

杭州暖芯迦电子科技有限公司

ENS1EVKE

可编程通用刺激双通道开发板

_用户手册

序号	版本号	修订日期	修订概述	修订人	审核人	批准人	备注
1	V1. 0	2023-03-29	首次编制				
2	V1. 1	2023-06-26	更新开发板硬 件,增加芯片引 脚说明,功耗说 明				
3	V1. 2	2023-12-26	四通道输出电流 改为33 uA-120mA ,8通道改为50 uA-100mA				
		3	T				

文档修订记录

目录

文档修订记录	1
1. 开发板图示及说明	3
1.1 适用范围	3
1.2 参考资料	3
1.3 ENS1EVKE双通道开发板图片及说明	3
2. ENS1A2 芯片说明	7
2.1 ENS001芯片简介	7
2.2 引脚说明	8
2.2.1电源部分引脚说明	8
2.2.2其他重要引脚说明	10
3. ENS1EVKE 双通道开发板操作说明	11
3.1 准备工具	11
3.1.1 硬件工具及名称描述	11
3.1.2 软件工具及名称描述	11
3.2 开发板的供电说明	11
3.2.1开发板供电连接方式	11
3.2.2 刺激电流输出以及模拟负载说明	13
3.3 关键寄存器说明及例程的使用	15
3.3.1 软件准备	15
3.3.2 ENS001的波形发生原理及寄存器配置	16
3.3.3 ENS001的波形发生相关寄存器说明	18
3.3.4 ENS001的波形发生例程	20
3.4功耗测试说明	21
4. 联系方式	22

1.开发板图示及说明

编写该说明的主要目的是基于ENS1EVKE双通道开发板使用需求,由本公司技术人员给与技术问题 说明,并形成文字形式的报告,可用于客户研发人员自行了解与测试 ENS1EVKE双通道开发板。

1.1 适用范围

本文档适用于ENS1EVKE双通道开发板操作参考。

1.2 参考资料

参考资料描述如表1.1。

序号	文档名称	作者	版本
1	NNC_ ENS1QFN64L88A2 Datasheet	暖芯迦	V1. 1
2	ENS1_ Drivers_Specs_ User20221206.pdf	暖芯迦	R001
3	可编程通用刺激双通道开发板ENS1EVKE用户手册	暖芯迦	V1.0

表 1.1

1.3 ENS1EVKE双通道开发板图片及说明

REV1.1 https://www.nanochap.cn 杭州暖芯迦电子科技有限公司 Tel: 4008605922 ① SWD 调试接口,使用J-Link烧录器。

② CH340E芯片,将ENS001的UART1通过此芯片接到Micro USB接口端,使用USB线连接可以直接进行串口通信。

③ SGM2036-3.3芯片,将输入电压稳压到3.3V供3.3V电源域使用。

④ SGM40561-4.2 锂电池充电管理芯片,可以用于给3.7V锂电池充电。

⑤-⑦为BOOST部分电路,包含电感,电容、肖特基二极管(与芯片内部的肖特基二极 管并联),芯片内部集成了MOSFET,芯片的SW引脚连接内部MOS管的漏极D,实际使 用时J6和J8选一个(电感二选一),如图为外部元器件的连接位置。

⑧ J9是芯片的BOOST_OUT与HVDD引脚之间的跳帽,BOOST电路为内部的刺激驱动器供能,boost_out引脚的输出电压通过寄存器设置来控制。

例如:程序中设置输出电压为45V,则使能后可以在boost_out端测到45V左右的电压,将此电源输入到HVDD引脚后,再配置波形参数设置相关的寄存器就可以生成由恒流源 控制的刺激驱动器输出相应的波形。

图1.3 J9 跳帽原理图位置

杭州暖芯迦电子科技有限公司 Tel: 4008605922

图1.4 电刺激输出接口及板上测试负载

其中:

