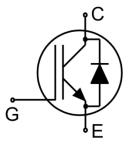
NCE40TH60BP

600V, 40A, Trench FS II Fast IGBT

General Description:

Using NCE's proprietary trench design and advanced FS (Field Stop) second generation technology, the 600V Trench FSIIIGBT offers superior conduction and switching performances, and easy parallel operation;


Features

Trench FSII Technology offering

- Very low V_{CE (sat)}
- High speed switching
- Positive temperature coefficient in V_{CE} (sat)
- Very tight parameter distribution
- High ruggedness, temperature stable behavior

Application

- Air Condition
- Inverters
- Motor drives

Schematic diagram

Package Marking and Ordering Information

Device	Device Package	Device Marking
NCE40TH60BP	TO-3P	NCE40TH60BP

Absolute Maximum Ratings (T_C=25°C unless otherwise noted)

TO-3P

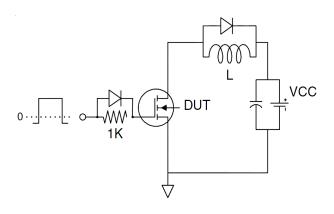
Symbol	Parameter	Value	Units
Vces	Collector-Emitter Voltage	600	V
V _{GES}	Gate- Emitter Voltage	±30	V
1	Collector Current	80	A
lc	Collector Current @T _C = 100 °C	40	A
I _{Cplus}	Pulsed Collector Current, tp limited by Tjmax	120	A
-	turn off safe operating area, VCE=600V, Tj=150°C	120	A
l _F	Diode Continuous Forward Current @T _C = 100 °C	30	A
I _{FM}	Diode Maximum Forward Current	90	А
Б	Power Dissipation @ T _C = 25°C	286	W
P _D	Power Dissipation @T _C = 100 °C	114	W
T_J , T_{stg}	Operating Junction and Storage Temperature Range	-55 to +150	°C
TL	Maximum Temperature for Soldering	260	°C
tsc	Short circuit withstand time V_{GE} =15.0V, V_{CC} \leq 400V, Allowed number of short circuits<1000Time between short circuits: \geq 1.0s, T_j \leq 150°C	3	us

Thermal Characteristic

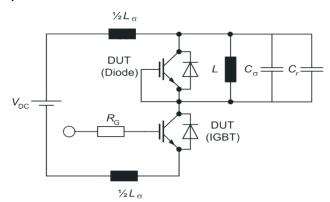
Symbol	Parameter	Value	Units
Rejc	Thermal Resistance, Junction to case for IGBT	0.44	°C/W
R _θ JC	Thermal Resistance, Junction to case for Diode	2.12	°C/W
RθJA	Thermal Resistance, Junction to Ambient	40	°C/W

Electrical Characteristics (Tc=25°C unless otherwise noted)

0	Barranatan	Test Conditions		Value			
Symbol	Parameter			Min.	Тур.	Max.	Units
STATIC Char	acteristics						
V _{(BR)CES}	Collector-EmitterBreakdown Voltage	V _{GE} =0V	,I _{CE} =1mA	600			V
Ices	Collector-Emitter Leakage Current	V _{GE} =0V	Vce=600V			4	uA
I _{GES(F)}	Gate to Emitter Forward Leakage	V _{GE} =+30	V,Vce=0V			200	nA
I _{GES(R)}	Gate to Source Reverse Leakage	V _{GE} =-30	V,Vce =0V			200	nA
\/·	Collector-Emitter Saturation Voltage	Ic=40A	Tj=25°C		1.7	1.9	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =15V	Tj=150°C		1.9		V
$V_{GE(th)}$	Gate Threshold Voltage	Ic=1mA	,Vce=Vge	4.0	5.0	6.0	V
Dynamic Cha	aracteristics						
Cies	Input Capacitance	V _{CE} =25V,V _{GE} =0V, f=1MHz			4894		pF
Coes	Output Capacitance				136		
C _{res}	Reverse Transfer Capacitance				94		
Qg	Total Gate Charge	Vcc=480V, lc=40A Vg=15V			176		nC
Qge	Gate to Emitter Charge				38		nC
Qgc	Gate to Collector Charge	VGL	-101		73		nC
I _{C(SC)}	Short circuit collector current Max.1000 short circuits Time between short circuits: ≥1.0s	VCE-15V VCCS-400V			250		А
Switching Ch	naracteristics						
$t_{d(ON)}$	Turn-on Delay Time				19		
t _r	Rise Time				17		20
$t_{\text{d(OFF)}}$	Turn-Off Delay Time	V _{CE} =400V,I _C =40A			168		ns
t _f	Fall Time	$V_{GE}=0/15V$, $R_g=5\Omega$			16		
Eon	Turn-On Switching Loss	Induct	ve Load		0.58		
E _{off}	Turn-Off Switching Loss				0.48		mJ
Ets	Total Switching Loss				1.06		

