

用户手册 EPCM001AR100/BR100/AT100

生命体征检测模组软件用户手册

1 概述

2)

EPCM 软件用于 EPCM001AR100/BR100/AT100 生命体征检测模组配置采集策略及显示采集结果。主要功能为 ECG、PPG&ECG、SP02 信号检测。

2 模组连接及通电

1) 将 EPCM001AR100/BR100/AT100 生命体征检测模组通过隔离串口模组(隔离串口模组与模组连接连接方法如下图)与电脑 USB 端口进行连接,模组 USB 口仅用于电池充电(注:数据采集时禁止充电)。

目录

1	概述	1
2	模组连接及通电	1
3	启动 EPCM 软件	4
4	模组的 ECG 功能介绍	6
	4.1 ECG 模式设置栏介绍	6
	4.2 开始采集	6
	4.3 停止采集	7
	4.4 延伸算法计算结果	8
	4.5 采集结果日志	10
5	模组的 PPG&ECG 功能介绍	11
	5.1 PPG&ECG 模式设置栏介绍	11

5.2	开始采集	13
5.3	停止采集	16
5.4	延伸算法计算结果	17
5.5	采集结果日志	19
6 模组的	り SP02 功能介绍	20
6. 1	SP02 模式设置栏介绍	20
6. 2	开始采集	21
6. 3	停止采集	22
6.4	采集结果日志	23
7 联系方	5式	24

文档修订记录

序号	版本号	修订日期	修订概述	修订人	审核人	批准人	备注
1	V1.0	2024-07-08	创建文档				

3 启动 EPCM 软件

1) 打开 EPCM 软件,进入模组所处的功能页面。

如下图所示,本模组设置为 ECG 模式,设置方式见《EPCM001AR100/BR100/AT100 生命体征检测模组小程序用户手册》。

图 2 ECG 初始界面

功能栏的3个选项:

- ECG 心电相关。
- PPG&ECG 光电、心电及其延伸算法(心率、疲劳指数等)。
- PPG 红外光&PPG 红光及血氧浓度和灌注指数。

软件用户手册

选择当前端口号(如 COM4),波特率设置为 115200。 2)

图 3 设置串口

点击波特率右侧的开关,打开串口。 3)

4 模组的 ECG 功能介绍

4.1 ECG 模式设置栏介绍

若模组处于 ECG 模式下,右侧设置栏由上至下分别为(如图 3 设置串口所示):

- ADC Raw Code: AD\电压间显示转换。
- Reversal:显示波形镜像取反。
- HP-Filter: 模组高通滤波器(分别为 0.25hz、0.5hz、1hz、2.5hz、10hz、15hz、20hz、25hz)。
- LP-Filter: 模组低通滤波器(分别为 9-11hz、15-20hz、25hz、50hz、100hz、150hz、200hz、350hz)。

4.2 开始采集

点击"MEASURE"按钮,模组收到指令后开始采集,软件收到模组采集结果并进行显示。

4.3 停止采集

点击 "Stop" 按钮, 模组接收到指令后将停止采集。

图 5 停止采集

4.4 延伸算法计算结果

在 "Parameter Value" 栏内将显示模组延伸算法当前计算结果。

测量参数	参数说明	测量范围	正常参考范围	测量精度	
HR	心率	30 [~] 250bpm(次/ 分)	安静状态下,成人正常心率为 60~ 100 次/分钟,理想心率应为 55~ 70 次/分钟(运动员的心率较普通 成人偏慢,一般为 50 次/分钟左右)	±3次/分	
RR	呼吸速率	6 [~] 60 次/分	正常成年人每分钟呼吸大约 12-20 次。小儿呼吸比成人快,每分钟可 达 20~30 次;新生儿的呼吸频率 可达每分钟 44 次	±2次/分	
SNA	焦虑指数	0. 1~9. 9	4 以下不焦虑、4-6 轻度焦虑、6-8 中度焦虑、8-9.9 重度焦虑	±0.5	
QT	QT 间期	220~500ms	320 [~] 440ms	± 10 ms	
SDANN	RR 间期平均值标准差		见表 2	-	
MSSD	相邻 RR 间期差值均方平方根	-	见表 2	_	
SDNN	全部窦性心搏 RR 间期(瞬时心 率)的标准差	- 67	见表 2	_	
PNN50	相邻 RR 间期之差>50ms 的个数 占总 RR 间期 个数的百分比		见表 2	-	
FAG	疲劳等级	1 不疲劳 2 轻度疲劳 3 疲劳	1 不疲劳 2 轻度疲劳	_	

