

NHD-2.23-12832UCY3

Graphic OLED Display Module

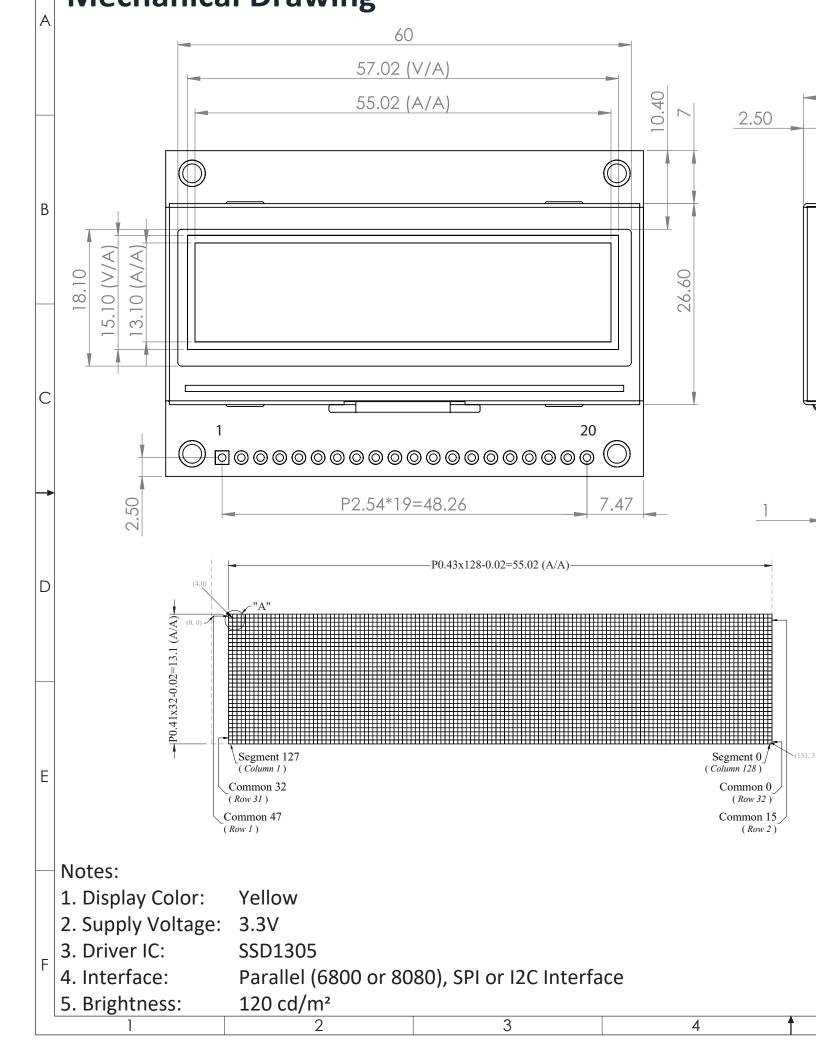
NHD- Newhaven Display
2.23- 2.23" diagonal size
12832- 128 x 32 pixel resolution

UC- Model

Y- Emitting Color: Yellow 3- +3V power supply

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124


Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by					
0	5/1/2011	Initial Product Release	-					
1	2/22/2013	2/22/2013 Electrical characteristics and mechanical drawing updated						
2	8/3/2020	Included MIN Supply Voltage & Reformatted 2D Mechanical	AS					
		Drawing						
3	9/1/2020	Updated 2D Mechanical Drawing	AS					

Functions and Features

- 128 x 32 pixel resolution
- Built-in SSD1305 controller
- Parallel or serial MPU interface
- Single, low voltage power supply
- RoHS compliant

Interface Description

Parallel Interface:

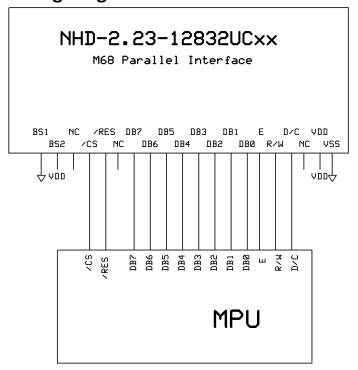
Pin No.	Symbol	External Connection	Function Description
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	6800-interface:
			Read/Write select signal, R/W=1: Read R/W: =0: Write
			8080-interface:
			Active LOW Write signal.
6	E or /RD	MPU	6800-interface:
			Operation enable signal. Falling edge triggered.
			8080-interface:
			Active LOW Read signal.
7-14	DB0 – DB7	MPU	8-bit Bi-directional data bus lines.
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/cs	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS2	MPU	MPU Interface Select signal.
20	BS1	MPU	MPU Interface Select signal.

