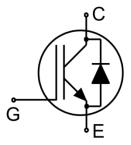


NCE40TD120BT

1200V, 40A, Trench FS II Fast IGBT

General Description:


Using NCE's proprietary trench design and advanced FS (Field Stop) second generation technology, the 1200V Trench FSII IGBT offers superior conduction and switching performances, and easy parallel operation;

Features

- Trench FSII Technology Offering
- Very low V_{CE(sat)}
- High speed switching
- Positive temperature coefficient in V_{CE(sat)}
- Very tight parameter distribution
- High ruggedness, temperature stable behavior

Application

- Inverters
- Motor drives
- Converter

Schematic diagram

Package Marking and Ordering Information

Device	Device Package	Device Marking
NCE40TD120BT	TO-247	NCE40TD120BT

TO-247

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Symbol	Parameter	Value	Units
Vces	Collector-Emitter Voltage	1200	V
V_{GES}	Gate- Emitter Voltage	±30	V
1-	Collector Current	80	Α
lc	Collector Current @T _C = 100 °C	40	А
I _{Cpuls}	Pulsed Collector Current, t _p limited by T _{jmax}	120	А
-	turn off safe operating area, V _{CE} =1200V, Tj=150°C	120	А
l _F	Diode Continuous Forward Current @Tc = 100 °C	40	А
Іғм	Diode Maximum Forward Current	120	А
Б	Power Dissipation @ T _C = 25°C	468	W
P _D	Power Dissipation @T _C = 100 °C	234	W
T _J ,T _{stg}	Operating Junction and Storage Temperature Range	-55 to +175	°C
TL	Maximum Temperature for Soldering	260	°C
t _{sc}	Short circuit withstand time V_{GE} =15.0V, V_{CC} <600V, Allowed number of short circuits<1000Time between short circuits: \ge 1.0s, T_j <150°C	10	us

Thermal Characteristic

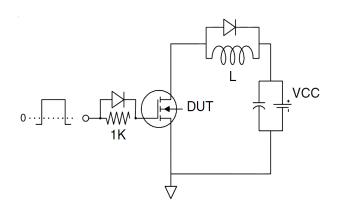
Symbol	Parameter	Value	Units
Rejc	Thermal Resistance, Junction to case for IGBT	0.32	°C/W
Rejc	Thermal Resistance, Junction to case for Diode	0.61	°C/W
RθJA	Thermal Resistance, Junction to Ambient	40	°C/W

Electrical Characteristics (Tc=25°C unless otherwise noted)

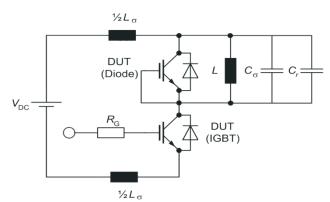
Compleal	Barrantar	Test Conditions		Value			
Symbol	Parameter			Min.	Тур.	Max.	Units
Static Chara	cteristics						
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	V _{GE} =0V	,I _{CE} =1mA	1200			V
Ices	Collector-Emitter Leakage Current	V _{GE} =0V,	/ _{CE} =1200V			5	uA
I _{GES(F)}	Gate to Emitter Forward Leakage	V _{GE} =+30	V,V _{CE} =0V			200	nA
I _{GES(R)}	Gate to Source Reverse Leakage	V _{GE} =-30	V,Vce =0V			200	nA
1/	Calleston Fraitton Caturation Valteur	Ic=40A	Tj=25°C		1.55	1.8	V
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$V_{\text{GE}}=15V$	Tj=150°C		1.8		V
$V_{GE(th)}$	Gate Threshold Voltage	Ic=1mA	,Vce=Vge	5.0		6.5	V
I _{C(SC)}	Short circuit collector current Max.1000 short circuits Time between short circuits: ≥1.0s	V _{GE} =15V,V _{CC} ≤600V, t _{SC} ≤10us,Tj≤150°C			240		Α
Dynamic Ch	aracteristics						
Cies	Input Capacitance	\/ 00\	/		5590		
Coes	Output Capacitance	Vce=30V,Vge=0V, f=1MHz			177		pF
Cres	Reverse Transfer Capacitance				134		
Qg	Total Gate Charge	Vcc=960V, Ic=40A, V _{GE} =15V			298		nC
Q _{ge}	Gate to Emitter Charge				52		
Q _{gc}	Gate to Collector Charge	VGL	-101		169		
Switching Cl	naracteristics						
t _{d(ON)}	Turn-on Delay Time				19		
t _r	Rise Time				17		20
t _{d(OFF)}	Turn-Off Delay Time	V_{CE} =600V, I_{C} =40A, V_{GE} =0/15V, R_{g} =8 Ω			170		ns
t f	Fall Time				18		
Eon	Turn-On Switching Loss	Inducti	ve Load		2.3		
E _{off}	Turn-Off Switching Loss				1.6		mJ
E _{ts}	Total Switching Loss				3.9		

Electrical Characteristics of the Diode(Tc= 25°C unless otherwise specified):

Symbol	Parameter	Test Conditions	Rating			Units
			Min.	Тур.	Max.	Ullits
V_{FM}	Diode Forward Voltage	I _F =40A		2.1	2.8	V
Trr	Reverse Recovery Time	I- 40A		180		ns
I _{RRM}	Diode Peak Reverse Recovery Current	Ir=40A, di/dt=500A/us		10		А
Qrr	Reverse Recovery Charge	ui/ui=300A/us		2.4		uC
Pulse width t _{tp} ≤380μs,δ≤2%						

