

生命体征检测模组用户手册

1 概述

EPCM001C100 生命体征检测模组是一款可以测量脑电信号,并采用科学的算法对脑电信号进行处理,得出专注度指数和放松度指数的模组,可以通过有线(UART)或无线(BLE5.0)连接的方式从模组读取测量数据,模组可提供蓝牙通讯协议和串口通讯协议。

模组正面

模组背面

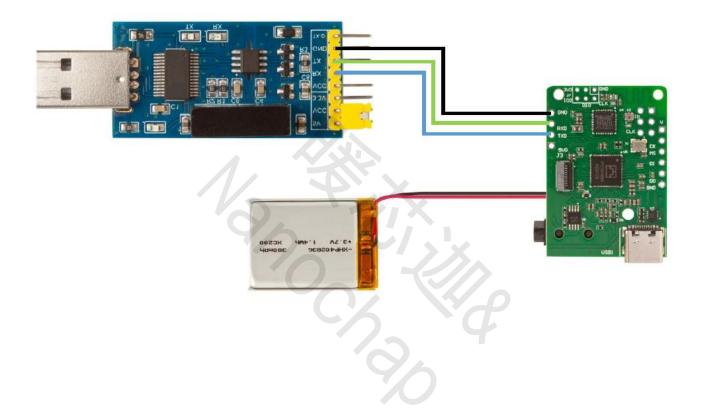
2 特点

- 外形尺寸: 28mm *39.7mm;
- 输入电压: DC5V(注:由于人体 EEG 信号非常微弱,易受市电干扰,模组采用锂电池供电,USB 口仅用于为电池充电且充电期间模组将会停止工作);
- 输入电流: 50mA;
- 功耗:取决于主时钟、EEG 时钟等相关时钟的设置,用户如需进一步优化功耗,请与我司联系定制,联系电话 4008605922;
- 可测量参数:专注度指数、放松度指数。

3 应用范围

• 玩具,游戏,教育等。

nanochap.cn 第 1 页 共 17 页


4 测试连接

4.1 连接说明

为防止市电干扰,本模组采用锂电池供电,板载 USB 口仅作为锂电池充电使用。用户使用过程中需使用隔离串口模组进行连接,且使用途中禁止对锂电池进行充电。

4.2 连接图示

模组测试连接图示如下:

nanochap.cn 第 2 页 共 17 页

目录

1	概述		1
2	特点		1
3	应用范		1
4	测试连	接	2
	4. 1	连接说明	2
	4. 2	连接图示	2
5	电气特	f性	5
6	协议架	면构	7
	6. 1	控制命令部分	7
		6.1.1 数据包结构	7
		6.1.2 数据头类型	7
	6. 2	数据回传部分	7
		6. 2. 1 数据包结构	7
		6.2.2 数据头类型	8
7	串口命	7令定义	9
	7. 1	控制命令部分(下发)	9
		711 命今列表	9

		7.1.2 采集状态设置(0x22)	9
	7. 2	数据命令部分(上传)	9
		7. 2. 1 开始采集命令回传	9
		7. 2. 2 EEG(25 数据解析)	10
8	蓝牙通	〔讯	12
	8. 1	广播规则	12
	8. 2	蓝牙数据通信	12
9 :	接口说	色明	13
10	功能	框图	14
11	模组	尺寸	14
12	典型/	应用与使用注意事项	15
13	测试	小程序和 UART 使用	15
	13. 1	1 测试小程序使用说明	15
	13. 2	2 上位机使用说明	15
14	模组	控制流程图	16
15	联系:	方式	17

文档修订记录

序号	版本号	修订日期	修订概述	修订人	审核人	批准人	备注
1	V1. 0	2024-05-27	创建文档				

nanochap.cn 第 4 页 共 17 页

5 电气特性

■ 环境要求:

环境要求	
工作环境温度	-40°C ∼ +85°C
工作环境湿度	20% ~ 80%
存储环境温度	-40°C ∼ +85°C
存储环境湿度	10% ~ 80%

