

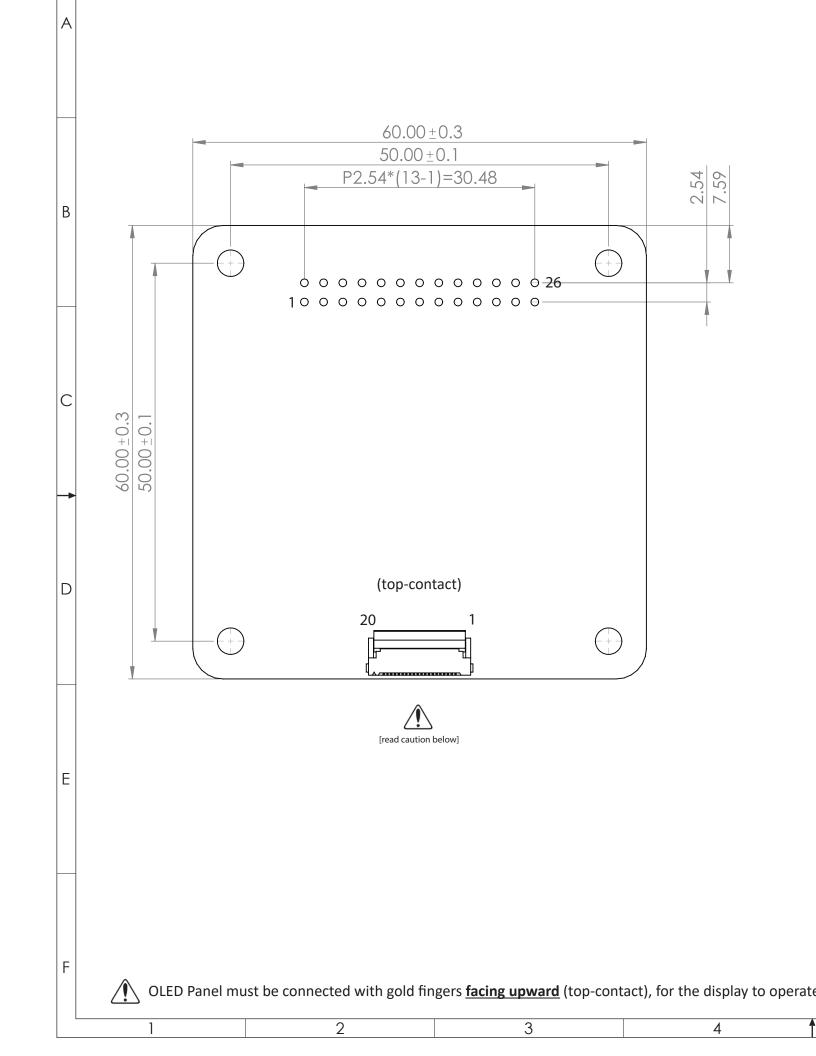
NHD-0.6-Breakout

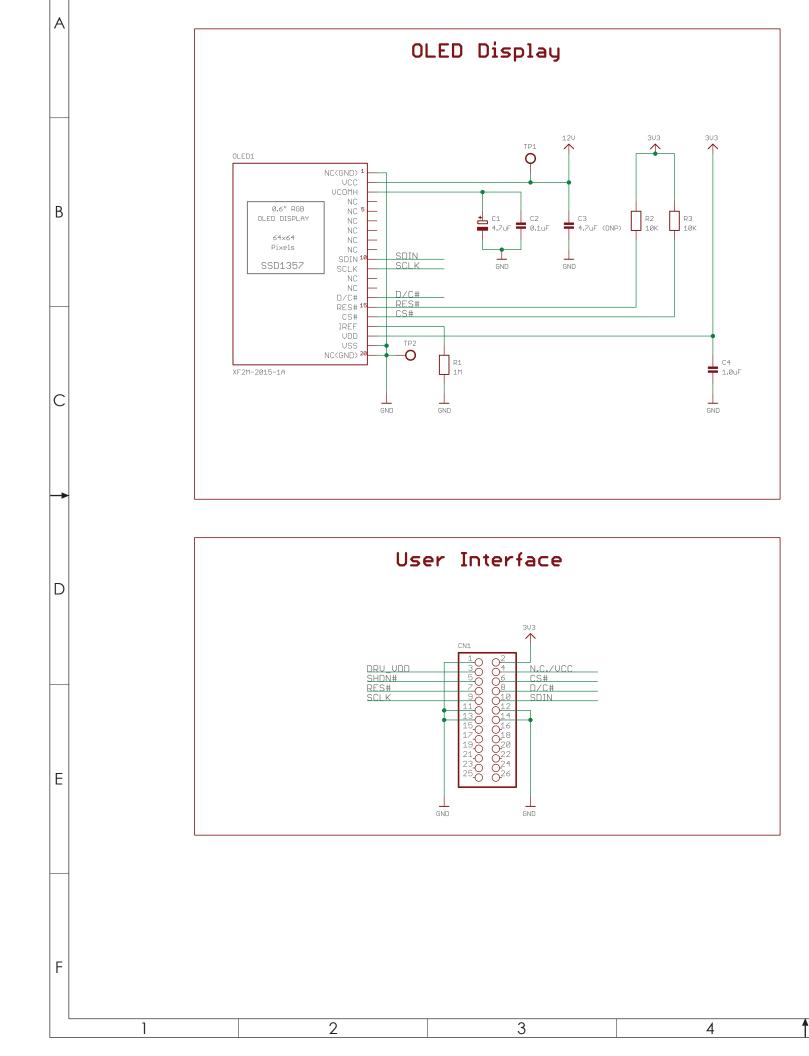
Breakout Board for 0.6" Color OLED Glass