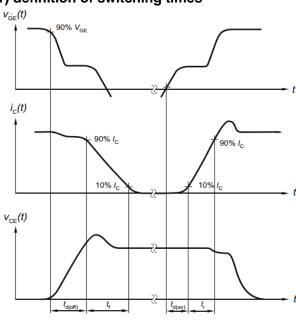

Electrical Characteristics of the Diode (Tc= 25°C unless otherwise specified):

Symbol	Parameter	Took Conditions	Rating			Units
		Test Conditions	Min.	Тур.	Max.	Units
V_{FM}	Diode Forward Voltage	I _F =30A		1.65	2.0	V
Trr	Reverse Recovery Time	Vac 400V I 20A		170		ns
I _{RRM}	Diode Peak Reverse Recovery Current	Vcc=400V, I _F =30A, di/dt=200A/uS		6.5		А
Qrr	Reverse Recovery Charge	ui/dl=200A/uS		0.7		uC
Pulse width $t_p \le 380 \mu s, \delta \le 2\%$						

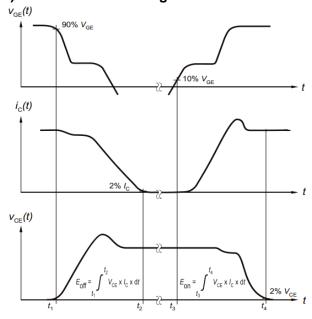


Test Circuit

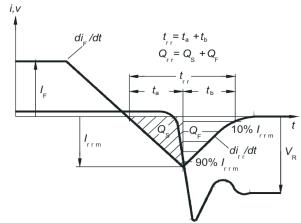
1) Gate Charge Test Circuit



2) Switch Time Test Circuit



Switching characteristics


1) definition of switching times

2) definition of switching losses

3) Definition of diode switching characteristics

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

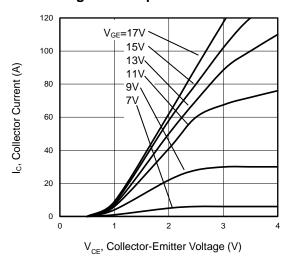
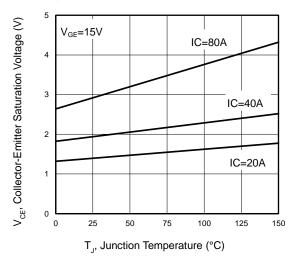
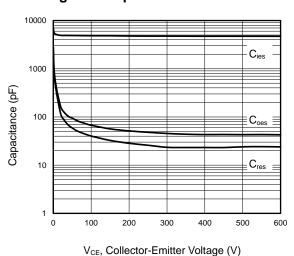




Figure 3 V_{CEsat} vs. Case Temperature

Figure 5 Capacitance Characteristics

Figure 2 Transfer Characteristics

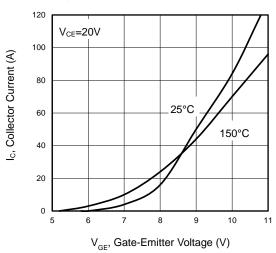


Figure 4 Saturation Voltage vs. V_{GE}

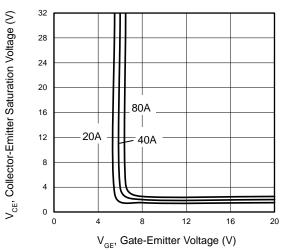
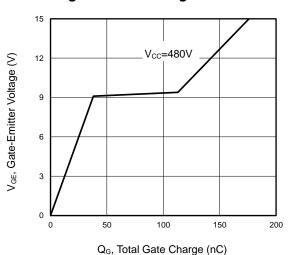



