

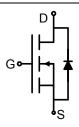
NCE N-Channel Enhancement Mode Power MOSFET

Description

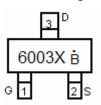
The NCE6003X uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. This device is suitable for use as a Battery protection or in other switching application.

General Features

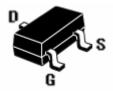
V_{DS} =60V,I_D =3A


 $R_{DS(ON)}$ <90m Ω @ V_{GS} =10V

 $R_{DS(ON)} < 110 m\Omega$ @ $V_{GS} = 4.5 V$


- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application


- Battery switch
- ●DC/DC converter

Schematic Diagram

Marking and Pin Assignment

SOT-23 Top View

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
6003X	NCE6003X	SOT-23	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous	I _D	3	Α
Drain Current-Pulsed (Note 1)	I _{DM}	10	Α
Maximum Power Dissipation	P _D	1.7	W
Operating Junction and Storage Temperature Range	T_{J},T_{STG}	-55 To 150	$^{\circ}$

Thermal Characteristic

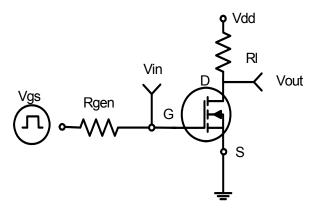
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	73.5	°C/W
, and the second	****		

Electrical Characteristics (T_A=25°C unless otherwise noted)

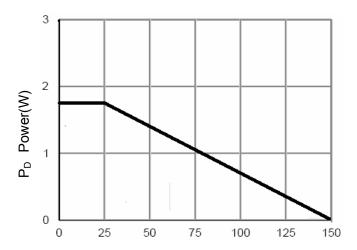
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	٧
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ

http://www.ncepower.com

NCE6003X


Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	0.9	1.3	2.0	V
Drain-Source On-State Resistance	D	V_{GS} =10V, I_D =3A	-	68	90	mΩ
Dialii-Source Oil-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =3A	-	80	110	mΩ
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =3 A	-	3	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	\/ -20\/\/ -0\/	-	270	-	PF
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	16	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	15	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}		-	5	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_{D} =3A V_{GS} =10V, R_{GEN} =1 Ω	-	10	-	nS
Turn-Off Delay Time	t _{d(off)}		-	12	-	nS
Turn-Off Fall Time	t _f		-	8	-	nS
Total Gate Charge	Q_g	V_{DS} =30V, I_{D} =3A, V_{GS} =10V	-	10.2	-	nC
Gate-Source Charge	Q_{gs}		-	1.8	-	nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	2.2	-	nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =3A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	3	Α

Notes:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- Surface Mounted on FR4 Board, t ≤ 10 sec.
 Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

 T_J -Junction Temperature(${}^{\circ}$ C)

Figure 3 Power Dissipation

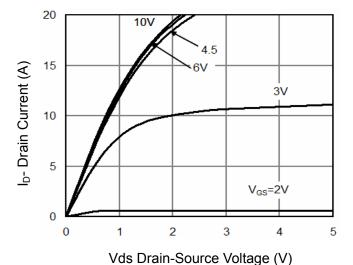


Figure 5 Output Characteristics

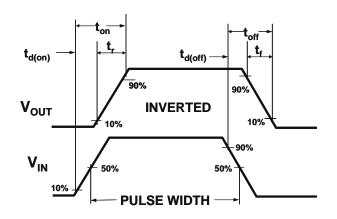
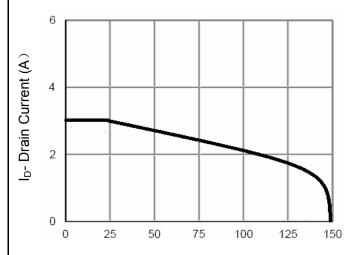



Figure 2:Switching Waveforms

T_J-Junction Temperature(°C)

Figure 4 Drain Current

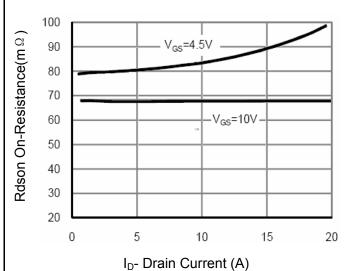
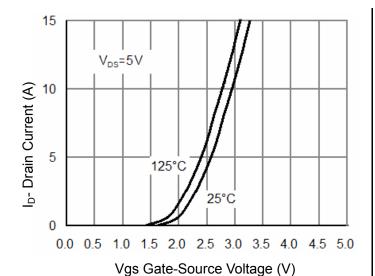
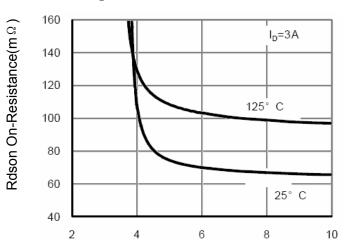




