing line voltage variations caused by transient IR drops in the input conductors. Users should select input capacitors for bulk capacitance (at appropriate frequencies), low ESR and high RMS ripple current ratings. In the figure below, the CBUS and LBUS components simulate a typical DC voltage bus. Your specific system configuration may require additional considerations. Please note that the values of CIN, LBUS and CBUS may vary according to the specific converter model.

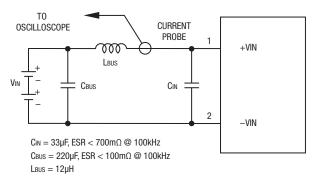
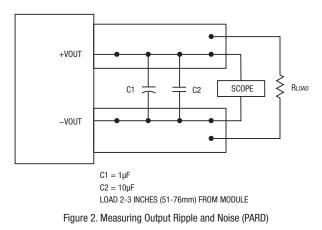


Figure 1. Measuring Input Ripple Current


In critical applications, output ripple and noise (also referred to as periodic and random deviations or PARD) may be reduced by adding filter elements such as multiple external capacitors. Be sure to calculate component temperature rise from reflected AC current dissipated inside capacitor ESR.

Floating Outputs

Since these are isolated DC/DC converters, their outputs are "floating" with respect to their input. The essential feature of such isolation is ideal ZERO CURRENT FLOW between input and output. Real-world converters however do exhibit tiny leakage currents between input and output (see Specifications). These leakages consist of both an AC stray capacitance coupling component and a DC leakage resistance. When using the isolation feature, do not allow the isolation voltage to exceed specifications. Otherwise the converter may be damaged. Designers will normally use the negative output (-Output) as the ground return of the load circuit. You can however use the positive output (+Output) as the ground return to effectively reverse the output polarity.

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

Minimum Output Loading Requirements

These converters employ a synchronous rectifier design topology. All models regulate within specification and are stable from 0% load to full load conditions, unless otherwise specified. Operation under no load will not damage the converter but might, however, slightly increase regulation, output ripple, and noise.

Thermal Shutdown

To protect against thermal over-stress, these converters include thermal shutdown circuitry. If environmental conditions cause the temperature of the DC/ DC's to rise above the Operating Temperature Range up to the shutdown temperature, an on-board electronic temperature sensor will power down the unit. When the temperature decreases below the turn-on threshold, the converter will automatically restart. There is a small amount of hysteresis to prevent rapid on/off cycling. CAUTION: If you operate too close to the thermal limits, the converter may shut down suddenly without warning. Be sure to thoroughly test your application to avoid unplanned thermal shutdown.

Temperature Derating Curves

The graphs in the performance data section illustrate typical operation under a variety of conditions. The Derating curves show the maximum continuous ambient air temperature and decreasing maximum output current which is acceptable under increasing forced airflow measured in Linear Feet per Minute ("LFM"). Note that these are AVERAGE measurements. The converter will accept brief increases in temperature and/or current or reduced airflow as long as the average is not exceeded.

Note that the temperatures are of the ambient airflow, not the converter itself which is obviously running at higher temperature than the outside air. Also note that "natural convection" is defined as very low flow rates which are not using fan-forced airflow. Depending on the application, "natural convection" is usually about 30-65 LFM but is not equal to still air (0 LFM).

Murata Power Solutions makes Characterization measurements in a closed cycle wind tunnel with calibrated airflow. We use both thermocouples and an infrared camera system to observe thermal performance. As a practical matter, it is quite difficult to insert an anemometer to precisely measure airflow in most applications. Sometimes it is possible to estimate the effective airflow if you thoroughly understand the enclosure geometry, entry/exit orifice areas and the fan flowrate specifications.

CAUTION: If you exceed these Derating guidelines, the converter may have an unplanned Over Temperature shut down. Also, these graphs are all collected near Sea Level altitude. Be sure to reduce the derating for higher altitude.

Output Overvoltage Protection (OVP)

This converter monitors its output voltage for an over-voltage condition using an on-board electronic comparator. The signal is optically coupled to the primary side PWM controller. If the output exceeds OVP limits, the sensing circuit will power down the unit, and the output voltage will decrease. After a time-out period, the PWM will automatically attempt to restart, causing the output voltage to ramp up to its rated value. It is not necessary to power down and reset the converter for this automatic OVP-recovery restart.

If the fault condition persists and the output voltage climbs to excessive levels, the OVP circuitry will initiate another shutdown cycle. This on/off cycling is referred to as "hiccup" mode.