⑨模拟负载,当需要使用模拟负载测试时,将J10的上下两排短接。

⑩J10靠近芯片一排的每一个点对应芯片的一个刺激电极引脚,如STO对应STMUO引脚, ST1对应STMU1引脚,共有从STMU0-STMU3共4个引脚,都属于ENS001芯片的DRIVER-A部 分,其组合方式是固定的,由STO和ST1组成通道1,其中ST1输出正向波形,STO输出负 向波形;由ST2和ST3组成通道2,其中ST3输出正向波形,ST2输出负向波形。

⑪用于连接2.5mm一拖二导线和凝胶电极片,用于直接贴在人体体验电刺激波形。

图1.5 电刺激线及电极贴片(参考)

杭州暖芯迦电子科技有限公司 Tel: 4008605922 O BOOT模式切换开关。

Boot mode selection		Boot mode	Aliasing
Boot1 pin	Boot0 pin		- Ara
x	0	MTP base	MTP main area from base is selected as boot area for application code usage
0	1	MTP high 4KByte	MTP high 4KByte area is selected as boot area for bootloader usage
1	1	Embedded SRAM	Embedded SRAM is selected as boot area for debug usage

() PWM功能测试电路。

(14) 普通按键与复位按键。

(15) EEPROM芯片: 仅用于测试ENS001的硬件IIC通信功能。

图1.8 EEPROM 芯片电路

⑥外部低速晶振(32.768KHz)。ENS001的主频时钟可以选择为内部高速RC(4-32MHz 可选)、外部高速晶振、内部低速RC或者外部低速晶振。

2. ENS1A2 芯片说明

2.1 ENS001芯片简介

ENS001芯片有三种型号,分别是可编程通用刺激芯片ENS001-96L10x10-A-PFTS(全功能)、可编程通用刺激芯片ENS001-64L8x8-A3-PFTS(四通道)、可编程通用刺激芯片ENS001-64L8x8-A2-PFTS(双通道)。

ENS1A2芯片集成了crotex-m0内核,32KBMTP存储,8KBSRAM,数字通信接口有 UART*1,SPI*1,IIC*1,1个12-bitADC,温度传感器,2路比较器,PGA,电池充电管理模块,低电压检测,15个GPIO(部分与数字通信接口复用),计时器部分有:实时时钟、定时器、看门狗、脉宽调制、32位或16位双定时器等,另外集成有专用的高压刺激驱动器。

图2.1 ENSO01 芯片框图

其中刺激驱动器部分:全功能芯片共有STMU0-STMU23共24个电刺激电极引脚,四通道芯片有STMU0-STMU7共8个电刺激引脚,双通道芯片有STMU0-STMU3共4个电刺激引脚。

型号	ENS001-96L10x10-A-PFTS(全功能)	ENSOO1-64L8x8-A3- PFTS(四通道)	ENS001-64L8x8-A2-PFTS (双通道)
封装	QFN96L/10*10mm	QFN64L/8*8mm	QFN64L/8*8mm
电刺激通道数量	DRIVER-A: STMU0-STM7(8电极,可组成4 个独立双向通道,最高60V) DRIVER-B: STMU0-STM23(24电极,可组 成23个通道分时输出,最高60V) DRIVER-C:STMU8-STM23(16电极,可组成 8个独立双向通道,最高60V)	DRIVER-A:STMUO- STM7 DRIVER-B: 无 DRIVER-C: 无	DRIVER-A:STMUO-STM3 DRIVER-B: 无 DRIVER-C: 无
输出电流能力/ 单元电流	DRIVER-A: 每通道33uA-120mA (255级) , 单元电流33uA ² 264uA ,8档可调 (最大 可输出120mA电流,配置方法见芯片规格 书) DRIVER-B: 每通道8uA-2mA ,8uA步进共 255级 DRIVER-C: 每通道50uA-100mA (255级) , 单元电流50uA, 72 ² 204uA (8档可调)	DRIVER-A: 每通道0-120mA (最大可输出 120mA电流,配置 方法见芯片规格书) 单元电流 33uA [~] 264uA	DRIVER-A: 每通道0-120mA (最大可输出120mA电 流,配置方法见芯片规 格书) 单元电流33uA [~] 264uA