NHD- Newhaven Display 0.6- 0.6" Diagonal Size Breakout- Breakout Board

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124


Ph: 847-844-8795 Fax: 847-844-8796


Document Revision History

Revision	Date	Description	Changed by	
-	09/17/19	Initial Release	PB	

Functions and Features

- Breakout board for 0.6" Color OLED Glass (NHD-0.6-6464G)
- On-board booster circuit (FAN5331SX)
- Jumper option to bypass booster circuit and provide V_{cc} directly
- Open source hardware

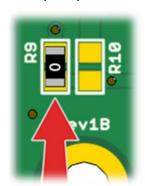
Pin Description

Pin No.	Symbol	External Connection	Function Description		
1	GND	Power Supply	Ground		
2	3V3	Power Supply	Supply Voltage for OLED Logic (+3.3V)		
3	DRV_VDD	Power Supply	Supply Voltage for boost converter (+5V) to drive OLED panel		
			voltage (VCC).		
			(Should be no connect if using pin 4 to apply external VCC)		
4	N.C./VCC	-	No Connect by default. Can be configured for external VCC (+12V).		
			(refer to On-Board Jumper Options table below)		
5	SHDN#	MPU	Active LOW Shutdown control pin for boost converter		
			(pulled HIGH via on-board 10kΩ resistor)		
6	CS#	MPU	Active LOW Chip Select signal		
7	RES#	MPU	Active LOW Reset signal		
8	D/C#	MPU	Data/Command selection. LOW: Command. HIGH: Data		
9	SCLK	MPU	Serial Clock Input signal		
10	SDIN	MPU	Serial Data Input signal		
11-14	GND	Power Supply	Ground		
15-26	N.C.	-	No Connect		

On-Board Jumper Options


Default Jumper Setting

R9 R10			Description				
	Open	Close	(default) Boost converter circuit (+5V on pin 3) is used to provide VCC to OLED Glass.				


Jumper Option #1 – External Supply Voltage for OLED Panel (VCC)

R9	R10	Description
Close	Open	Boost converter circuit (pin 3) is not used. User must apply VCC (+12V) externally to (pin 4). OLED logic is still powered from 3V3 (pin 2). This method allows for minimum current drain.

Default Jumper Setting

Jumper Option #1

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-40	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-40	-	+85	°C
Supply Voltage for OLED Logic	3V3	-	2.8	3.0	3.5	V
Supply Voltage for Boost Circuit	DRV_VDD	-	-	5.0	5.5	V
Supply Voltage for OLED Panel	Vcc	-	11.5	12.0	12.5	V

NOTICE: It is <u>not recommended</u> to apply power to the board without a display connected. Doing so may result in a damaged booster circuit. Newhaven Display does not assume responsibility for PCB failures due to this damage.

Compatible OLED Glass

This board is designed to drive and breakout the signals of the NHD-0.6-6464G.

Please download specification at http://www.newhavendisplay.com/specs/NHD-0.6-6464G.pdf

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high	+85°C, 240 Hrs.	2
	storage temperature.		
Low Temperature storage	Test the endurance of the display at low	-40°C, 240 Hrs.	1,2
	storage temperature.		
High Temperature	Test the endurance of the display by	+70°C, 240 Hrs.	2
Operation	applying electric stress (voltage & current)		
	at high temperature.		
Low Temperature	Test the endurance of the display by	-40°C, 240 Hrs.	1,2
Operation	applying electric stress (voltage & current)		
	at low temperature.		
High Temperature /	Test the endurance of the display by	+60°C, 90% RH, 120 Hrs.	1,2
Humidity Operation	applying electric stress (voltage & current)		
	at high temperature with high humidity.		

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information

See Terms & Conditions at http://www.newhavendisplay.com/index.php?main_page=terms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Development Tools category:

Click to view products by Newhaven Display manufacturer:

Other Similar products are found below:

KIT 60121-3 S5U13U11P00C100 MAX14521EEVKIT 121CBL02-RPK KIT 60145-3 S5U13748P00C100 DFR0413 3248

DLPLCR90EVM DLPLCR50XEVM MAX20069EVKIT# KIT95000-3 LCD-16396 PIM370 1109 MCIMX-LVDS1 MIKROE-2449

MIKROE-2453 131 DEV-13628 1590 MIKROE-2269 1601 1770 1947 1983 1987 2050 2218 2219 2260 2345 2418 2423 2454 2455

2478 2674 SK-220RD-PI FIT0477 333 334 TE-M321-SDK DFR0428 cs-epapersk-03 338 DEV-14442 FIT0478 cs-paperino-01 OM-E-OLE