Figure 6 Gate charge waveform

Typical Electrical and Thermal Characteristics

Figure 7 Forward Characteristics

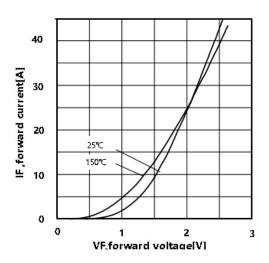


Figure 9 Typical Switching Times as a Function of Gate Resistor

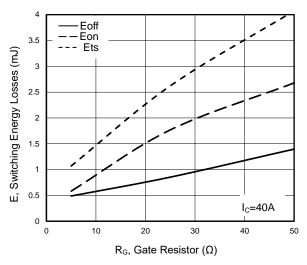


Figure 11 Gate-emitter Threshold Voltage as a Function of Junction Temperature

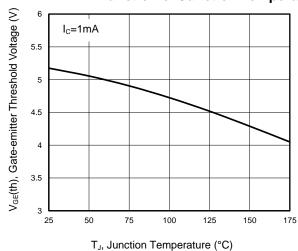


Figure 8 V_F vs. temperature

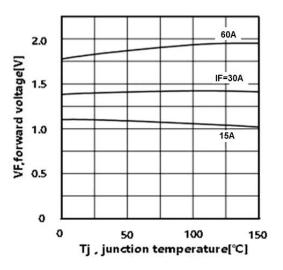


Figure 10 Typical Switching Times as a Function of Junction Temperature

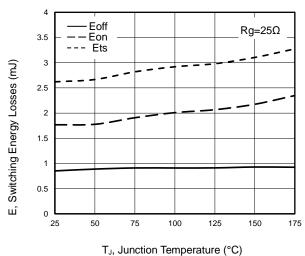
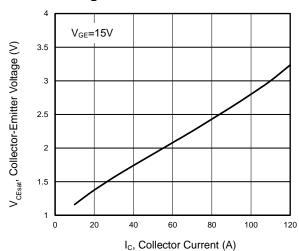
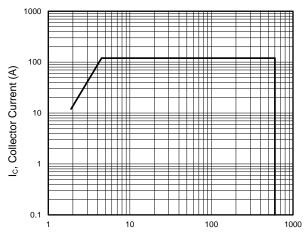




Figure 12 Typical Collector-emitter Saturation Voltage as a function of Collector Current

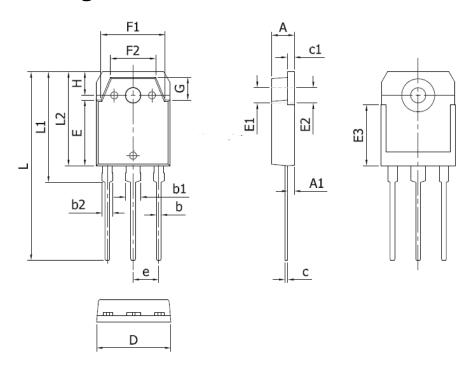

Typical Electrical and Thermal Characteristics

Figure 13 Forward Bias Safe Operating Area

TO-3P-3L Package Information

Sumbal	Dimensions In Millimeters		Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
А	4.60	5.00	0.18	0.20		
A1	1.20	1.60	0.05	0.06		
b	0.80	1.20	0.03	0.05		
b1	2.80	3.20	0.11	0.13		
b2	1.80	2.20	0.07	0.09		
С	0.50	0.70	0.02	0.03		
c1	1.45	1.65	0.06	0.06		
D	15.45	15.85	0.61	0.62		
E	13.70	14.10	0.54	0.56		
E1	3.3	0 REF	0.13 REF			
E2	3.20 REF		0.13 REF			
F1	13.40	13.80	0.53	0.54		
F2	9.40	9.80	0.37	0.39		
L	39.70	40.10	1.56	1.58		
L1	23.20	23.60	0.91	0.93		
L2	19.70	20.10	0.78	0.79		
G	4.60	5.00	0.18	0.20		
е	5.4	5.45 TYP.		0.21 TYP.		
Н	5.0	5.00 REF		0.20 REF		

NCE40TH60BP

Attention:

- Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.
- NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.
- Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.
- This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.

http://www.ncepower.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by NCE Power manufacturer:

Other Similar products are found below:

 748152A
 FGH60T65SHD_F155
 APT100GT60B2RG
 APT13GP120BG
 APT20GN60BG
 APT20GT60BRDQ1G
 APT25GN120B2DQ2G

 APT35GA90BD15
 APT36GA60BD15
 APT40GP60B2DQ2G
 APT40GP90B2DQ2G
 APT50GN120B2G
 APT50GT60BRG

 APT64GA90B2D30
 APT70GR120J
 NGTB10N60FG
 NGTB30N60L2WG
 IGP30N60H3XKSA1
 STGB15H60DF
 STGFW20V60DF

 STGFW30V60DF
 STGFW40V60F
 STGWA25H120DF2
 FGB3236_F085
 APT25GN120BG
 APT30GN60BDQ2G
 APT30GN60BDQ2G

 APT30GN60BG
 APT30GS60BRDQ2G
 APT30N60BC6
 APT35GP120JDQ2
 APT36GA60B
 APT45GR65B2DU30

 APT50GP60B2DQ2G
 APT68GA60B
 APT70GR65B
 APT70GR65B2SCD30
 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IDW40E65D2

 SGB15N120ATMA1
 NGTB50N60L2WG
 STGB10H60DF
 STGB20V60F
 STGB40V60F
 STGFW80V60F
 IGW40N120H3FKSA1

 RJH60D7BDPQ-E0#T2
 APT40GR120B