表2.1 ENS001芯片三种型号区别

2.2 引脚说明

2.2.1电源部分引脚说明

电源分为2个部分,第一部分是5V及小于5V工作电压电源,第二部分是BOOST升压 及刺激驱动器部分的电源。

1) 第一部分

- AVDD5P0: 需要给锂电池充电时此引脚输入5V,并将电池正极与VBAT接通,配置程 序后可以给电池充电。
- VBAT:芯片供电与锂电池充电引脚。
 - ▶ 与锂电池正极连接(使用锂电池时)
 - ▶ 直接输入3.6V-5V直流电源(不使用电池时)
- VSYS_LDO: 内部4.23VLDO输出引脚, 仅需连接去耦电容(此LDO的输出用于锂电池 充电)。
- VDD_IO1/2/3: 三个引脚均为3.3V电源输入引脚,为3.3VIO部分电路供电。
- VDD_DIG: 需要在外部连接DIG_LDO引脚,提供1.8V电源给内核工作使用。
 REV1.1 8 杭州暖芯迦电子科技有限公司 https: //www.nanochap.cn Tel: 4008605922

- DIG_LDO: 内部LDO生成的1.8V电源输出引脚。
- 2) 第二部分
- **BOOST_OUT1/2/3:** ENS001集成了BOOST升压电路中的部分器件,最终电压输出引 脚为 BOOST_OUT1/2/3。
- SW1/2/3/4/5: BOOST升压路径有两种模式可供选择,即内部模式和外部模式,在 使用内部模式下,使用芯片内集成的MOS管,肖特基二极管,电压反馈电路(过压 保护),芯片的SW引脚连接内部MOS管的漏极D。设计电路时仅需要外加(ENS001 的BOOST电路示意图红框中)功率电感、肖特基二极管(与内部并联)、电容组成 完整的BOOST电路。

如图2.3中,SW1/2/3/4/5引脚连接内部MOS管的D极,内部以并联方式存在,这样设计是为了提供较大的电流承受能力,D3可以忽略不使用。

图2.3 ENSO01 的BOOST电路

在使用外部模式下,需要多使用一个外部的MOS管(如图2.3)。

HVDD: ENS001集成了刺激驱动器,用于控制生成确定参数的刺激波形,且以恒流源的形式输出,可以通过寄存器配置输出电流大小、脉宽、频率等参数。刺激驱动器的电源输入(HVDD引脚)接BOOST_OUT引脚。

2.2.2其他重要引脚说明

- GPIO0: 默认为SWCLK功能,即SWD的时钟接口,此引脚又可复用HSE_CLK功能,即 使用外部高速时钟作为主时钟输入,此时连接为外部有源晶振的OUT端(一般使用 内部高速时钟)。
- CLK32K_OUT: 接32K晶振引脚。
- **CLK32K_IN:** 接32K晶振引脚。
- **BOOTSELO:** BOOT模式选择引脚0。
- **BOOTSEL1:** BOOT模式选择引脚1。
- nRST: 芯片复位引脚, 默认为高电平, 拉低时触发复位。

3.ENS1EVKE 双通道开发板操作说明

3.1 准备工具

3.1.1 硬件工具及名称描述

- ▶ J-Link 仿真器 (推荐V9版本,其它如ST Link等带有SWD接口的仿真器也可使用)
- ▶ ENS1EVKE 双通道开发板
- ➢ Micro USB 线
- ▶ 2.5mm一出二理疗仪导线和电极贴片(选配)
- ➢ OLED模块(选配)
- ▶ 示波器
- ▶ 500欧姆电阻