表 1 ECG 模式测量参数

软件用户手册

EPCM001AR100/BR100/AT100

表 2 各年龄组 5min 时域参数					
组别 S	DANN (ms)	MSSD (ms)	SDNN (ms)	PNN50	
小于 20 岁					
男性	158.68±54.78	51.35±37.96	71.36±40.99	22.75±19.02	
女性	116.39±37.63	38.98±14.64	65.91±16.94	15.56±10.45	
20-29 岁					
男性	156.26±40.99	34.48±22.10	53.77±25.42	13.36±15.38	
女性	134. 41±37. 04	39.29±23.49	54.20±25.71	17.48±16.59	
30-39 岁					
男性	133.35±48.03	29.60±17.12	51.62±23.82	9.28±11.60	
女性	122.60±48.43	36.03±67.63	49.39±21.11	10.69±13.02	
40-49 岁					
男性	123.99±33.82	27.14±16.12	48.65±21.13	6.88±9.25	
女性	115.35±32.22	29.40±20.17	44.27±18.28	11.40±32.05	
50-59 岁					
男性	124.68±58.38	34. 19±93. 78	44.23±18.27	5.73±7.79	
女性	115.60±84.05	26.05±16.11	42.78±19.32	6. 41±8. 93	
60-69 岁					
男性	114.02±33.78	26. 61±16. 13	40. 31±18. 26	6.83±9.22	
女性	108. 12±34. 14	29.22±21.23	40.91±19.96	5.70±8.49	
大于 70 岁	I CA				
男性	136. 20±28. 03	31.50±19.8	48.53±32.27	17.46±16.19	
女性					

3

4.5 采集结果日志

软件同文件夹下 log 文件夹内将存储采集信息,文件名记录采集时间,文件由 AD 采样值及计算所得电压值组成。

	图 6 10	og 文件夹	
□ 名称	修改日期	类型	大小
2023.07.11 10.08.22	2023/7/11 10:11	文本文档	761 KB
202 <mark>3.07.14 15.45.37</mark>	2023/7/14 15:49	文本文档	979 KB

图 7 log 文件

2023.07.14 15.45.37	× +	—		×
文件 编辑 查看				ŝ
2804208, -798.854828, 4942473, -492.973566, 8374663, -1.994848, 9884230, 213.950443, 11529976, 449.376297, 10907398, 360.315800, 11124000, 391.300964, 9922996, 219.495964, 10472624, 298.120880, 10878131, 356.129122, 10700899, 330.775881, 10314738, 275.535107, 9959784, 224.758530, 9663403, 182.360888, 9278129, 127.247000, 8858871, 67.271662, 8408184, 2.800369, 8003807, -55.046225, 7682122, -101.063633, 7455945, -133.418512, 7332043, -151.142836, 7322667, -152.484083, 7413278, -139.522076, 7597897, -113.112116, 7832796, -79.509544, 8104270, -40.674877, 8357252, -4.485512, 8574073, 26.530981, 8722727, 47.796106, 8797241, 58.455420, 8778135, 55.722284, 8677482, 41.323757, 8500850, 16.056347,				
行1,列1	100% Windows (CRLF)	UTF-8	3	

- 1) 日志文件中第一列为 ECG 的 AD 采样值。
- 2) 第二列为 ECG 的 AD 值转换为单位 mV 的电压值(该处电压值未经过增益及缩放因子处理)。