■ 串口波特率: 115200

符号	参数	测试条件	最小	典型	最大	单位
VIN	工作电压	_	3. 7	5	5. 5	٧
Ista	工作电流	_	_	_	50	mA
VIL	TX 引脚低电平输入电压		_	_	0.8	٧
VIH	TX 引脚高电平输入电压	_	2. 8	_	3. 3	٧
VOL	RX 引脚低电平输出电压	I OL=TBD	_	_	0. 4	٧
VOH	RX 引脚高电平输出电压	I OL=TBD	2. 9	_	3. 3	٧
tSST	系统启动时间		500	_	_	mS
RRVDD	VDD 上升速率	- ()	TBD	_	_	V/ms
BRPON	上电波特率		> -X.	115200	_	Hz

■ 串口设置: N 8 1

■ 流控:无

■ 数据格式:二进制

nanochap.cn 第 5 页 共 17 页

BLE 接收器特性

参数	条件	最小	典型	最大	单位
灵敏度@0.1%	_	_	-98	_	dBm
最大接收信号	_	0	_	_	dBm
共信道 C/I	_	_	10	_	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 - 1 MHz	_	-5	_	dB
你送生 权性 ○//	F = F0 + 2 MHz	_	-25	_	dB
邻道选择性 C/I	F = F0 - 2 MHz	_	-35	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 - 3 MHz	_	-45	_	dB
	30 MHz - 2000 MHz	-10	_	_	dBm
	2000MHz - 2400MHz	-27	_	_	dBm
抗带外阻塞性能	2500MHz - 3000MHz	-27	_	_	dBm
	3000MHz - 12.5GHz	-10	_	_	dBm
互调性能	- /// 🤻	-36	_	_	dBm

BLE 发射器特性

参数	条件	最小	典型	最大	单位
射频发射功率	-	3,	7. 5	10	dBm
射频功率控制范围	_	-5	25	_	dB
	F = F0 + 1 MHz	-/-	-14. 6	_	dBm
	F = F0 - 1 MHz	- 9/	-12. 7	_	dBm
	F = F0 + 2 MHz	- /	-44. 3	_	dBm
公子 公司	F = F0 - 2 MHz	_	-38. 7	_	dBm
邻道发射功率	F = F0 + 3 MHz	_	-29. 2	_	dBm
	F = F0 - 3 MHz	_	-45	_	dBm
	F = F0 +> 3 MHz	_	-50	_	dBm
	F = F0 +> 3 MHz	_	-50	_	dBm
Δ f1avg	_	_	_	265	kHz
Δ f2max	_	247	_	_	dBm
Δ f2avg/Δf1avg	_	_	-0. 92	_	dBm
ICFT	_	_	-10	_	kHz
频率漂移率	_	_	0. 7	_	kHz/50 μ
频率漂移	_	_	2	_	kHz

nanochap.cn 第 6 页 共 17 页

6 协议架构

本协议中, 如无特别说明, 所有数值均表示十六进制格式。

6.1 控制命令部分

6.1.1 数据包结构

MSB LSB

数据头	数据功能位	校验和	数据尾
1 字节	1 字节	前面累加取后两位(1字节)	0x0D

6.1.2 数据头类型

数据头	含义
0x22	采集状态
0x41	干湿电极选择

- 不同的数据头对应不同的数据功能位,详见下一节详述(5.2 数据回传部分)。
- 相同的数据头下对应有不同的数据功能位以实现不同的功能,详见下一节描述(5.2 数据回传部分)。

6.2 数据回传部分

6.2.1 数据包结构

MSB

	数据头	有效载荷	校验和	数据尾
数据上传	1 字节	根据数据种类变化,不固定	前面累加取后两位(1字节)	0x0A
命令回传	0x0A 10	收到的头+收到的命令(2 字节)	前面累加取后两位(1字节)	0x0A