3.1.2 软件工具及名称描述

- ▶ keil5.23 开发工具
- ➢ ENS001芯片的烧录算法(位置: NNC_ENS1QFN64L88A2--双通道ENS资料\5、例程 \3、开发环境\xxx.FLM)

3.2 开发板的供电说明

3.2.1开发板供电连接方式(此处命名使用原理图中的信号 名称)

- ENS001芯片有3组电源输入引脚,分别是: AVDD5P0、 D3V3、 VBAT
- 1) AVDD5P0仅在需要给锂电池充电时使用,输入5V电源后,通过内部LDO生成4.2V电源通过VBAT引脚给锂电池充电。
- 2) D3V3需要输入3.3V电源,为GPIO提供电源。
- VBAT连接3.7V锂电池时可以输出给电池充电,也可以作为输入为芯片供电。
 VBAT和D3V3必须有正常输入芯片才能正常工作。

- 开发板供电方法:
- 1) 通过micro-USB接口供电

将开关S1的3-2接通,此时5V电源直接输入到芯片VBAT引脚。(如图3.1)

同时经外部稳压LDOSGM2036-3.3得到3.3V电压。原理图中3.3V与D3.3V通过磁珠或0 欧姆电阻接通,3.3V电源提供给外设和ENS001芯片的vdd_io1/2/3使用,外设包括CH340E USB转串口芯片,可用于实现PWM测试的LED1,BL24C512A-PARC的EEPEOM芯片,OLED 模组,SWD调试器。

2) 通过3.7V锂电池供电

连接锂电池到开发板背面的BAT+和BAT-焊点,断开J14跳帽,接通S1开关的1-2触点,此时电池正极与ENS001芯片的VBAT引脚连接。

图3.2 锂电池供电

3) 通过ENS001芯片给电池充电

需断开J14跳帽,接通J13,S1开关调到1-2触点,此时电源经ENS001的AVDD5P0输入,经内部LDO得到4.2V电源输出给锂电池充电。

图3.3 ENS001为锂电池充电

4) 使用SGM40561-4.2芯片可提供4.2V电压为锂电池充电和为芯片提供工作电源。

图3.4 ENS001同时对锂电池充电和为ENS001供电

3.2.2 刺激电流输出以及模拟负载说明

四通道电刺激输出引脚如图3.5,图3.7中的电容电阻模拟负载可用于波形测试,
 2.5mm耳机孔可连接一出二理疗仪导线和电极贴片(参考图3.5)用于体验不同刺激 波形的实际体感。

图3.5 ENSO01电刺激输出引脚STMU0-STMU3

■ 设置程序中2个通道同步输出一样的波形,然后切换开关S2和S3 (STMU3 -- STMU1 / STMU2 -- STMU0),可以实现2个通道的电流叠加到一个通道输出,实现电流翻倍输出。

图3.7 ENS001刺激电流输出位置及板上负载

3.3 关键寄存器说明及例程的使用

3.3.1 软件准备

- 1) 将 NNC_ENS1QFN64L88A2--双通道 ENS 资料\5、例程\3、开发环境路径下的 XXXXX.FLM 文件复制到 KEIL安装路径下的 /ARM/Flash 文件夹下。
- 2) 打开\NNC_ENS1QFN64L88A2--双通道 ENS 资料\5、例程\1、波形发生例程路径下的 任一例程,打开配置窗口-> Debug 页面(图3)-> Setting 窗口-> Flash Download 页 面 -> 添加 XXXXX.FLM 包。