5 模组的 PPG&ECG 功能介绍

5.1 PPG&ECG 模式设置栏介绍

图 8 PPG&ECG 初始界面

若模组处于 PPG&ECG 模式下,右侧设置栏由上至下分别为(如图 8 所示):

- 1) 血压所需参数设置:
 - Name 姓名
 - SYS 收缩压(高压)
 - DIA 舒张压(低压)
 - Height 身高
 - Weight 体重
 - Age 年龄
 - Male/Female 性别

注:参数设置可以在校准对话框中设置(点击"校准"按钮),设置完成后将同步到测量界面。

校准对话框		×
名字:		
收缩压(SYS):		
舒张压(DIA):		
身高:	cm	
体重:	kg	
年龄:	华	
性别:	男 🧿 女 🔿	
	2	
确定	取消	
确定	取消	

- 2) PPG 设置:
 - ADC Raw Code AD\电压间显示转换
 - Reversal 显示波形镜像取反
 - LedType Green 灯的颜色
- 3) ECG 设置:
 - ADC Raw Code AD\电压间显示转换
 - Reversal 显示波形镜像取反
 - HP-Filter 模组高通滤波器(分别为 0.25hz、0.5hz、1hz、2.5hz、10hz、15hz、20hz、25hz)
 - LP-Filter 模组低通滤波器(分别为 9-11hz、15-20hz、25hz、50hz、100hz、150hz、200hz、350hz)

5.2 血压校准

测试血压前请先进行血压校准,校准步骤如下:

1) 打开上位机测试软件,打开串口 ,

- 2) 使用血压计测试待测人当前血压,记录当前血压,如:收缩压(SYS)=120,舒张压(DIA)=80;
- 点击"校准"按钮,弹出校准对话框,如实输入对应内容(SYS,DIA上步测试的血压数据),输入 完成,点击"确定"按钮,进入血压校准模式;

校准对话框		×
名字:	张三	
收缩压(SYS):	120	
舒张压(DIA):	80	
身高:	175	cm
体重:	60	kg
年龄:	30	岁
性别:	男 🧿 女	0
确定	取演	

4) 连接导联线,点击"MEASURE"按钮,手指放到光电模块,进行测量,直到校准完成,出现血压数据,校准进度达到100%(SYS:较(100%),DIA:较(100%))即校准完成,之后出现血压数据;

5) 血压校准,同一个人只需校准一次,校准完成,校准数据被保存;点击"校准"按钮,输入待测量人的名字,将会显示待测量人的信息(若没有信息显示,请从第一步开始进行校准),点击确定 "按钮",即可进行测试。

校准对话框		×
名字:	张三	
收缩压(SYS):	120	
舒张压(DIA):	80	
身高:	175	cm
体重:	60	kg
年龄:	30	岁
性别:	男 🧿 女	0
	_	
确定	取消	Ű.

