N and P-Channel Enhancement Mode Power MOSFET

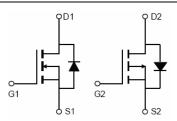
Description

The NCE603S uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge . The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

General Features

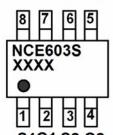
N-Channel

 $V_{DS} = 60V, I_{D} = 6.3A$

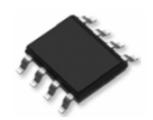

 $R_{DS(ON)}$ < 30m Ω @ V_{GS} =10V

P-Channel

 $V_{DS} = -60V, I_{D} = -6A$


 $R_{DS(ON)} < 80 \text{m}\Omega$ @ V_{GS} =-10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package



Schematic diagram

D1 D1 D2 D2

S1G1 S2 G2
Marking and pin assignment

SOP-8 top view

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
NCE603S	NCE603S	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter		Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage		V _{DS}	60	-60	V	
Gate-Source Voltage		V_{GS}	±20	±20	V	
Continuous Drain Current	T _A =25℃		6.3	-6	А	
Continuous Drain Current	T _A =100°C	I _D	4.5	-4.2		
Pulsed Drain Current (Note 1)		I _{DM}	40	-25	Α	
Maximum Power Dissipation T _A =25℃		P _D	2.0	2.0	W	
Operating Junction and Storage Temperature Range		T_{J} , T_{STG}	-55 To 150	-55 To 150	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note2)	R _{0JA}	N-Ch	62.5	°C/W
Thermal Resistance, Junction-to-Ambient (Note2)	$R_{\theta JA}$	P-Ch	62.5	°C/W

http://www.ncepower.com

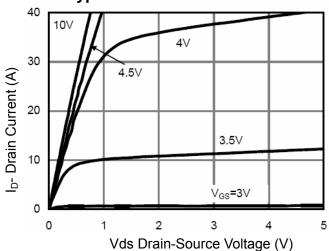
NCE603S

N-CH Electrical Characteristics (T_A =25 $^{\circ}$ C unless otherwise noted)

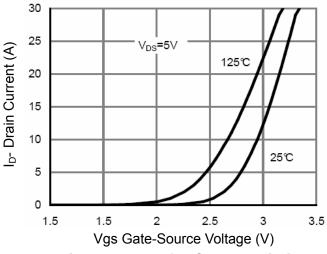
Parameter	Parameter Symbol Condition		Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.6	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =6A	-	26	30	mΩ
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =6 A	15	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ 45\/\/ 0\/	-	500	-	PF
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	60	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVITIZ	-	25	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	5	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =4.7 Ω	-	2.6	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =3 Ω	-	16.1	-	nS
Turn-Off Fall Time	t _f		-	2.3	-	nS
Total Gate Charge	Qg	\/ -45\/ -6A	-	25	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=15V, I_{D}=6A,$	-	4.5	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6.5	-	nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =6A	-	0.8	1.2	V

NCE603S

P-CH Electrical Characteristics (T_A=25 [°]C unless otherwise noted)


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-2.6	-3.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-5A	-	64	80	mΩ
Forward Transconductance	G FS	V _{DS} =-15V,I _D =-5A	16	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V = 20V/V =0V	-	1450	-	PF
Output Capacitance	Coss	V_{DS} =-20V, V_{GS} =0V, F=1.0MHz	-	145	-	PF
Reverse Transfer Capacitance	C _{rss}	r=1.0WIn2	-	110	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	8	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, , R_L =30 Ω	-	9	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =6 Ω	-	65	-	nS
Turn-Off Fall Time	t _f		-	30	-	nS
Total Gate Charge	Qg	\/ - 20\/ I - FA	-	26	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-30V,I _D =-5A, V _{GS} =-10V	-	4.5	-	nC
Gate-Drain Charge	Q _{gd}	v GS10 v	-	7	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-6A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-6	Α

Notes:


- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

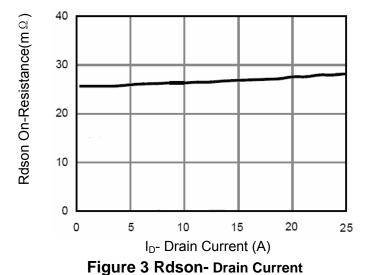

N-CHTypical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

V_{GS}=10V 2 $I_D=6A$ Normalized On-Resistance 1.8 1.6 1.4 1.2 0.8 50 75 100 125 150 175 T_J -Junction Temperature($^{\circ}$ C)

Figure 4 Rdson-Junction Temperature

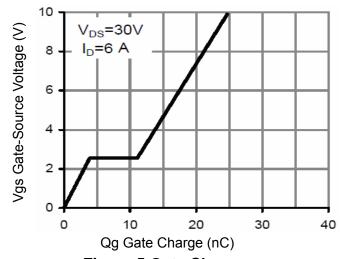


Figure 5 Gate Charge

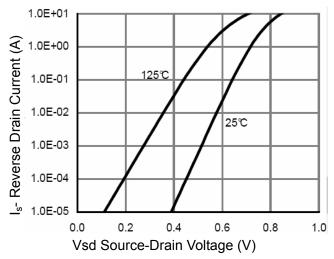


Figure 6 Source- Drain Diode Forward

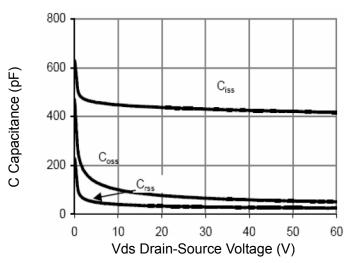


Figure 7 Capacitance vs Vds

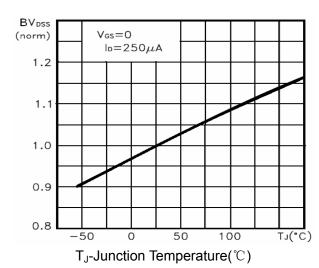
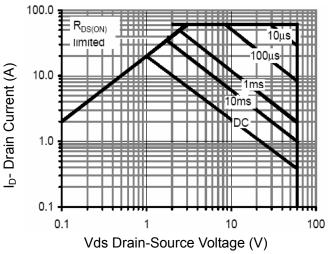



Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

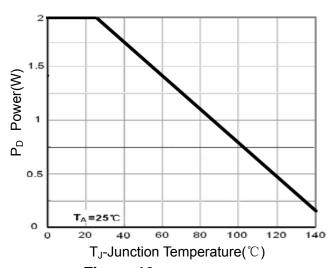


Figure 10 Power Dissipatio

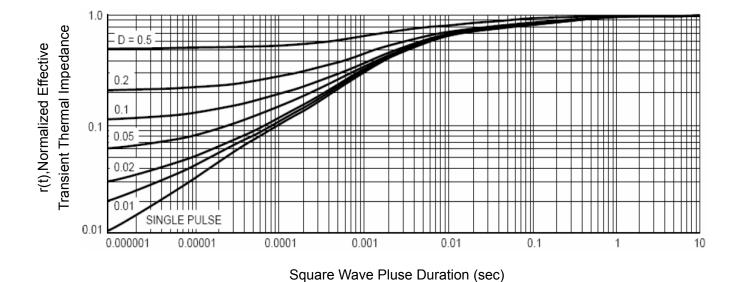
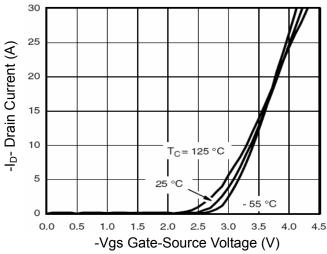


Figure 11 Normalized Maximum Transient Thermal Impedance

Pb Free Product



P-CH Typical Electrical and Thermal Characteristics (Curves)

http://www.ncepower.com

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

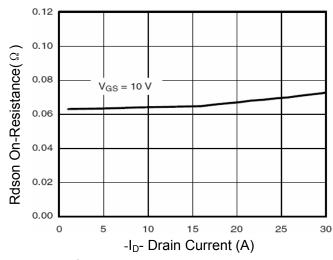
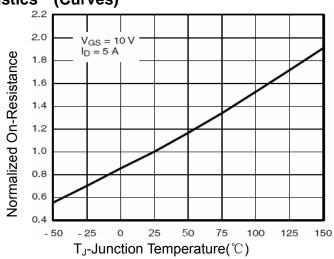



Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

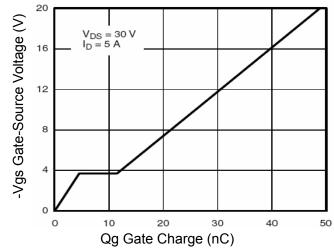


Figure 5 Gate Charge

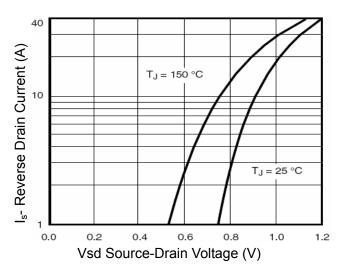
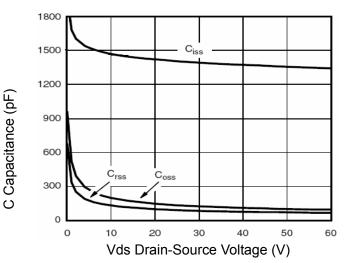
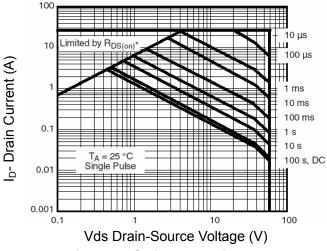



Figure 6 Source- Drain Diode Forward



http://www.ncepower.com

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

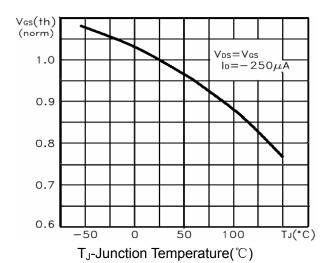


Figure 10 V_{GS(th)} vs Junction Temperature

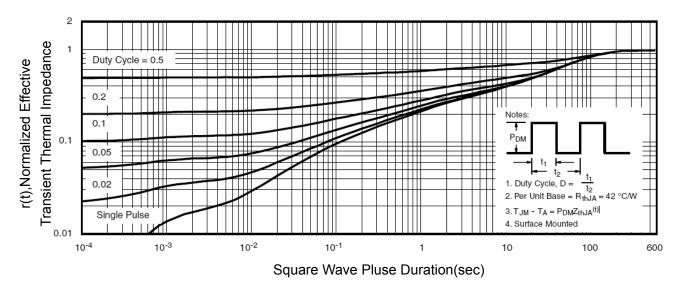
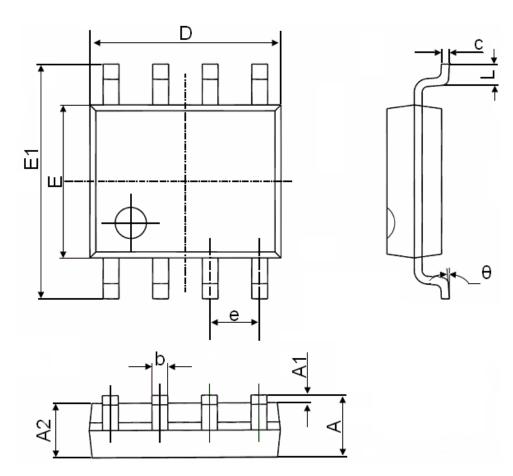



Figure 11 Normalized Maximum Transient Thermal Impedance

Pb Free Product

SOP-8 Package Information

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0 °	8°	0°	8°	

http://www.ncepower.com

NCE603S

Attention

- Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.
- NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.
- Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.
- This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NCE Power manufacturer:

Other Similar products are found below:

614233C 648584F FDPF9N50NZ IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2267(Q) 2SK2545(Q,T)
405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD

TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7

NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B

IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7

BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1

IPS60R600PFD7SAKMA1 IPS60R210PFD7SAKMA1 DMN2990UFB-7B