C Use Simulato	with restrictions Settings	Use: J-LINK / J-TRACE Cortex Settings		
 Load Application File: 	ion at Startup 🔽 Run to main()	✓ Load Application at Startup ✓ Run to main() Initialization File:		
	Edit	Edit		
Restore Debug	Session Settings	Restore Debug Session Settings		
Breakpoin	ts 🔽 Toolbox	I Breakpoints I Toolbox		
Watch W	indows & Performance Analyzer	Watch Windows		
Memory D	lisplay 🔽 System Viewer	Memory Display Viswer		
CPU DLL:	Parameter:	Driver DLL: Parameter:		
SARMCM3.DLL		SARMCM3.DLL		
Dialog DLL:	Parameter:	Dialog DLL: Parameter:		
DARMCM1.DLL	-pCM0	TARMCM1.DLL pCM0		
,	Manage Component V	iewer Description Files		

图3.8 KEIL的options界面

Download Function Emp C Erase Full C © Erase Secto C Do not Eras	thip I⊽ Program ors I⊽ Verify se I⊽ Reset and Run	RAM for Algorithm Start: 0x20000000 Size: 0x2000	
Programming Algorithm Description A0405 Flash	Device Size De 32k On-	evice Type Address Range -chip Flash 1000000H - 10007FFFH	
		Start: Size:	_
	Add	Remove	

3) 选择编译器版本(选择为您软件现有的版本即可)

ARM AR	мсмо		Xtal (MHz):	3.0	-Code (ARM	Generatior Compiler:	V5.06 upda	te 4 (build 422) _
Operatin	g system:	None		•				0	
System \	/iewer File	:			Γu	se Cross-I	Module Optimiza	tion	
ARMCN	10.svd				▼ U	se MicroL	ів Г	Big Endian	
Use	Custom Fi	le							
Read/	Only Mem	ory Areas			Read/	Write Men	nory Areas		
default	off-chip	Start	Size	Startup	default	off-chip	Start	Size	Nolnit
	ROM1:			С	Г	RAM1:			Г
Γ	ROM2:			0		RAM2:			
Г	ROM3:		1	- c	Г	RAM3:			
	on-chip				1000	on-chip			
$\mathbf{\nabla}$	IROM1:	0x10000000	0x8000	œ	☑	IRAM1:	0x20000000	0x2000	
Г	IROM2:			- C	Г	IRAM2:			
			OK	Car	icel	De	faults		Help

3.3.2 ENS001的波形发生原理及寄存器配置

ENS001可以生成双向电流刺激波形,其生成波形的方式为"描点法",每个周期的 波形由128个点"描出",负半周期的波形由正半周期镜像或者"拉伸"得到,因此在"描点"时,只需描出正半周期的64个点的电流值即可。

以ST0+ST1(通道1)生成双向方波步骤为例:

图3.11 双向方波

- 1) 在STO和ST1中间连接一个500欧姆电阻;
- 配置ADDR_WG_DRV_CONFIG_REG寄存器(datasheetP.182):使能死区时间(bit0: rest enable),使能负半周期波形发生(bit1:negative enable),使能静默时间(bit2:silent enable),使能负半周电极的SOURCE开关(bit3:source B enable);
- **3)** 配置ADDR_WG_DRV_HLF_WAVE_PRD_R EG寄存器,设置正半周期的脉宽时间(单位 us),可以设置的范围是(2-99999us);
- 4) 配置ADDR_WG_DRV_REST_T_REG寄存器,设置死区时间(图3.7中的Delay Time), 范围是(1-255us);
- 5) 配置ADDR_WG_DRV_NEG_HLF_WAVE_P RD_REG寄存器,设置负半周期的脉宽时间(单位us),可以设置的范围是(2-99999us);
- 6) 配置ADDR_WG_DRV_SILENT_T_REG寄存器,设置静默时间(图3.7中负半周结束后的 一段时间);
- 7) 设置电流:输出的电流大小由 ADDR_WG_DRV_ISEL_REG 和ADDR_WG_DRV_INT_REG 寄存器共同决定,输出电流大小=(ADDR_WG_DRV_ISEL_REG+1)*(ADDR_WG_DRV_INT_REG+1)*33uA,其中33uA 是最小单元电流。
- 8) 启动刺激输出:将 ADDR_WG_DRV_CTRL_REG 赋1,启动输出。

