NHD-2.23-12832UCW3

Graphic OLED Display Module

NHD- Newhaven Display
2.23-
12832-
UC-
W-
2.23" Diagonal Size
128×32 Pixel Resolution
Model
Emitting Color: White
3-
+3V Power Supply

Document Revision History

Revision	Date	Description	Changed by
0	$7 / 27 / 15$	Initial Product Release	SB
1	$6 / 28 / 17$	Datasheet Reformat	SB
2	$8 / 3 / 20$	Included MIN Supply Voltage \& Reformatted 2D Mechanical Drawing	AS
3	$9 / 1 / 20$	Updated 2D Mechanical Drawing	AS

Functions and Features

- 128×32 pixel resolution
- Built-in SSD1305 controller
- Parallel or serial MPU interface
- Single, low voltage power supply
- RoHS compliant

Interface Description

Parallel Interface:

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	$\mathbf{6 8 0 0}$-interface: Read/Write select signal, R/W=1: Read R/W: $=0$: Write $8080-i n t e r f a c e: ~$
			Active LOW Write signal.
6	E or /RD		Operation enable signal. Falling edge triggered. $8080-i n t e r f a c e: ~$
		MPU	Active LOW Read signal.
$7-14$	DB0 - DB7	MPU	8-bit Bi-directional data bus lines.
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS2	MPU	MPU Interface Select signal.
20	BS1	MPU	MPU Interface Select signal.

Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	$V_{S S}$	Power Supply	Ground
2	V DD 2	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
$5-6$	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal.
8	SDIN	MPU	Serial Data Input signal.
9	NC	-	No Connect
$10-14$	VSS	Power Supply	Ground
15	NC	-	No Connect
16	$/$ RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS2	MPU	MPU Interface Select signal.
20	BS1	MPU	MPU Interface Select signal.

I2C Interface:

Pin No.	Symbol	External Connection	Function Description
1	V $_{\text {SS }}$	Power Supply	Ground
2	V $_{\text {DD }}$	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	SAO	MPU	Slave Address Selection signal.
$5-6$	V	Power Supply	Ground
7	SCL	MPU	Serial Clock signal.
8	SDAIN	MPU	Serial Data input signal (pins 8 and 9 can be tied together).
9	SDAout	MPU	Serial Data output signal (pin9 can be no connect).
$10-14$	VSS	Power Supply	Ground
15	NC	-	No Connect
16	$/$ RES	MPU	Active LOW Reset signal.
17	V SS	Power Supply	Ground
18	NC	-	No Connect
19	BS2	MPU	MPU Interface Select signal.
20	BS1	MPU	MPU Interface Select signal.

MPU Interface Pin Selections

Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	Serial Interface	12C Interface
BS2	1	1	0	0
BS1	0	1	0	1

MPU Interface Pin Assignment Summery

$\begin{gathered} \text { Bus } \\ \text { Interface } \end{gathered}$	Data/Command Interface								Control Signals				
	D7	D6	D5	D4	D3	D2	D1	D0	E	R/W	/Cs	D/C	/RES
8-bit 6800	D[7:0]								E	R/W	/CS	D/C	/RES
8-bit 8080	D[7:0]								/RD	/WR	/CS	D/C	/RES
SPI	Tie LOW					NC	SDIN	SCLK		LOW	/CS	D/C	/RES
12C	Tie LOW					SDAIN	SDAout	SCL	Tie LOW			SAO	/RES

Wiring Diagrams

[6]

Electrical Characteristics

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Operating Temperature Range	Top	Absolute Max	-40	-	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TST	Absolute Max	-40	-	+90	${ }^{\circ} \mathrm{C}$
Supply Voltage	VDD		3.0	3.3	3.5	V
Supply Current (logic)	IDD	$\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	180	300	$\mu \mathrm{A}$
Supply Current (display)	Icc	$50 \% \mathrm{ON}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	62	70	mA
		100\% ON, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	113	120	mA
Sleep Mode Current	Idd+ICCSLEEP	-	-	3	15	$\mu \mathrm{A}$
"H" Level input	V_{IH}	-	0.8 * V ${ }_{\text {DD }}$	-	VDD	V
"L" Level input	VIL	-	$V_{\text {ss }}$	-	0.2 * $V_{\text {DD }}$	V
"H" Level output	$\mathrm{V}_{\text {OH }}$	-	$0.9 * V_{\text {DD }}$	-	$V_{D D}$	V
"L" Level output	Vol	-	Vss	-	0.1 * VDD	V