Output Fusing

The converter is extensively protected against current, voltage and temperature extremes. However, your application circuit may need additional protection. In the extremely unlikely event of output circuit failure, excessive voltage could be applied to your circuit. Consider using an appropriate external protection.

Output Current Limiting

As soon as the output current increases to approximately its overcurrent limit, the DC/DC converter will enter a current-limiting mode. The output voltage will decrease proportionally with increases in output current, thereby maintaining a somewhat constant power output. This is commonly referred to as power limiting.

Current limiting inception is defined as the point at which full power falls below the rated tolerance. See the Performance/Functional Specifications. Note particularly that the output current may briefly rise above its rated value. This enhances reliability and continued operation of your application. If the output current is too high, the converter will enter the short circuit condition.

Output Short Circuit Condition

When a converter is in current-limit mode, the output voltage will drop as the output current demand increases. If the output voltage drops too low, the magnetically coupled voltage used to develop PWM bias voltage will also drop, thereby shutting down the PWM controller. Following a time-out period, the PWM will restart, causing the output voltage to begin rising to its appropriate value. If the short-circuit condition persists, another shutdown cycle will initiate. This on/off cycling is called "hiccup mode." The hiccup cycling reduces the average output current, thereby preventing excessive internal temperatures.

Trimming the Output Voltage

The Trim input to the converter allows the user to adjust the output voltage over the rated trim range (please refer to the Specifications). In the trim equations and circuit diagrams that follow, trim adjustments use a single fixed resistor connected between the Trim input and either Vout pin. Trimming resistors should have a low temperature coefficient (±100 ppm/°C or less) and be mounted close to the converter. Keep leads short. If the trim function is not used, leave the trim unconnected. With no trim, the converter will exhibit its specified output voltage accuracy.

There are two CAUTIONs to observe for the Trim input:

<u>CAUTION</u>: To avoid unplanned power down cycles, do not exceed EITHER the maximum output voltage OR the maximum output power when setting the trim. If the output voltage is excessive, the OVP circuit may inadvertantly shut down the converter. If the maximum power is exceeded, the converter may

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

enter current limiting. If the power is exceeded for an extended period, the converter may overheat and encounter overtemperature shut down.

CAUTION: Be careful of external electrical noise. The Trim input is a senstive input to the converter's feedback control loop. Excessive electrical noise may cause instability or oscillation. Keep external connections short to the Trim input. Use shielding if needed.

Trim Equations

Trim Up
<connect resistor<="" th="" trim=""></connect>
between Trim and –Vout>

Trim Down <Connect trim resistor between Trim and +Vout>

SPM15-033-Q12, Q48						
$R_{T_{IIP}}(\Omega) =$	12775 Pr. (0)	2050	$R_{T_{DOWN}}(\Omega) = \frac{5110 (V_0 - 2.5)}{2.2 (V_0 - 2.5)} - 2050$			
111 _{UP} (12) —	$V_0 - 3.3$	2000	3.3 – Vo			
		SPM15-05	0-Q12, Q48			
$R_{T_{IIP}}(\Omega) =$	12775	- 2050	$R_{T_{\text{DOWN}}}(\Omega) = \frac{5110 \text{ x (Vo } -2.5)}{5 \text{ v Vo}} - 2050$			
$m_{UP}(\Omega) =$	$V_0 - 5$	2030	$5 - V_0$			
		SPM15-12				
P _T (0) -	25000	_ 5110	$R_{T_{\text{DOWN}}}(\Omega) = \frac{10000 \text{ (Vo-2.5)}}{12 \text{ Vo}} - 5110$			
$\operatorname{HI}_{\operatorname{UP}}(\Omega) =$	Vo-12	- 5110	$12 - V_0$			
	SPM15-150-Q12, Q48					
P _T (0) -	25000	5110	$R_{T_{\text{DOWN}}}(\Omega) = \frac{10000 \text{ (Vo-2.5)}}{15 \text{ Vo}} - 5110$			
$R_{T_{UP}}(\Omega) =$	Vo-15	- 5110	$H_{DOWN}(\Omega) = \frac{15 - V_0}{15 - V_0}$			

Where Vo = Desired output voltage. Adjustment accuracy is subject to resistor tolerances and factory-adjusted output accuracy. Mount trim resistor close to converter. Use short leads.