Figure 6 Drain-Source On-Resistance

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

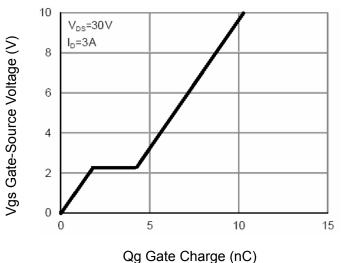


Figure 11 Gate Charge

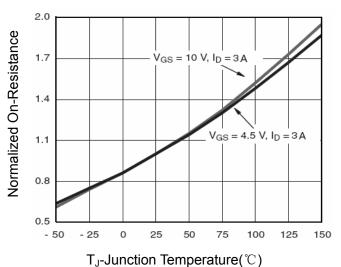


Figure 8 Drain-Source On-Resistance

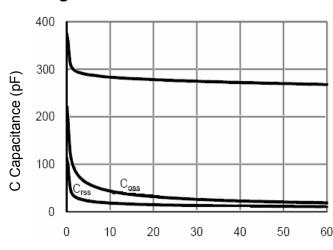
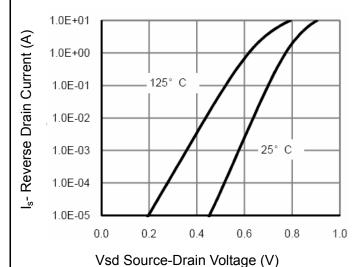
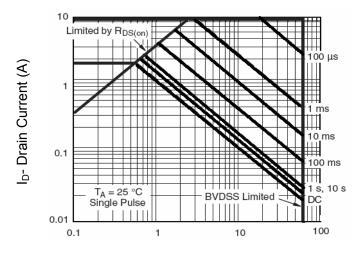
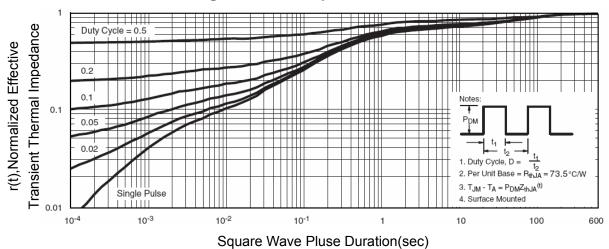


Figure 10 Capacitance vs Vds

Vds Drain-Source Voltage (V)


Figure 12 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

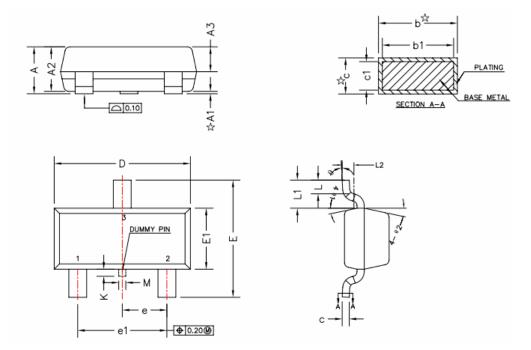

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance

SOT-23 Package Information

Symbol	Millimeters			
Syllibol	Min.	Max.		
Α	0.89	1.12		
A1	0.01	0.10		
A2	0.88	1.02		
A3	0.43	0.63		
b	0.36	0.50		
b1	0.35	0.45		
С	0.14	0.20		
c1	0.14	0.16		
D	2.80	3.00		
E	2.35	2.64		
E1	1.20	1.40		
е	0.90	1.00		
e1	1.80	2.00		
L	0.40	0.60		
L1	0.6REF			
L2	0.25BSC			
M	0.10	0.25		
K	0.00	0.25		
θ	0°	8°		
θ1	10°	14°		
θ2	10°	14°		

Attention:

- Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.
- NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.
- Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.
- This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NCE Power manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 AOD464
2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7
EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1
DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6
C3M0021120D DMN6022SSD-13