Optical Characteristics

Item			Symbol	Condition	Min.	Typ.	Max.	Unit
Optimal Viewing Angles	Top		$\varphi \mathrm{Y}+$	$C R \geq 10,000$	80	-	-	0
	Bottom		φY -		80	-	-	0
	Left		өX-		80	-	-	0
	Right		日X+		80	-	-	0
Contrast Ratio			Cr	-	10,000:1	-	-	-
Response Time		Rise	T_{R}	-	-	10	-	$\mu \mathrm{s}$
		Fall	TF	-	-	10	-	$\mu \mathrm{s}$
Brightness			Lv	50\% Checkerboard	100	120	-	$\mathrm{cd} / \mathrm{m}^{2}$
Lifetime			-	$\mathrm{Lv}_{\mathrm{v}}=120 \mathrm{~cd} / \mathrm{m}^{2}$ 50\% Checkerboard	10,000	-	-	Hrs.

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until Half-Brightness. The Display OFF command can be used to extend the lifetime of the display.
Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

Built-in SSD1305 controller.

Instruction Table

Instruction	Code										Description
	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Set Lower Column Start Address	0	00~ OF	0	0	0	0	X3	X2	X1	X0	Set the lower nibble of the column start addr Addressing Mode.
Set Higher Column Start Address	0	10~1F	0	0	0	1	X3	X2	X1	X0	Set the higher nibble of the column start add Addressing Mode.
Set Memory Addressing Mode	0	$\begin{gathered} 20 \\ A[1: 0] \end{gathered}$	0	0	1	0	0	0	$\begin{gathered} 0 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	A[1:0] = 00b, Horizontal Addressing Mode A[1:0] $=01 \mathrm{~b}$, Vertical Addressing Mode $A[1: 0]=10 b$, Page Addressing Mode A[1:0] = 11b, Invalid
Set Column Address	0	$\begin{gathered} 21 \\ A[7: 0] \\ B[7: 0] \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A7 } \\ \text { B7 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A6 } \\ \text { B6 } \end{gathered}$	$\begin{gathered} \text { 1 } \\ \text { A5 } \\ \text { B5 } \end{gathered}$	0 A4 B4	$\begin{gathered} \hline 0 \\ \text { A3 } \\ \text { B3 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~A} 2 \\ \mathrm{~B} 2 \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A1 } \\ \text { B1 } \end{gathered}$	$\begin{gathered} \text { 11 } \\ \text { AO } \\ \text { BO } \end{gathered}$	Setup column start and end address A[7:0]: Column start address. Range: 0-131d B[7:0]: Column end address. Range: 0-131d
Set Page Address	0	$\begin{gathered} 22 \\ \mathrm{~A}[2: 0] \\ \mathrm{B}[2: 0] \\ \hline \end{gathered}$	0	0	$\begin{aligned} & 1 \\ & * \end{aligned}$	0	0	$\begin{gathered} 0 \\ \text { A2 } \\ \text { B2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A1 } \\ \text { B1 } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { A0 } \\ \text { BO } \\ \hline \end{gathered}$	Setup page start and end address A[2:0]: Page start address. Range: 0-7d B[2:0]: Page end address. Range: 0-7d
Set Display Start Line	0	40~7F	0	1	X5	X4	X3	X2	X1	X0	Set display RAM display start line register fro