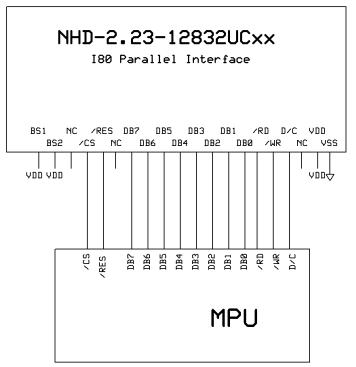
Serial Interface:

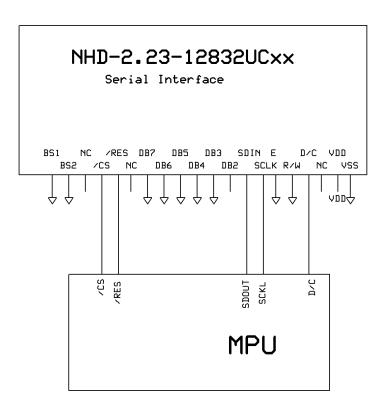
Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5-6	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal.
8	SDIN	MPU	Serial Data Input signal.
9	NC	-	No Connect
10-14	VSS	Power Supply	Ground
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS2	MPU	MPU Interface Select signal.
20	BS1	MPU	MPU Interface Select signal.

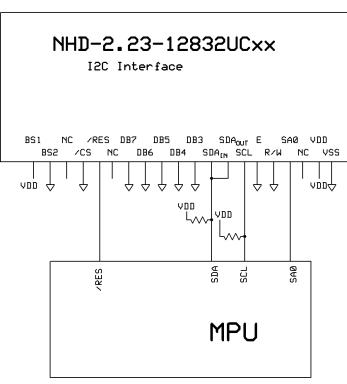
I2C Interface:

Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	SA0	MPU	Slave Address Selection signal.
5-6	VSS	Power Supply	Ground
7	SCL	MPU	Serial Clock signal.
8	SDA _{IN}	MPU	Serial Data input signal (pins 8 and 9 can be tied together).
9	SDA _{OUT}	MPU	Serial Data output signal (pin9 can be no connect).
10-14	VSS	Power Supply	Ground
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	VSS	Power Supply	Ground
18	NC	-	No Connect
19	BS2	MPU	MPU Interface Select signal.
20	BS1	MPU	MPU Interface Select signal.


MPU Interface Pin Selections


Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	Serial Interface	I2C Interface
BS2	1	1	0	0
BS1	0	1	0	1


MPU Interface Pin Assignment Summery


Bus			D	ata/C	comm	and Interfa		Control Signals					
Interface	D7 D6 D5 D4 D3 D2 D1 D0									R/W	/CS	D/C	/RES
8-bit 6800					D[:	7:0]		Ε	R/W	/CS	D/C	/RES	
8-bit 8080					D[:	7:0]			/RD	/WR	/CS	D/C	/RES
SPI		Tie LOW NC SDIN SCLK								LOW	/CS	D/C	/RES
I2C		Т	ie LO\	N		SDA _{IN}	SDA _{OUT}	SCL		Tie LOW	1	SA0	/RES

Wiring Diagrams

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-40	-	+85	°C
Storage Temperature Range	Tst	Absolute Max	-40	-	+90	°C
Supply Voltage	VDD		3.0	3.3	3.5	V
Supply Current (logic)	IDD	Ta=25°C, VDD=3.3V	-	180	300	μΑ
Supply Current (display)	ICC	50% ON, VDD=3.3V	-	60	70	mA
Supply Current (display)	ICC	100% ON, VDD=3.3V	-	108	120	mA
Sleep Mode Current	IDD+ICC _{SLEEP}		-	3	15	μΑ
"H" Level input	Vih		0.8*VDD	-	VDD	V
"L" Level input	Vil		VSS	-	0.2*VDD	V
"H" Level output	Voh		0.9*VDD	-	VDD	V
"L" Level output	Vol		VSS	-	0.1*VDD	V

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Top	AV		-	80	-	0
Viewing Angle – Bottom	AV		-	80	-	0
Viewing Angle – Left	AH		-	80	-	0
Viewing Angle – Right	AH		-	80	-	0
Contrast Ratio	Cr		2000:1	-	-	-
Response Time (rise)	Tr	-	-	10	-	us
Response Time (fall)	Tf	-	-	10	-	us
Brightness		50% checkerboard	100	120	-	cd/m ²
Lifetime		Ta=25°C, 50%	40,000	-	-	Hrs
		checkerboard				

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. The Display OFF command can be used to extend the lifetime of the display.

Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

Built-in SSD1305 controller. Instruction Table

Instruction					Cod	de					Doscription	
Instruction	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
Set Lower Column	0	00~ 0F	0	0	0	0	ХЗ	X2	X1	X0	Set the lower nibble of the column start add	
Start Address											Addressing Mode.	
Set Higher	0	10~1F	0	0	0	1	Х3	X2	X1	X0	Set the higher nibble of the column start add	
Column Start											Addressing Mode.	
Address												
Set Memory	0	20	0	0	1	0	0	0	0	0	A[1:0] = 00b, Horizontal Addressing Mode	
Addressing Mode		A[1:0]	*	*	*	*	*	*	A1	A0	A[1:0] = 01b, Vertical Addressing Mode	
											A[1:0] = 10b, Page Addressing Mode	
C + C +	_	24		_				_	_		A[1:0] = 11b, Invalid Setup column start and end address	
Set Column	0	21	0	0	1	0	0	0	0	1	A[7:0]: Column start and end address A[7:0]: Column start address. Range: 0-131d	
Address		A[7:0]	A7	A6	A5	A4	A3	A2	A1	A0	B[7:0]: Column end address. Range: 0-131d	
0.0.411	_	B[7:0]	B7	B6	B5	B4	В3	B2	B1	В0		
Set Page Address	0	22	0 *	0	1	0	0	0	1	0	Setup page start and end address A[2:0]: Page start address. Range: 0-7d	
		A[2:0]	*	*	*	*	*	A2	A1	A0	B[2:0]: Page end address. Range: 0-7d	
	<u> </u>	B[2:0]						B2	B1	B0		
Set Display Start Line	0	40~7F	0	1	X5	Х4	Х3	X2	X1	X0	Set display RAM display start line register fro	
Set Contrast	0	81	1	0	0	0	0	0	0	1	Double byte command to select 1 out of 256	
Control		A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	increases as the value increases.	
Set Brightness	0	82	1	0	0	0	0	0	1	0	Double byte command to select 1 out of 256	
		A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	Brightness increases as the value increases.	
Set Look-Up Table	0	91	1	0	0	1	0	0	0	1	Set current drive pulse width of Bank 0, Colo	
		X[5:0]	*	*	X5	X4	Х3	X2	X1	X0	Bank 0: X[5:0] = 31 to 63. Pulse width set to 3	
		A[5:0]	*	*	A5	A4	А3	A2	A1	A0	Color A: X[5:0] = 31 to 63. Pulse width set to	
		B[5:0]	*	*	B5	В4	В3	B2	B1	В0	Color B: X[5:0] = 31 to 63. Pulse width set to	
		C[5:0]	*	*	C5	C4	C3	C2	C1	CO	Color C: X[5:0] = 31 to 63. Pulse width set to Note: Color D pulse width is fixed at 64 clock	
Set Bank Color of	0	92	1	0	0	1	0	0	1	0	Sets the bank color of Bank1~Bank16 to any	
Bank1 to Bank16		A[7:0]	A7	A6	A5	A4	A3	A2	A1	A0	and D.	
(Page 0)		B[7:0]	B7	B6	B5	B4	B3	B2	B1	B0	A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B	
(i age o)		C[7:0]	C7	C6	C5	C4	C3	C2	C1	CO	A[3:2]: 00b, 01b, 10b, or 11b for Color = A, B	
		D[7:0]	D7	D6	D5	D4	D3	D2	D1	D0		
		<i>D</i> [7.0]				J4	53			50		
											D[5:4]: 00b, 01b, 10b, or 11b for Color = A, B	
Set Bank Color of	0	93	1	0	0	1	0	0	1	1	D[7:6]: 00b, 01b, 10b, or 11b for Color = A, B Sets the bank color of Bank17~Bank32 to any	
SEL BATIK COLOT OF	l O	93	1	U	U	1 1	U	U	1 1	1 1	Dere the name color of patient paties of guld	