5.3 开始采集

点击"MEASURE"按钮,模组收到指令后开始采集,软件收到模组采集结果并进行显示,波形由上至下 分别为 PPG、ECG。

图 9 开始采集

5.4 停止采集

点击 "Stop" 按钮, 模组接收到指令后将停止采集。

图 10 停止采集

5.5 延伸算法计算结果

在 "Parameter Value" 栏内将显示模组延伸算法当前计算结果。

次 3 「「 uɑLOu '天八//!'里 ジ ヌメ					
测量参数	测量范围	正常参考范围	测量精度		
SYS 收缩压	70 [~] 215 (mmHg)	收缩压 90~139(mmHg)	±5mmHg		
DIA 舒张压	45~180 (mmHg)	舒张压 60 [~] 89(mmHg)	±5mmHg		
HR 心率	30 [~] 250bpm(次/分)	安静状态下,成人正常心率为 60~100 次/ 分钟,理想心率应为 55~70 次/分钟(运 动员的心率较普通成人偏慢,一般为 50 次 /分钟左右)	土2bpm@30~150bpm		
QT 间期	220~500ms	320 [~] 440ms	± 10 ms		
PAT 脉搏波到达时间	150~350ms	200~300ms	±5ms		
PEP 射血前期	37 [~] 225ms	83 [~] 125ms	±5ms		
LVET 左心室射血时间	200~400ms	280~340ms	±5ms		
PTT 脉搏波传递时间	75~300ms	125~165ms	±5ms		
SIS 动脉硬化指数	0. 1~9. 9	SIS < 4.0	±0.5		
PWV:脉搏波传导速度	0. 1~9. 9	45 岁以下成年人的 PWV 正常值<9m/s, 45 岁 以上<10m/s	±0.5		
SNA 焦虑指数	0. 1~9. 9	4 以下不焦虑、4-6 轻度焦虑、6-8 中度焦 虑、8-9.9 重度焦虑	±0.5		
RR 呼吸速率	6 [~] 60 次/分	正常成年人每分钟呼吸大约 12-20 次。小 儿呼吸比成人快,每分钟可达 20~30 次; 新生儿的呼吸频率可达每分钟 44 次	土2 次/分		
FAG 疲劳等级	1 不疲劳 2 轻度疲劳 3 疲劳	1 不疲劳 2 轻度疲劳	-		
ARR 心律不齐	0 : 正常 1: 心律不齐	0 : 正常	-		
SDANN: RR 间期平均值标准差	-	见表 2	-		
MSSD:相邻 RR 间期差值均 方平方根	-	见表 2	-		
SDNN: 全部窦性心搏 RR 间 期(瞬时心率)的标准差	-	见表 2	-		
PNN50:相邻 RR 间期之 差>50ms 的个数占总 RR 间 期个数的百分比	-	见表 2	-		

表 3 PPG&ECG 模式测量参数

EPCM001AR100/BR100/AT100

PBF 体脂率	4~50%	成年人的体脂率正常范围分别是女性 20%~25%, 男性 15%~18%, 若体脂率过高, 体重超过正常值的 20%以上就可视为肥胖。 运动员的体脂率可随运动项目而定。一般 男运动员为 7%~15%, 女运动员为 12% [~] 25%。	1%
PBW 体水分率	30~85%	男性 50~60%,女性 45~60%	1%

5.6 采集结果日志

软件同文件夹下 log 文件夹内将存储采集信息,文件名记录采集时间,文件由 AD 采样值及计算所得电压值组成。

	图 11 log 文件夹			
□ 名称	修改日期	类型	大小	
2023.07.14 15.29.34	2023/7/14 15:33	文本文档	120 KB	
2023.07.14 15.36.37	2023/7/14 15:37	文本文档	160 KB	
2023.07.14 15.54.45	2023/7/14 16:01	文本文档	1,943 KB	

图 12 log 文件

	2023.07.14	15.54.45	×	+		-	×
文件	编辑	查看					ŝ
964 942 917 891 867 846 831 822 839 840 825 832 839 845 849 851 851 849 851 851 849 837 836 837 838 839 840 841 841 841 839 839 840	6157,179. 9118,148. 6385,112. 5156,75.3 1405,40.4 7185,11.2 6850,-10. 6850,-27. 8947,-23. 8947,-25. 8357,-18. 5981,-8.9 6526,1.13 6736,9.74 7673,15.6 5560,18.11 1905,17.6 613,14.7 1359,10.4 8139,5.65 8230,1.37 6761,-1.6 6628,-3.1 2847,-2.2 1627,-0.9 7619,1.28 8177,2.79 5864,3.89 7966,4.19 3383,3.54 3070,2.06 0459,0.26 4971,0.91 3029,2.06	893827,1519 846149,1517 692404,1514 23296,15120 54435,15089 40530,15057 265064,1502 197317,1499 896547,1496 700712,1493 632555,1490 58864,14883 2679,148637 5789,148487 01873,14838 60629,14833 37777,14834 4983,148480 07114,14851 4955,148681 6438,148894 9717,14915 44264,14944 54629,14977 98640,15012 9034,150489 9368,150863 9002,151950 8806,152273 4788,152563 0234,152816 2941,153038	7913,831.21 5103,828.42 9136,825.25 519,821.766 871,818.025 993,814.13 5578,810.17 3415,806.25 5578,810.17 3415,806.25 5578,802.46 3148,798.89 6525,795.64 144,792.796 60,790.4238 603,787.356 704,787.356 7051,786.766 230,786.819 214,787.549 709.9536 43,793.5589 005,796.690 630,800.295 261,804.278 329,808.555 35,813.0281 84,817.5996 70,822.163 28,826.613 28,826.613 26,830.8615 95,841.4412 95,841.4412 95,841.4412 95,841.4412	13989, 19565, 19766, 19766, 197762, 1981, 177002, 19854, 11792, 14165, 1039, 128, 1792, 14165, 1039, 128, 1792, 1002,		1175-8	
行1	,列1			100%	Windows (CRLF)	UTF-8	