注意: MCU 在接收到的上位机发送的控制命令后会自动回传对应的数据包,这个数据包内包含了命令回传 专用数据头 0x0A 10 和接收到的数据头的部分,经过校验求和后将校验位数据和和数据回传专用的数据尾 0x0A 一起打包发送给上位机。

nanochap.cn 第7页共17页

用户手册

6.2.2 数据头类型

数据头	含义
0x25	EEG 原始波形数据
0x2f	Delta 频段数据
0x30	Theta 频段数据
0x31	Low-Alpha 频段数据
0x32	High-Alpha 频段数据
0x33	Low -Beta 频段数据
0x34	High-Beta 频段数据
0x35	Low-Gamma 频段数据
0x36	High-Gamma 频段数据
0x37	专注度指数
0x38	放松度指数
0x39	模组异常

nanochap.cn 第 8 页 共 17 页

7 串口命令定义

7.1 控制命令部分(下发)

7.1.1 命令列表

数据头	数据位功能				
0x22	采集状态	0: 停止采集	1: 开始采集		
0x41	干电极/湿电极选择(默认湿电极)	0: 干电极	1: 湿电极		

7.1.2 采集状态设置(0x22)

数据位功能	定义
0	停止采集
1	开始采集

例:

控制命令发送示例: 22 01 23 0D, EPCM001C100 模组开始采集。

- 22表示要对采集状态进行设置。
- 01 表示开始采集。
- 23 为校验和,校验和: 0x23 = (0x22 + 0x01) & 0xff。
- 0D 为数据尾。

7.2 数据命令部分(上传)

以 EPCM001C100 生命体征检测模组开始采集命令为例,对上传数据解析进行说明。当开始采集命令下发后,模组自动上传数据,第一条为命令回传数据,紧接着为该模式下的采集数据。

7.2.1 开始采集命令回传

	数据头	有效载荷	校验和	数据尾
命令回传	0x0A 10	收到的头+收到的命令(2 字节)	前面累加取后两位(1字节)	0x0A

命令回传示例: 0A 10 22 01 3D 0A 指示 MCU 开始采集。

- 0A 10 是数据回传的数据头。
- 22 01 是接收到的头。
- 3D 校验和,校验和: 0x3D = (0x0A + 0x10 + 0x22 + 0x01) & 0xff。
- 0A 是回传数据的数据尾。

nanochap.cn 第 9 页 共 17 页

7.2.2 EEG(25数据解析)

7. 2. 2. 1 EEG 的 AD 采样值解析

数据回传

数据头	数据位(说明)	校验和	数据尾
0x25	EEG 原始波形数据		
0x39	31 30 30: 外接电极脱落		
	30: 外接电极正常		
	31: 模组充电中	 前面累加取后两位	0x0a
	32: 模组未充电		
	33: 锂电池电量低		
	34: 锂电池电量正常		

命令回传示例: 25 38 34 32 35 32 30 34 8E 0A 返回的是一个 EEG 测量值。

- 25 是数据回传的数据头。
- 38 34 32 35 32 30 34 是接收到的 EEG 数据,将 16 进制转换成 ASCII 码,即可得到数据,对应的 ASCII 码为 8425204。
- 8E 是校验和;校验和: 0x92 = (0x25 + 0x38 + 0x34 + 0x32 + 0x35 + 0x32+ 0x30+ 0x34) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX	符号 Symbol
30	0
31	1
32	2
33	3
34	4
35	5
36	6
37	7
38	8
39	9

nanochap.cn 第 10 页 共 17 页

7. 2. 2. 2 EEG 数据的 AD 采样值换算

设备上传的数据为 EEG 的 AD 采样值经过转化过后的值,

转换公式: value = (ad - 0x800000) * 0.0127851978284356

上位机显示的点的值是在此基础上加了一个 48Hz-52Hz 的 IIR 带阻滤波器。

横坐标单位换算成秒

模组的采样率为 250Hz, 可将采样点数转化为时间。

7.2.2.3 频段信息数据解析

专注度指数表明了使用者精神"集中度"水平的强烈程度。当心烦意乱、精神恍惚或注意力不集中时会导致该项数据指标下降;放松度指数表明了使用者精神"平静度"水平,闭上眼通常是提高放松度值的有效方法。焦虑、激动不安等精神状态以及感官刺激等都将降低该项数据指标。本模组采用科学的算法对脑电信号进行处理,得出专注度指数和放松度指数,帮助记录脑部活动。