Bank17 to Bank32 (Page 1)		A[7:0] B[7:0] C[7:0] D[7:0]	A7 B7 C7 D7	A6 B6 C6 D6	A5 B5 C5 D5	A4 B4 C4 D4	A3 B3 C3 D3	A2 B2 C2 D2	A1 B1 C1 D1	A0 B0 C0 D0	A,B,C, and D. A[1:0]: 00b, 01b, 10b, or 11b for Color = A, B, A[3:2]: 00b, 01b, 10b, or 11b for Color = A, B, b D[5:4]: 00b, 01b, 10b, or 11b for Color = A, B
											D[7:6]: 00b, 01b, 10b, or 11b for Color = A, B
Set Segment Remap	0	A0/A1	1	0	1	0	0	0	0	X0	X[0] = 0; Column address 0 is mapped to SEGO X[0] = 1; Column address 131 is mapped to SEGO
Entire Display ON	0	A4/A5	1	0	1	0	0	1	0	X0	X[0] = 0; Resume RAM content display. Output $X[0] = 1$; Entire display ON. Output ignores RA
Set Normal/ Inverse Display	0	A6/A7	1	0	1	0	0	1	1	X0	X[0] = 0; Normal display. X[0] = 1; Inverse display.
Set Multiplex Ratio	0	A8 A[5:0]	1 *	0 *	1 A5	0 A4	1 A3	0 A2	0 A1	0 A0	Set MUX ratio to N+1 MUX N=A[5:0]; from 16MUX to 64MUX (0 to 14 are
Dim mode setting	0	AB A[3:0] B[7:0] C[7:0]	1 * B7 C7	0 * B6 C6	1 * B5 C5	0 * B4 C4	1 A3 B3 C3	0 A2 B2 C2	1 A1 B1 C1	1 A0 B0 C0	A[3:0] = reserved. Set as 0000b B[7:0] = Set contrast for BANKO. Range 0-255 81h. C[7:0] = Set brightness for color bank. Range command 82h.
Master configuration	0	AD AE	1	0	1 0	0	1	1	0	1 0	Selects external VCC supply
Set Display ON/ OFF	0	AC/ AE/ AF	1	0	1	0	1	1	A1	A0	ACh = Display ON in dim mode AEh = Display OFF (sleep mode) AFh = Display ON in normal mode
Set Page Start Address	0	B0~B7	1	0	1	1	0	X2	X1	X0	Set GDRAM Page Start Address for Page Addr PAGE0~PAGE7
Set COM Output Scan Direction	0	C0/C8	1	1	0	0	Х3	0	0	0	X[3] = 0; Normal mode. Scan from COM0 to C X[3] = 1; Remapped mode. Scan from COM[N
Set Display Offset	0	D3 A[5:0]	1 *	1 *	0 A5	1 A4	0 A3	0 A2	1 A1	1 A0	Set vertical shift by COM from 0~63.
Set Display Clock Divide Ratio / Oscillator Frequency	0	D5 A[7:0]	1 A7	1 A6	0 A5	1 A4	0 A3	1 A2	0 A1	1 A0	A[3:0] = Define the divide ratio of the display Divide ratio = A[3:0] +1 A[7:4] = Set the Oscillator Frequency. Frequency value of A[7:4]. Range 0000b~1111b.
Set Area Color Mode ON/OFF & Low Power Display Mode	0	D8 X[5:0]	1 0	1 0	0 X5	1 X4	1 0	0 X2	0	0 X0	X[5:4] = 00b; Monochrome mode X[5:4] = 11b; Area Color mode X[2] = 0 and X[0] = 0; Normal power mode X[2] = 1 and X[0] = 1; Set low power display n
Set Pre-charge	0	D9	1	1	0	1	1	0	0	1	A[3:0] = Phase 1 period of up to 15 DCLK cloc A[7:4] = Phase 2 period of up to 15 DCLK cloc

Period		A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	
Set COM pins Hardware configuration	0	DA X[5:4]	1 0	1 0	0 X5	1 X4	1 0	0	1	0	X[4] = 0; Sequential COM pin configuration X[4] = 1; Alternative COM pin configuration X[5] = 0; Disable COM Left/Right remap X[5] = 1; Enable COM Left/Right remap
Set VCOMH Deselect Level Enter Read	0	DB A[5:2] E0	1 0	1 0	0 A5	1 A4 0	1 A3	0 A2 0	1 0	1 0	A[5:2] = 0000b; VCOMH = ~0.43*VCC A[5:2] = 1101b; VCOMH = ~0.77*VCC A[5:2] = 1111b; VCOMH = ~0.83*VCC Enter the Read/Modify/Write mode.
Modify Write mode											
NOP	0	E3	1	1	1	0	0	0	1	1	Command for No Operation
Exit Read Modify Write mode	0	EE	1	1	1	0	1	1	1	0	Exit the Read/Modify/Write mode.