Remote On/Off Control

On the input side, a remote On/Off Control can be specified with either positive or negative logic as follows:

Positive: Models equipped with Positive Logic are enabled when the On/Off pin is left open or is pulled high to +15Vpc with respect to -ViN. An internal bias current causes the open pin to rise to +V_N. Positive-logic devices are disabled when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to -VIN.

Negative: Models with negative logic are on (enabled) when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to -VIN. The device is off (disabled) when the On/Off is left open or is pulled high to +15VDc Max. with respect to -VIN.

Dynamic control of the On/Off function should be able to sink the specified signal current when brought low and withstand specified voltage when brought high. Be aware too that there is a finite time in milliseconds (see Specifications) between the time of On/Off Control activation and stable, regulated output. This time will vary slightly with output load type and current and input conditions.

There are two CAUTIONs for the On/Off Control:

CAUTION: While it is possible to control the On/Off with external logic if you carefully observe the voltage levels, the preferred circuit is either an open drain/open collector transistor or a relay (which can thereupon be controlled by logic). The On/Off prefers to be set at approx. +15V (open pin) for the ON state, assuming positive logic.

CAUTION: Do not apply voltages to the On/Off pin when there is no input power voltage. Otherwise the converter may be permanently damaged.

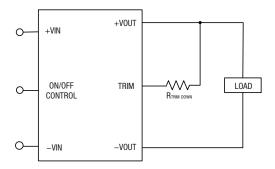


Figure 3. Trim adjustments to decrease Output Voltage using a Fixed Resistor

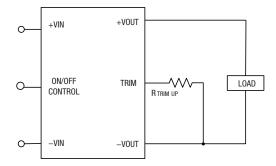


Figure 4. Trim adjustments to increase Output Voltage using a Fixed Resistor

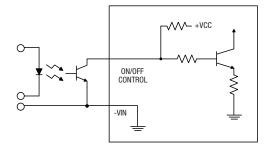


Figure 5. Driving the On/Off Control Pin (suggested circuit)

SPM15 Series

Single Output Potted Metal Package Isolated 15-Watt DC-DC Converters

Vertical Wind Tunnel

Murata Power Solutions employs a computer controlled custom-designed closed loop vertical wind tunnel, infrared video camera system, and test instrumentation for accurate airflow and heat dissipation analysis of power products. The system includes a precision low flow-rate anemometer, variable speed fan, power supply input and load controls, temperature gauges, and adjustable heating element.

The IR camera monitors the thermal performance of the Unit Under Test (UUT) under static steady-state conditions. A special optical port is used which is transparent to infrared wavelengths.

Both through-hole and surface mount converters are soldered down to a 10" X10" host carrier board for realistic heat absorption and spreading. Both longitudinal and transverse airflow studies are possible by rotation of this carrier board since there are often significant differences in the heat dissipation in the two airflow directions. The combination of adjustable airflow, adjustable ambient heat, and adjustable Input/Output currents and voltages mean that a very wide range of measurement conditions can be studied.

The collimator reduces the amount of turbulence adjacent to the UUT by minimizing airflow turbulence. Such turbulence influences the effective heat transfer characteristics and gives false readings. Excess turbulence removes more heat from some surfaces and less heat from others, possibly causing uneven overheating.

Both sides of the UUT are studied since there are different thermal gradients on each side. The adjustable heating element and fan, built-in temperature gauges, and no-contact IR camera mean that power supplies are tested in real-world conditions.

Soldering Guidelines

Murata Power Solutions recommends the specifications below when installing these converters. These specifications vary depending on the solder type. Exceeding these specifications may cause damage to the product. Be cautious when there is high atmospheric humidity. We strongly recommend a mild pre-bake (100° C. for 30 minutes). Your production environment may differ; therefore please thoroughly review these guidelines with your process engineers.

Wave Solder Operations for through-hole mounted products (THMT)							
For Sn/Ag/Cu based solders: For Sn/Pb based solders:							
Maximum Preheat Temperature	115° C.	Maximum Preheat Temperature	105° C.				
Maximum Pot Temperature	270° C.	Maximum Pot Temperature	250° C.				
Maximum Solder Dwell Time	7 seconds	Maximum Solder Dwell Time	6 seconds				

Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: <u>http://www.murata-ps.com/requirements/</u>

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. © 2016 Murata Power Solutions, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by Murata manufacturer:

Other Similar products are found below :

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 19-130041 CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-2405 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 VI-LJ11-iz PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY CK2540-9ERT