双沿山1寸			
头	数据位(说明)	校验和	尾
0x2f	Delta 频段数据		
0x30	Theta 频段数据		
0x31	Low-Alpha 频段数据		
0x32	High-Alpha 频段数据		
0x33	Low-Beta 频段数据	**************************************	
0x34	High-Beta 频段数据	前面累加取后两位	0x0a
0x35	Low-Gamma 频段数据	7	
0x36	High-Gamma 频段数据		
0x37	专注度指数		
0x38	放松度指数		

数据回传

例:

数据回传示例: 2F 31 32 30 C2 OA 返回的是一个 Delta 数据。

- 2f 是数据回传的数据头,表示该数据为 Delta 频段数据。
- 31 32 30 是接收到的 Delta 频段数据内容,将 16 进制转换成 ASCII 码,对应的 ASCII 码分别为 1 2 0。
- C2 为校验和,校验和: 0xC2= (0x2F + 0x31 + 0x32 + 0x30) & 0xFF。
- 0A 是回传数据的数据尾。

nanochap.cn 第 11 页 共 17 页

8 蓝牙通讯

8.1 广播规则

广播规则定义如下:

- 从机正常广播时间间隔设置为 1.25s。
- 从机有充电功能时, 充电状态广播时间间隔设置为 62.5ms。
- 蓝牙服务。

在设计中蓝牙服务使用的自定义属性如下:

类型	UUID	权限
Service	a6ed0201-d344-460a-8075-b9e8ec90d71b	/
Characteristic	a6ed0202-d344-460a-8075-b9e8ec90d71b	Notify
Characteristic	a6ed0203-d344-460a-8075-b9e8ec90d71b	Write

蓝牙广播名为 EEGModule。

8.2 蓝牙数据通信

主机和从机处于连接状态时, 双方进入数据通信模式, 通讯协议同串口命令一致。

nanochap.cn 第 12 页 共 17 页

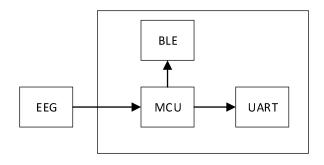
9 接口说明

模组正面

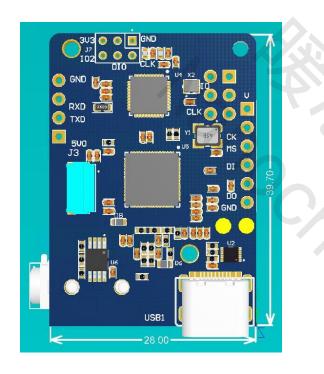
模组背面

备注: 电极连接口可选择 3.5mm 的专用导联线接口或者焊接到线路板上的对应焊盘上。

J4 管脚序号(从上到下)	信号名称	信号类型	备注
1	GND	IN	接外部设备的电源地
2	RXD	IN	接外部设备的串口发送信号
3	TXD	OUT	接外部设备的串口接收信号
4	VBAT	IN	模组供电管脚, 5V 输入


外接电极接口	信号名称	信号类型	备注
1	LA	IN	外接人体左侧额头接触的电极片
2	RA	IN	外接人体右侧额头接触的电极片
3	RLD	IN	外接人体耳后的电极片