Set Contrast Control	0	$\begin{gathered} 81 \\ A[7: 0] \end{gathered}$	$\begin{gathered} 1 \\ \text { A7 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A6 } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~A} 5 \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { AO } \end{gathered}$	Double byte command to select 1 out of 256 increases as the value increases.
Set Brightness	0	$\begin{gathered} 82 \\ \mathrm{~A}[7: 0] \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { A7 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A6 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	Double byte command to select 1 out of 256 Brightness increases as the value increases.
Set Look-Up Table	0	$\begin{gathered} 91 \\ \mathrm{X}[5: 0] \\ \mathrm{A}[5: 0] \\ \mathrm{B}[5: 0] \\ \mathrm{C}[5: 0] \end{gathered}$		0	$\begin{gathered} \hline 0 \\ \text { X5 } \\ \text { A5 } \\ \text { B5 } \\ \text { C5 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { X4 } \\ \text { A4 } \\ \text { B4 } \\ \text { C4 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { X3 } \\ \text { A3 } \\ \text { B3 } \\ \text { C3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { X2 } \\ \text { A2 } \\ \text { B2 } \\ \text { C2 } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{X} 1 \\ \mathrm{~A} 1 \\ \mathrm{~B} 1 \\ \mathrm{C} 1 \end{gathered}$	$\begin{gathered} 1 \\ \text { XO } \\ \text { AO } \\ \text { BO } \\ \text { CO } \end{gathered}$	Set current drive pulse width of Bank 0, Colo Bank 0: X[5:0] = 31 to 63 . Pulse width set to 3 Color $\mathrm{A}: \mathrm{X}[5: 0]=31$ to 63 . Pulse width set to Color B: X[5:0] = 31 to 63 . Pulse width set to Color C: X[5:0] = 31 to 63 . Pulse width set to Note: Color D pulse width is fixed at 64 clocks
Set Bank Color of Bank1 to Bank16 (Page 0)	0	$\begin{gathered} 92 \\ \mathrm{~A}[7: 0] \\ \mathrm{B}[7: 0] \\ \mathrm{C}[7: 0] \\ \mathrm{D}[7: 0] \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A7 } \\ \text { B7 } \\ \text { C7 } \\ \text { D7 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A6 } \\ \text { B6 } \\ \text { C6 } \\ \text { D6 } \end{gathered}$	O A5 B5 C5 D5	$\begin{gathered} \hline 1 \\ \text { A4 } \\ \text { B4 } \\ \text { C4 } \\ \text { D4 } \end{gathered}$	O A3 B3 C3 D3	$\begin{gathered} \text { 0 } \\ \text { A2 } \\ \text { B2 } \\ \text { C2 } \\ \text { D2 } \end{gathered}$	$\begin{gathered} \text { 1 } \\ \text { A1 } \\ \text { B1 } \\ \text { C1 } \\ \text { D1 } \end{gathered}$	$\begin{gathered} \text { O } \\ \text { AO } \\ \text { BO } \\ \text { CO } \\ \text { DO } \end{gathered}$	Sets the bank color of Bank1~Bank16 to any and D. $A[1: 0]: 00 b, 01 b, 10 b$, or 11 b for Color $=A, B$ A[3:2] : 00b, 01b, 10b, or 11b for Color = A, B $D[5: 4]$: 00b, 01b, 10b, or 11 b for Color $=A, B$ $D[7: 6]$: 00b, 01b, 10b, or 11b for Color $=A, B$
Set Bank Color of	0	93	1	0	0	1	0	0	1	1	Sets the bank color of Bank17~Bank32 to any