连接示波器,使用双探头分别测量电阻两端的输出电压,如图:

9) 需要使用示波器的math功能,将CH1与CH2的波形做差,得到最终波形。

3.3.3 ENS001的波形发生相关寄存器说明(本文档仅描述 与DRIVER-A相关的)

 输出电流 = (ADDR_WG_DRV_IN_WAVE_REG+1) * (ADDR_WG_DRV_ISEL_REG+1) *33uA

 REV1.1
 1
 杭州暖芯迦电子科技有限公司

 https://www.nanochap.cn
 Tel: 4008605922

寄存器名	寄存器长度	读写	功能描述
ADDR_WG_DRV_CON FIG_REG	<7:0>	RD/WR	bit0: 使能死区时间,如果使能了这一位,则 <addr_wg_drv_rest_t_reg>寄存器不能赋值为0; 如果失能了这一位,则需要赋值为0,否则无波形 输出。 Bit1: 负半周期波形使能,如果需要输出负半周 期波形,需要将这一位使能。 Bit2: 静默时间使能,静默时间是负半周期波形 结束后的不输出时间。 Bit3: 负半周期的source开关,需要负半周期波 形时,此位也需要置1。 Bit4: DRIVER-A 未用到。 bit5: DRIVER-A 未用到。 Bit6: 多电极使能,需要用到通道2时需开启。</addr_wg_drv_rest_t_reg>
ADDR_WG_DRV_CTRL REG	<7:0>	RD/WR	仅bit0有效,控制是否使能波形发生时钟,即控制波形的产生和停止
ADDR_WG_DRV_REST T_REG	<7:0>	WR	死区时间时长设置(单位us,范围0-255),死区 时间是图3.10的delay_time,如果需要使用到 255us以上的时间,需要借用波形脉宽时间。
ADDR_WG_DRV_SILE NT_T_REG	<31:0>	WR	静默时间时长设置(单位us,范围0-10秒+)
ADDR_WG_DRV_HLF_ WAVE_PRD_R EG	<31:0>	WR	正半周期的脉宽时间(单位us,范围2-99999us)
ADDR_WG_DRV_NEG _HLF_WAVE_P RD_REG	<31:0>	WR	负半周期的脉宽时间(单位us,范围2-99999us)
ADDR_WG_DRV_CLK_ FREQ_REG	<7:0>	WR	波形发生器的时钟频率(单位: MHZ)
ADDR_WG_DRV_IN_ WAVE_ADDR_R EG	<7:0>	WR	波形生成的方法是描点法,正半周期的波形由64 个点的电流幅值组成,这个寄存器赋值范围为(0-63),代表64个地址。
ADDR_WG_DRV_IN_ WAVE_REG	<7:0> <15:8>	WR	<7:0> 给上面对应的64个地址赋值,设置电流大 小,每个地址都需要设置一个对应的电流大小, 范围0-255。 <15:8> DRIVER-A未使用到
ADDR_WG_DRV_DELA Y_LIM_REG	<15:0>	WR	延迟输出时钟数,可以实现多通道错位输出,1us 的时钟数公式:时钟频率/1000000(us)。 例:延迟X us输出,此寄存器设置为时钟频率 /1000000 * X (us)。
ADDR_WG_DRV_NEG _SCALE_REG	<7:0>	WR	倍乘系数: 负半周期波形的幅值 = ADDR_WG_DRV_NEG_SCALE_REG * 正半周期幅值 如果幅值大于255,结果会溢出,从0开始。
ADDR_WG_DRV_NEG _OFFSET_REG	<7:0>	WR	偏移量参数: 负半周期波形的幅值 = ADDR_WG_DRV_NEG_OFFSET_REG + 正半周期幅值,