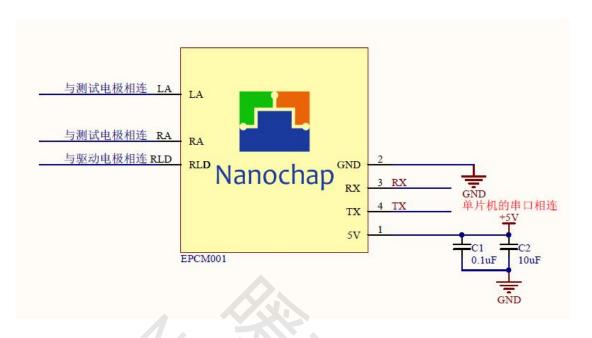
USB1	连接类型	备注
USB 插座	连接充电器	为锂电池充电


BAT	连接类型	备注
电池插座	连接锂电池	为模组供电

nanochap.cn 第 13 页 共 17 页

10 功能框图

11 模组尺寸



模组具体尺寸如上图所示,单位均为 mm,模组有 3 个直径为 2.2mm 的固定孔。

nanochap.cn 第 14 页 共 17 页

12 典型应用与使用注意事项

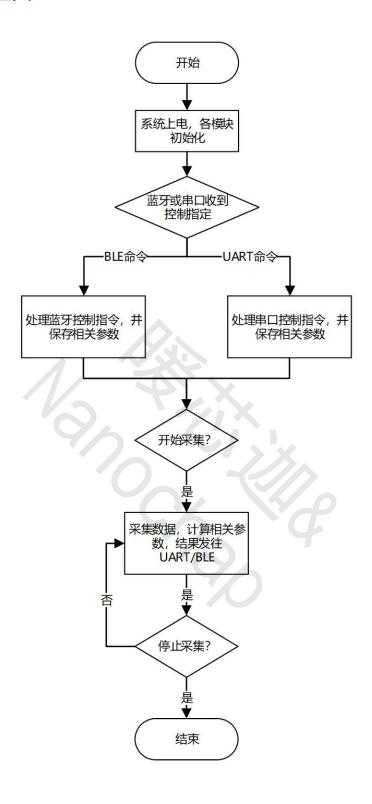
典型应用原理图

本模组使用了当前最先进的生物电信号测试原理,通过分析人体的生理信号特征得出人体参数。需要人体同时接触到 2 个电极才能得出正确结果,如果安装了我司的上位机软件或使用我司小程序,即可见测得的 EEG 信号。为防止市电干扰,模组采用锂电池供电,模组通过 USB 充电期间无法正常使用,请在测量前停止充电。开始测量前,请确保测试电极与模组连接正常,否则模组将会检测到外接电极脱落导致停止测量。开始测量后,请保持平静,避免大幅度动作产生,以免肌肉收缩产生的生物电信号影响到测量结果的准确性。

注:三电极接线方式支持电极脱落检测功能,两电极接线方式不支持电极脱落检测功能。

13 测试小程序和 UART 使用

13.1 测试小程序使用说明


测试小程序请访问杭州暖芯迦电子科技有限公司微信公众号,使用方法见《NNCEPCM001C100 模组小程序用户手册》。

13.2 上位机使用说明

上位机使用方法见《NNCEPCM001C100 模组软件用户手册》。

nanochap.cn 第 15 页 共 17 页

14 模组控制流程图

nanochap.cn 第 16 页 共 17 页

用户手册

15 联系方式

可通过以下方式了解更多产品详情:

1) 公司电话: 4008605922; 180 9470 6680

2) 技术人员 QQ: 1708154204

3) 公众号: 暖芯迦电子

4) 扫描二维码进入测试小程序查看数据

Copyright© 2024 by Hangzhou Nanochap Electronics Co., Ltd.

使用指南中所出现的信息在出版当时相信是正确的,然而暖芯迦对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,暖芯迦不保证或表示这些没有进一步修改的应用将是适当的,暖芯 迦拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 https://www.nanochap.cn或与我们直接联系(4008605922)。

nanochap.cn 第 17 页 共 17 页

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Nanochap manufacturer:

Other Similar products are found below:

HGPRDT005A AH1894-FA-7 AH277AZ4-AG1 AV-10448 SS41C AH1894-Z-7 TLE4946-1L TLE4976L SS85CA BU52003GUL-E2
AH277AZ4-BG1 AH3376-P-B TLE4941 AH3382-P-B TLE4945-2L AH3360-FT4-7 TLE4941-1 AH374-P-A SS41-JL AH1913-W-7
AH3373-P-B MA732GQ-Z MA330GQ-Z S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U S-57A1NSH2A-M3T2U S-57K1NBH1A-M3T2U S-57A1NNL1A-M3T2U S-5701BC11B-L3T2U5 S-57GNNL3S-A6T8U S-57TZ1L1S-A6T8U S-57GSNL3S-A6T8U S-5716ANDH0-14T1U S-57GSNL5S-L3T2U S-57RBNL9S-L3T2U S-57TZ1L1S-L3T2U S-57TZ1L1S-L3T2U