Bank17 to Bank32 (Page 1)		$\begin{aligned} & \mathrm{A}[7: 0] \\ & \mathrm{B}[7: 0] \\ & \mathrm{C}[7: 0] \\ & \mathrm{D}[7: 0] \end{aligned}$	$\begin{aligned} & \text { A7 } \\ & \text { B7 } \\ & \text { C7 } \\ & \text { D7 } \end{aligned}$	$\begin{aligned} & \text { A6 } \\ & \text { B6 } \\ & \text { C6 } \\ & \text { D6 } \end{aligned}$	$\begin{aligned} & \text { A5 } \\ & \text { B5 } \\ & \text { C5 } \\ & \text { D5 } \end{aligned}$	$\begin{aligned} & \text { A4 } \\ & \text { B4 } \\ & \text { C4 } \\ & \text { D4 } \end{aligned}$	A3 B3 C3 D3	$\begin{aligned} & \text { A2 } \\ & \text { B2 } \\ & \text { C2 } \\ & \text { D2 } \end{aligned}$	A1 B1 C1 D1	$\begin{aligned} & \text { AO } \\ & \text { BO } \\ & \text { CO } \\ & \text { DO } \end{aligned}$	A, B, C, and D. $A[1: 0]: 00 b, 01 b, 10 b$, or 11 b for Color $=A, B$ A[3:2] : 00b, 01b, 10b, or 11b for Color $=A, B$ $D[5: 4]$: 00b, 01b, 10b, or 11b for Color $=A, B$ $D[7: 6]$: 00b, 01b, 10b, or 11 b for Color $=A, B$
Set Segment Remap	0	A0/A1	1	0	1	0	0	0	0	X0	$X[0]=0$; Column address 0 is mapped to SEG $\mathrm{X}[0]=1$; Column address 131 is mapped to S
Entire Display ON	0	A4/A5	1	0	1	0	0	1	0	X0	X[0] $=0$; Resume RAM content display. Outpu $X[0]=1$; Entire display $O N$. Output ignores RA
Set Normal/ Inverse Display	0	A6/A7	1	0	1	0	0	1	1	X0	$\mathrm{X}[0]=0$; Normal display. $X[0]=1$; Inverse display.
Set Multiplex Ratio	0	$\begin{gathered} \text { A8 } \\ \text { A[5:0] } \end{gathered}$	1	0	$\begin{gathered} 1 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~A} 1 \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	Set MUX ratio to N+1 MUX $\mathrm{N}=\mathrm{A}[5: 0$]; from 16MUX to 64MUX (0 to 14 ar
Dim mode setting	0	$\begin{gathered} \mathrm{AB} \\ \mathrm{~A}[3: 0] \\ \mathrm{B}[7: 0] \\ \mathrm{C}[7: 0] \end{gathered}$	$\begin{gathered} 1 \\ * \\ \text { B7 } \\ \text { C7 } \end{gathered}$	$\begin{gathered} 0 \\ \hline \\ \text { B6 } \\ \text { C6 } \end{gathered}$	$\begin{gathered} \hline 1 \\ * \\ \text { B5 } \\ \text { C5 } \end{gathered}$	$\begin{gathered} 0 \\ * \\ \text { B4 } \\ \text { C4 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A3 } \\ \text { B3 } \\ \text { C3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \\ \text { B2 } \\ \text { C2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \\ \text { B1 } \\ \text { C1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { AO } \\ \text { BO } \\ \text { CO } \end{gathered}$	A[3:0] = reserved. Set as 0000b $\mathrm{B}[7: 0]=$ Set contrast for BANKO. Range 0-255 81h. C[7:0] = Set brightness for color bank. Range command 82h.
Master configuration	0	$\begin{aligned} & \text { AD } \\ & \text { AE } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Selects external VCC supply
Set Display ON/ OFF	0	AC/ AE/ AF	1	0	1	0	1	1	A1	A0	ACh = Display ON in dim mode AEh = Display OFF (sleep mode) AFh = Display ON in normal mode
Set Page Start Address	0	B0~B7	1	0	1	1	0	X2	X1	X0	Set GDRAM Page Start Address for Page Add PAGEO~PAGE7
Set COM Output Scan Direction	0	C0/C8	1	1	0	0	X3	0	0	0	X[3] = 0; Normal mode. Scan from COMO to X[3] = 1; Remapped mode. Scan from COM[N
Set Display Offset	0	$\begin{gathered} \text { D3 } \\ \text { A[5:0] } \end{gathered}$	1	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{gathered} 0 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	Set vertical shift by COM from $0^{\sim} 63$.
Set Display Clock Divide Ratio / Oscillator Frequency	0	$\begin{gathered} \mathrm{D} 5 \\ \mathrm{~A}[7: 0] \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A7 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A6 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A2 } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~A} 1 \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	$\mathrm{A}[3: 0]=$ Define the divide ratio of the display Divide ratio $=\mathrm{A}[3: 0]+1$ A[7:4] = Set the Oscillator Frequency. Freque value of $\mathrm{A}[7: 4]$. Range 0000b~1111b.
Set Area Color Mode ON/OFF \& Low Power Display Mode	0	$\begin{gathered} \text { D8 } \\ \times[5: 0] \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{X} 5 \end{gathered}$	$\begin{gathered} 1 \\ \times 4 \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{X} 2 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{x} 0 \end{gathered}$	X[5:4] = 00b; Monochrome mode $X[5: 4]=11 \mathrm{~b}$; Area Color mode $\mathrm{X}[2]=0$ and $\mathrm{X}[0]=0$; Normal power mode $X[2]=1$ and $X[0]=1$; Set low power display n
Set Pre-charge	0	D9	1	1	0	1	1	0	0	1	A[3:0] = Phase 1 period of up to 15 DCLK cloc A[7:4] = Phase 2 period of up to 15 DCLK cloc