REV1.1 https://www.nanochap.cn

			如果幅值大于255,结果会溢出,幅值从0开始计 算。 最终负半周期的电流幅值 = ADDR_WG_DRV_NEG_SCALE_REG * 正半周期幅值 + ADDR_WG_DRV_NEG_OFFSET_REG 。 说明:一次可以设置两个中断地址,分别叫做第
ADDR_WG_DRV_INT_ REG	<31:0>	RD/WR	 一地址,第二地址,波形每半个周期由64个点组成,每个点都有对应的地址(0-63),两个中断地址的实际设置值为 64个波形地址中的2个。 写入访问: bit0: 启用中断。 Bit1: 启用时清除第一个地址中断。 Bit2: 启用时清除第二个地址中断。 Bit2: 启用时清除第二个地址中断。 Bit4(15:8>: 第一个中断地址。当波形发生器到达该地址时,启用 APB 中断信号(有64个点波形,因此,选择64 个地址中的某一个地址用作第一个地址中断)。 Bit4(23:16>:第二个中断地址。当波形发生器到达该地址时,启用 APB 中断信号(有64个点波形,因此,选择64 个地址中的某一个地址用作第二个地址中断,注意:第二中断地址应该大于第一中断地址)。 剩余位保留。 读取访问: Bit4(7:0>: 正在读取的波形发生器编号。 Bit8: 中断已启用。 Bit9: 发生第一次地址中断。当波形发生器到达第一个波形地址时为1。 Bit10: 发生第一次地址中断。当波形发生器到达第二个波形地址时为1。 Bit10: 发生第二次地址中断。当波形发生器到达第二个波形地址时为1。 Bit4(23:16>: 报告中断的第一个地址。 Bit4(32:24>: 报告中断的第二个地址。
REG		WK	半元电弧示效反直, 氾固 (0^{-1}) , 头际早兀电流 = $(ADDR_WG_DRV_ISEL_REG + 1) *33uA$

3.3.4 ENS001的波形发生例程

■ 波形发生例程的路径为: NNC_ENS1QFN64L88A2--双通道ENS开发资料-V1.0\5、例程 \1、波形发生例程\

一共提供了5个示例程序,分别是boost电压选择例程、方波例程、正弦波例程、EMS 波形、干扰波例程。

以《2、ENS_PULSE_TEST》为例,主函数设置步骤为:

1) 设置MTP时钟相关的参数,CMSDK_MTPREG->MTP_CR = 0x00000003;

- 2) 设置主频为32MHz;
- 3) 使能APB总线上的部分时钟如 UART1、波形发生器的时钟;
- 4) 选择boost参数;
- 5) 串口初始化;
- 6) 给多路波形发生器的寄存器赋值(参考表3.1),程序中2个通道对应的波形发生器 硬件地址别名分别为WAVE_GEN_DRVA_BLK0、WAVE_GEN_DRVA_BLK1;

CMSDK WAVEGEN DRVA->WAVE GEN DRV REST T REG = 100·//100us 死区时间 (1-255)
CMSDK_WAVEGEN_DRVA->WAVE_GEN_DRV_SILENT_T_REG = 100;//100us 静默时间
CMSDK_WAVEGEN_DRVA->WAVE_GEN_DRV_CLK_FREQ_REG = 0x00000020; //32MHZ ==PCLK
CMSDK WAVEGEN DRVA->WAVE GEN DRV HLF WAVE PRD REG = 500; //us 脉宽1
CMSDK WAVEGEN DRVA->WAVE GEN DRV NEG HLF WAVE PRD REG = 500; //us 脉宽2
CMSDK WAVEGEN DRVA->WAVE GEN DRV CONFIG REG = 0x0000004F;
CMSDK WAVEGEN DRVA ->WAVE GEN DRV ISEL REG = 0x07; //范围 0x00 - 0x07 单元电流
<pre>for(int i=0; i<64; i++) { CMSDK_WAVEGEN_DRVA->WAVE_GEN_DRV_IN_WAVE_ADDR_REG = i; CMSDK_WAVEGEN_DRVA->WAVE_GEN_DRV_IN_WAVE_REG = 0xff; //最大0xff 电流挡位 }</pre>