- 1) 日志文件中第一列为 ECG 的 AD 值。
- 2) 第二列为 ECG 的 AD 值转换为单位 mV 的电压值(该处电压值未经过增益及缩放因子处理)。
- 3) 第三列为 PPG 的 AD 值。
- 4) 第四列为 PPG 的 AD 值转换为单位 mV 的电压值。

6 模组的 SP02 功能介绍

6.1 SP02 模式设置栏介绍

图 13 SP02 初始界面

若模组处于 SP02 模式下,右侧设置栏由上至下分别为(如图 13 SP02 初始界面所示)

- 1) 红灯所需参数设置:
- ADC Raw Code : AD\电压间显示转换
- Reversal:显示波形镜像取反
- 2) 红外灯所需参数设置:
- ADC Raw Code: AD\电压间显示转换
- Reversal:显示波形镜像取反
- 3) 灯模块选择:
- Transmission:透射灯模块
- Reflection: 反射灯模块

软件用户手册

6.2 开始采集

- 1) EPCM001AR100: 点击 "MEASURE" 按钮,模组收到指令后开始采集,点击 "Reflection" 将灯光模 式切换为反射式,软件收到模组采集结果并进行显示。
- 2) EPCM001BR100: 点击 "MEASURE" 按钮,模组收到指令后开始采集,点击 "Reflection" 将灯光模 式切换为反射式,软件收到模组采集结果并进行显示。
- 3) EPCM001AT100:点击"MEASURE"按钮,模组收到指令后开始采集,点击"Transmission"将灯光 模式切换为透射式,软件收到模组采集结果并进行显示。

图 14 显示采集结果

6.3 停止采集

点击 "Stop" 按钮, 模组接收到指令后将停止采集。

图 15 停止采集

6.4 采集结果日志

软件同文件夹下 log 文件夹内将存储采集信息,文件名记录采集时间,文件由 AD 采样值及计算所得电压值组成。

	图 16 Ic		
□ 名称	修改日期	类型	大小
2023.07.11 10.16.31	2023/7/11 10:20	文本文档	756 KB
2023.07.11 14.02.43	2023/7/11 14:03	文本文档	42 KB
2023.07.14 16.11.56	2023/7/14 16:16	文本文档	923 KB
2023.07.14 16.16.27	2023/7/14 16:17	文本文档	168 KB
2023.07.14 16.18.44	2023/7/14 16:21	文本文档	502 KB