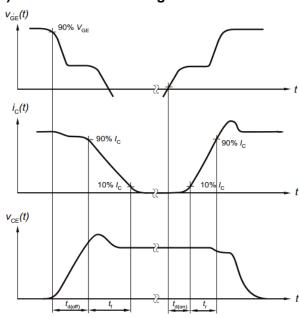


NCE40TD120BT

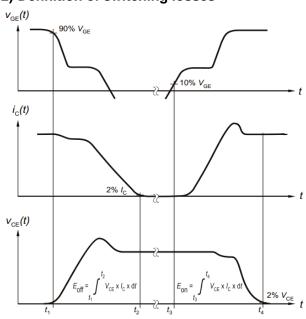

PbFreeProduct

Test Circuit

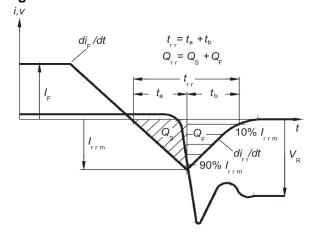
1) Gate Charge Test Circuit



2) Switch Time Test Circuit



Switching characteristics


1) Definition of switching times

2) Definition of switching losses

3) Definition of diode switching characteristics

NCE40TD120BT

Typical Electrical and Thermal Characteristics

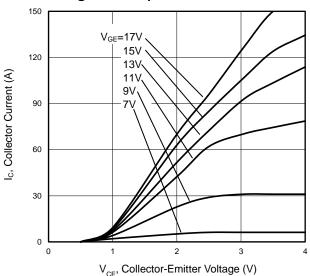


Figure 3 V_{CE(sat)} vs. Case Temperature

Figure 5 Capacitance Characteristics

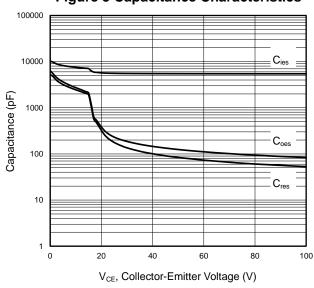


Figure 2 Transfer Characteristics

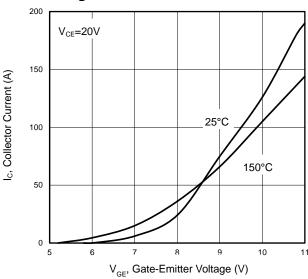


Figure 4 Saturation Voltage vs. V_{GE}

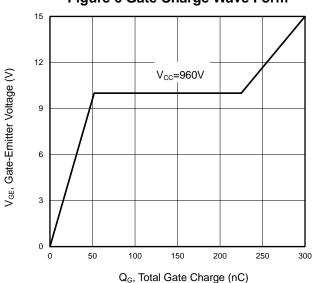
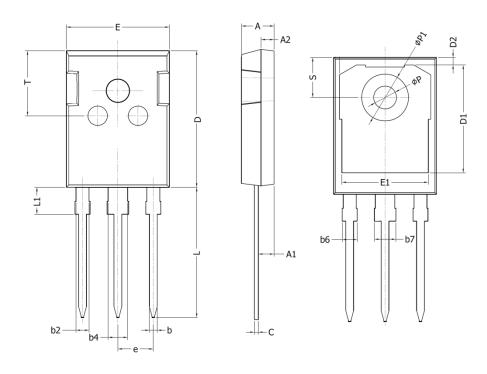




Figure 6 Gate Charge Wave Form

TO-247 Package Information

Combal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	4.90	5.10	0.193	0.201	
A1	2.31	2.51	0.091	0.099	
A2	1.9	2.1	0.075	0.083	
b	1.16	1.26	0.046	0.050	
b2	1.96	2.06	0.077	0.081	
b4	2.96	3.06	0.117	0.120	
b6	-	2.25	-	0.089	
b7	-	3.25	-	0.128	
С	0.59	0.66	0.023	0.026	
D	20.90	21.10	0.823	0.831	
D1	16.25	16.85	0.640	0.663	
D2	1.05	1.35	0.041	0.053	
Е	15.70	15.90	0.618	0.626	
E1	13.10	13.50	0.516	0.531	
е	5.436	BSC	0.214 BSC		
L	19.80	20.10	0.780	0.791	
L1	-	4.30	-	0.169	
Р	3.40	3.60	0.134	0.142	
P1	7.00	7.40	0.276	0.291	
S	6.05	6.25	0.238	0.246	
Т	9.80	10.20	0.386	0.402	

NCE40TD120BT

Attention:

- Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.
- NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.
- Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.
- This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by NCE Power manufacturer:

Other Similar products are found below:

IRG4PC30W APT20GT60BRDQ1G STGWA25H120DF2 APT30GS60BRDQ2G GT50JR22(STA1ES) TIG058E8-TL-H IDW40E65D2

APT40GR120B2SCD10 NGTB75N65FL2WAG NTE3320 STGW80H65DFB-4 IKFW50N65EH5XKSA1 IMBG120R090M1HXTMA1

GT30N135SRA,S1E IGW30N60TP IGW40N60TP IGW50N60TP IHW30N65R5 IKFW40N60DH3E IKP15N65H5 IKQ100N60T

IKQ120N60T IKW30N65WR5 IKW75N60H3 IKZ50N65NH5 IKZ75N65NH5 FGD3040G2-F085C FGH4L50T65SQD FGHL40T65MQDT

FGHL50T65MQD FGHL50T65MQDTL4 FGHL75T65LQDT FGHL75T65MQD FGHL75T65MQDT FGHL75T65MQDTL4

FGY75T120SWD EL3120S1(TA)(SAS)-V CRG40T60AK3SD CRG15T120BNR3S KGF75N65KDF-U/H MBQ40T120FESTH

AOB10B65M1 CRG15T60A83L CRG40T120BK3SD CRG40T65AN5H SGT25U120FD1P7 SGT20T60SDM1P7 IHW15N120E1

IKQ75N120CS6 IKWH50N65WR6