图3.13 波形参数赋值

启动刺激输出(通道一):
 AVE_GEN_DRVA_BLKO->WAVE_GEN_DRV_CTRL_REG = 0x00000001。

3.4功耗测试说明(工作模式下)

使用ENS1EVKE双通道开发板,去除R1、R2、R7电阻,断开J14跳帽,使用Micro USB线供电,将数字万用表串联到J13两端。修改主频等参数,记录如下功耗数据。

OXR.

主频	APB时钟	输出通道	BOOST电压设置V	功耗
				(mA)
内部低速时钟 32khz	×	×	×	1.15
内部高速时钟4mhz	×	×	×	1.98
内部高速时钟8mhz	×	×	×	2.8
内部高速时钟16mhz	×	×	×	4.5
内部高速时钟32mhz	×	×	×	8.01
内部高速时钟4mhz	×	\times	11	2.23
内部高速时钟4mhz	×	\times	15	2.23
内部高速时钟4mhz	×	×	26	2.23
内部高速时钟4mhz	×	\times	45	2.23
内部高速时钟4mhz	WAVE_GEN_PCL	1	45	2.605
	K			
	ANALOG_PCLK 世人学问			
		0	45	0.05
内部局速时钾4mhz	WAVE_GEN_PCL	2	45	2.85
	ANALOG_PCLK			
	其余关闭			
内部高速时钟4mhz	WAVE_GEN_PCL	2	45	2.9
	K			
	ANALOG_PCLK			
	UART1_PCLK_EN			
	其余关闭			

4.联系方式

可通过以下方式了解更多产品详情:

- 1) 公司电话: 4008605922; 180 9470 6680
- 2)技术人员QQ: 1708154204

3) 公众号: 暖芯迦电子

Copyright© 2023by Hangzhou Nanochap Electronics Co.,Ltd.

用指南中所出现的信息在出版当时相信是正确的,然而暖芯迦对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来 做说明,暖芯迦不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对 人身造成危害的地方。暖芯迦产品不授权使用于救生、维生从机或系统中做为关键从机。暖芯迦拥有不事先通知而修改产品的权 利,对于最新的信息,请参考我们的网址<u>https://www.nanochap.cn</u>或与我们直接联系(4008605922)。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits - ARM category:

Click to view products by Nanochap manufacturer:

Other Similar products are found below :

CY4541 OM13090UL Raspberry Pi 4 Model B,8GB YR0K77210B000BE B-U585I-IOT02A NUCLEO-C031C6 NUCLEO-U5A5ZJ-Q NUCLEO-WL55JC1 STM32MP135F-DK ZDSD-Pinboard 081ZYKFB LKS32MC034DOF6Q8-k LKS32MC077MBS8-K LKS32MC038Y6P8B-K LKS32MC071DOC8T8-K LKS32MC074DOF8Q8-K LKS32MC038Y6P8-k Ai-WB2-32S-Kit GD32E103T-START GD32L233K-START RTK7F124FPC01000BJ XDS601 RP2040-Tiny M6G2C-256LI YT37 LKS32MC033H6P8B-K VC-02-Kit_EN Ra-08H-Kit Hi-12FL-Kit PB-03M-Kit Ai-WB2-13-Kit PB-03F-Kit Hi-07SL-Kit Hi-07S-Kit Ai-WB2-12F-Kit PB-03-Kit AT-START-F437 AT-START-F407 E104-BT40-TB FT8132Q-3HALL-FOC+EMF FU6832L-TGB-DEMO APM32F072VBT6 APM32F091VC MINI APM32F407IG-MINIBOARD APM32F003F6P6-MINIBOARD APM32F051R8 MINI GD32EPRTV-START GD32FPRT-START GD32407H-START-1 GD32E503V-EVAL