图 17 log 文件

	2023.07.14	4 15.54.45	2023.07.14 16.16.	27 ×	+	—		×
文件	编辑	查看						ම
100								
1286	5155,546	5.453491,13	277195,596.751343,					
1286	2660,546	5.148926,13	273255,596.270386,					
1286	0/48,545	.915527,13	2/0108,595.886230,					
1285	9859,545	.80/00/,13	268267,595.661499,					
1200	1100 54	070591 12	20/03/,393.011430,					
1200	1282 54	980713 13	200021, 393.729120,					
1286	28/0 5/6	170898 13	271134, 396.013910,					
1286	4776 546	407227 13	279108 596 984863					
1286	7057.546	685669.13	284222,597,609131.					
1286	9740.547	.013184.13	289627,598,268921.					
1287	2634,547	.366455,13	295041,598.929810,					
1287	5788,547	7.751465,13	300058, 599. 542236,					
1287	9179,548	3.165405,13	302942,599.894287,					
1288	1109,548	3.401001,13	305035,600.149780,					
1288	3047,548	3.637573,13	305265,600.177856,					
1288	3634,548	3.709229,13	302070,599.787842,					
1288	1859,548	3.492554,13	297128,599.184570,					
1287	7378,547	7.945557,13	289841,598.295044,					
1286	9215,546	5.949097,13	280712,597.180664,					
1285	7730,545	.54/119,13	2/0/23,595.961304,					
1284	3490,54	3.808838,13	260//1,594./46460,					
1282	7908,541	156138,13	2524/9,593./34253,					
1201	3011,540	2 871582 13	24/440,595.1190/5,					
1200	8947 538	371460 13	240030,393.044070,					
1280	1157 530	007446 13	262931 595 010132					
1282	0394 540	989502 13	279812 597 070801					
1284	8101.544	1.371704.13	301268, 599, 689941.					
1288	5429.548	.928345.13	324951,602,580933,					
1292	9164,554	1.267090,13	348302,605.431396,					
1297	3965,559	.735962,13	367746,607.804932,					
1301	2619,564	1.454468,13	379514,609.241455,					
行1,	列1		100%	Windows	(CRLF)	UTF-	8	

- 1) 日志文件中第一列为 PPG 红外光的 AD 值。
- 2) 第二列为 PPG 红外光的 AD 值转换为单位 mV 的电压值。
- 3) 日志文件中第三列为 PPG 红光的 AD 值。
- 4) 第四列为 PPG 红光的 AD 值转换为单位 mV 的电压值。

7 联系方式

可通过以下方式了解更多产品详情:

- 1) 公司电话: 4008605922; 180 9470 6680
- 2) 技术人员 QQ: 1708154204

3) 公众号: 暖芯迦电子

4) 扫描二维码进入测试小程序查看数据

Copyright© 2024 by Hangzhou Nanochap Electronics Co.,Ltd.

使用指南中所出现的信息在出版当时相信是正确的,然而暖芯迦对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,暖芯迦不保证或表示这些没有进一步修改的应用将是适当的,暖芯 迦拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 https: //www.nanochap.cn 或与我们直接联系(4008605922)。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Nanochap manufacturer:

Other Similar products are found below :

HGPRDT005AAH1894-FA-7AH277AZ4-AG1AV-10448SS41CAH1894-Z-7TLE4946-1LTLE4976LSS85CABU52003GUL-E2AH277AZ4-BG1AH3376-P-BTLE4941AH3382-P-BTLE4945-2LAH3360-FT4-7TLE4941-1AH374-P-ASS41-JLAH1913-W-7AH3373-P-BMA732GQ-ZMA330GQ-ZS-57K1NBL2A-M3T2US-57P1NBL9S-M3T4US-576ZNL2B-L3T2US-576ZNL2B-A6T8US-57P1NBL0S-M3T4US-57A1NSL1A-M3T2US-57K1RBL1A-M3T2US-57P1NBH9S-M3T4US-57P1NBH0S-M3T4US-57A1NSH1A-M3T2US-57A1NSH2A-M3T2US-57K1NBH1A-M3T2US-57A1NNL1A-M3T2US-5701BC11B-L3T2U5S-57GNNL3S-A6T8US-57TZ1L1S-A6T8US-57GSNL3S-A6T8US-5716ANDH0-I4T1US-57GSNL5S-L3T2US-57GDNL3S-L3T2US-57GNNL3S-L3T2US-57RBNL8S-L3T2US-57RBNL9S-A6T8US-57RB1L8S-L3T2US-57GDNL5S-L3T2US-57RBNL9S-L3T2US-57TZ1L1S-L3T2U