[9]

Period		A[7:0]	A7	A6	A5	A4	A3	A2	A1	AO	
Set COM pins Hardware configuration	0	$\begin{gathered} \text { DA } \\ \text { X[5:4] } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{X} 5 \end{gathered}$	$\begin{gathered} 1 \\ \text { X4 } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$X[4]=0$; Sequential $C O M$ pin configuration $X[4]=1$; Alternative COM pin configuration X[5] = 0; Disable COM Left/Right remap X[5] = 1; Enable COM Left/Right remap
Set VCOMH Deselect Level	0	$\begin{gathered} \text { DB } \\ \mathrm{A}[5: 2] \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { A5 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A4 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A3 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A2 } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{A}[5: 2]=0000 \mathrm{~b} ; \mathrm{VCOMH}=\sim 0.43 * \mathrm{VCC} \\ & \mathrm{~A}[5: 2]=1101 \mathrm{~b} ; \mathrm{VCOMH}=\sim 0.77^{*} \mathrm{VCC} \\ & \mathrm{~A}[5: 2]=111 \mathrm{~b} ; \mathrm{VCOMH}=\sim 0.83 * \mathrm{VCC} \end{aligned}$
Enter Read Modify Write mode	0	EO	1	1	1	0	0	0	0	0	Enter the Read/Modify/Write mode.
NOP	0	E3	1	1	1	0	0	0	1	1	Command for No Operation
Exit Read Modify Write mode	0	EE	1	1	1	0	1	1	1	0	Exit the Read/Modify/Write mode.

For detailed instruction information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1305.pdf

MPU Interface

For detailed timing information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1305.pdf

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.
A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.
A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/CS	D/C
Write Command	\downarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.
A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. A rising edge of /RS input serves as a data read latch signal while /CS is LOW.
A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/CS	D/C
Write Command	1	\uparrow	0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	\uparrow	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/CS	$\mathbf{D / C ~}$
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	\uparrow	1

Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.
D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	0	0	0	0	\uparrow
Write Data	0	0	0	1	\uparrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D / C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock.
Note: Read is not available in serial mode.

$1^{2} \mathrm{C}$ Interface

The I2C interface consists of a slave address bit SAO, I2C-bus data signal SDA, and I2C-bus clock signal SCL. D1 and D2 can be tied together, and act as SDA. D0 acts as SCL. Both the data and clock signals must be connected to pull-up resistors. /RES is used to initialize the device.
Note: SAO bit allows the device to have a slave address of either " 0111100 " or " 0111101 ".
Note: Data and acknowledgement are sent through the SDA. The ITO track resistance and the pull-up resistance at SDA becomes a voltage potential divider. As a result, it may not be possible to attain a valid logic " 0 " level on SDA for the ACK signal. SDAIN must be connected, but SDAout may be disconnected and the ACK signal will be ignored on the I2C bus.

For detailed protocol information, see datasheet: $\underline{h t t p: / / w w w . n e w h a v e n d i s p l a y . c o m / a p p ~ n o t e s / S S D 1305 . p d f ~}$

Example Initialization Sequence:

Set_Display_On_Off(0x00);
Set_Display_Clock(0x10);
Set_Multiplex_Ratio(0x1F);
Set_Display_Offset(0x00);
Set_Start_Line(0x00);
Set_Master_Config(0x00);
Set_Area_Color(0x05);
Set_Addressing_Mode(0x02);
Set_Segment_Remap(0x01);
Set_Common_Remap(0x08);
Set_Common_Config(0x10);
Set_LUT(0x3F,0x3F,0x3F,0x3F);
Set_Contrast_Control(Brightness);
Set_Area_Brightness(Brightness);
Set_Precharge_Period(0xD2);
Set_VCOMH (0x08);
Set_Entire_Display(0x00);
Set_Inverse_Display(0x00);
Fill_RAM(0x00);
Set_Display_On_Off(0x01);
// Display Off (0x00/0x01)
// Set Clock as 160 Frames/Sec
// 1/32 Duty (0x0F~0x3F)
// Shift Mapping RAM Counter (0x00~0x3F)
// Set Mapping RAM Display Start Line (0x00~0x3F)
// Disable Embedded DC/DC Converter (0x00/0x01)
// Set Monochrome \& Low Power Save Mode
// Set Page Addressing Mode ($0 \times 00 / 0 \times 01 / 0 \times 02$)
// Set SEG/Column Mapping (0x00/0x01)
// Set COM/Row Scan Direction (0x00/0x08)
// Set Alternative Configuration ($0 \times 00 / 0 \times 10$)
// Define All Banks Pulse Width as 64 Clocks
// Set SEG Output Current
// Set Brightness for Area Color Banks
// Set Pre-Charge as 13 Clocks \& Discharge as 2 Clock
// Set VCOM Deselect Level
// Disable Entire Display On (0x00/0x01)
// Disable Inverse Display On (0x00/0x01)
// Clear Screen
// Display On (0x00/0x01)

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high storage temperature.	$+90^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	2
Low Temperature storage	Test the endurance of the display at low storage temperature.	$-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	1,2
High Temperature Operation	Test the endurance of the display by applying electric stress (voltage \& current) at high temperature.	$+85^{\circ} \mathrm{C} 240 \mathrm{hrs}$	2
Low Temperature Operation	Test the endurance of the display by applying electric stress (voltage \& current) at low temperature.	$-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	1,2
High Temperature / Humidity Operation	Test the endurance of the display by applying electric stress (voltage \& current) at high temperature with high humidity.	$+60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 240 \mathrm{hrs}$	1,2
Thermal Shock resistance	Test the endurance of the display by applying electric stress (voltage \& current) during a cycle of low and high temperatures.	$\begin{aligned} & -40^{\circ} \mathrm{C}, 30 \mathrm{~min}->25^{\circ} \mathrm{C}, 5 \mathrm{~min}-> \\ & 85^{\circ} \mathrm{C}, 30 \mathrm{~min}=1 \text { cycle } \\ & 100 \text { cycles } \end{aligned}$	
Vibration test	Test the endurance of the display by applying vibration to simulate transportation and use.	$10-22 \mathrm{~Hz}, 15 \mathrm{~mm}$ amplitude. 22-500Hz, 1.5G 30 min in each of 3 directions X, Y, Z	3
Atmospheric Pressure test	Test the endurance of the display by applying atmospheric pressure to simulate transportation by air.	115mbar, 40hrs	3
Static electricity test	Test the endurance of the display by applying electric static discharge.	$\mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega, \mathrm{CS}=100 \mathrm{pF}$ One time	

Note 1: No condensation to be observed.
Note 2: Conducted after 2 hours of storage at $25^{\circ} \mathrm{C}, 0 \% \mathrm{RH}$.
Note 3: Test performed on product itself, not inside a container.
Evaluation Criteria:
1: Display is fully functional during operational tests and after all tests, at room temperature.
2: No observable defects.
3: Luminance $>50 \%$ of initial value.
4: Current consumption within 50% of initial value

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms \& Conditions

http://www.newhavendisplay.com/index.php?main page=terms

Newhaven Display International, Inc. reserves the right to alter this product or specification at any time without notification.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for OLED Displays \& Accessories category:
Click to view products by Newhaven Display manufacturer:
Other Similar products are found below :
OLED-100H008A-RPP5N00000 OLED-100H016B-RPP5N00000 OLED-200H016A-LPP5N00000 OLED-100H008A-GPP5N00000 OLED-100H008A-LPP5N00000 OLED-100H032A-BPP5N00000 DEP 128160A-W OLED-100H016F-RPP5N00000 OLED-100H016ALPP5N00000 OLED-128Y032A-WPP3N00000 OLED-100H016A-WPP5N00000 OLED-100H016H-GPP5N00000 OLED-016O002BBPP5N00000 OLED-096Y064A-LPP3N00000 OLED-096O064A-BPP3N00000 OLED-128Y064C-LPP3N00000 OLED-096Y064BLPP3N00000 OLED-128Y032A-LPP3N00000 OLED-096Y064B-BPP3N00000 REX009616AWPP3N00000 REG010016FBPP5N00100 REG010016FGPP5N00100 REG010016FWPP5N00100 REG010032AWPP5N00100 REX064128AWPP3N0Y000 14747 REG010008AGPP5N00000 REG010008AWPP5N00000 REG010016CRPP5N00000 REG010016DBPP5N00000 REG010016ERPP5N00000 REG010032BYPP5N00000 REX012832EWAP3N00000 DEP 100032A-W DEP 100032A-Y DEP 128064J-Y DEP 16202-Y DEP 20203-Y DEP 20401-Y 17009 OLED-016N002B-RPP5N00000 OLED-016N002B-WPP5N00000 OLED-016N002H-RPP5N00000 OLED-020N004BWPP5N00000 OLED-100H008A-WPP5N00000 OLED-100H016B-BPP5N00000 OLED-100H016B-WPP5N00000 OLED-100H016CRPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016H-LPP5N00000