For detailed instruction information, see datasheet: http://www.newhavendisplay.com/app_notes/SSD1305.pdf

MPU Interface

For detailed timing information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1305.pdf

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/cs	D/C
Write Command	\rightarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/cs	D/C
Write Command	1		0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	\uparrow	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/cs	D/C
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	\uparrow	1

Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	0	0	0	0	\uparrow
Write Data	0	0	0	1	\uparrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock.

Note: Read is not available in serial mode.

I²C Interface

The I2C interface consists of a slave address bit SAO, I2C-bus data signal SDA, and I2C-bus clock signal SCL. D1 and D2 can be tied together, and act as SDA. D0 acts as SCL. Both the data and clock signals must be connected to pull-up resistors. /RES is used to initialize the device.

Note: SAO bit allows the device to have a slave address of either "0111100" or "0111101".

Note: Data and acknowledgement are sent through the SDA. The ITO track resistance and the pull-up resistance at SDA becomes a voltage potential divider. As a result, it may not be possible to attain a valid logic "0" level on SDA for the ACK signal. SDA_{IN} must be connected, but SDA_{OUT} may be disconnected and the ACK signal will be ignored on the I2C bus.

For detailed protocol information, see datasheet: http://www.newhavendisplay.com/app_notes/SSD1305.pdf

Example Initialization Sequence:

```
Set Display On Off(0x00);
                                      // Display Off (0x00/0x01)
                                      // Set Clock as 160 Frames/Sec
Set_Display_Clock(0x10);
Set Multiplex Ratio(0x1F);
                                      // 1/32 Duty (0x0F~0x3F)
Set Display Offset(0x00);
                                      // Shift Mapping RAM Counter (0x00~0x3F)
Set Start Line(0x00);
                                      // Set Mapping RAM Display Start Line (0x00~0x3F)
Set_Master_Config(0x00);
                                      // Disable Embedded DC/DC Converter (0x00/0x01)
Set_Area_Color(0x05);
                                      // Set Monochrome & Low Power Save Mode
                                      // Set Page Addressing Mode (0x00/0x01/0x02)
Set Addressing Mode(0x02);
                                      // Set SEG/Column Mapping (0x00/0x01)
Set_Segment_Remap(0x01);
Set_Common_Remap(0x08);
                                      // Set COM/Row Scan Direction (0x00/0x08)
Set_Common_Config(0x10);
                                      // Set Alternative Configuration (0x00/0x10)
Set LUT(0x3F,0x3F,0x3F,0x3F);
                                      // Define All Banks Pulse Width as 64 Clocks
Set Contrast Control(Brightness);
                                      // Set SEG Output Current
Set_Area_Brightness(Brightness);
                                      // Set Brightness for Area Color Banks
Set Precharge Period(0xD2);
                                      // Set Pre-Charge as 13 Clocks & Discharge as 2 Clock
                                      // Set VCOM Deselect Level
Set_VCOMH(0x08);
Set Entire Display(0x00);
                                      // Disable Entire Display On (0x00/0x01)
Set_Inverse_Display(0x00);
                                      // Disable Inverse Display On (0x00/0x01)
Fill RAM(0x00);
                                      // Clear Screen
Set_Display_On_Off(0x01);
                                      // Display On (0x00/0x01)
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high	+90°C, 240hrs	2
	storage temperature.		
Low Temperature storage	Test the endurance of the display at low	-40°C , 240hrs	1,2
	storage temperature.		
High Temperature	Test the endurance of the display by	+85°C 240hrs	2
Operation	applying electric stress (voltage & current)		
	at high temperature.		
Low Temperature	Test the endurance of the display by	-40°C , 240hrs	1,2
Operation	applying electric stress (voltage & current)		
	at low temperature.		
High Temperature /	Test the endurance of the display by	+60°C, 90% RH, 240hrs	1,2
Humidity Operation	applying electric stress (voltage & current)		
	at high temperature with high humidity.		
Thermal Shock resistance	Test the endurance of the display by	-40°C,30min -> 25°C,5min ->	
	applying electric stress (voltage & current)	85°C,30min = 1 cycle	
	during a cycle of low and high	100 cycles	
	temperatures.		
Vibration test	Test the endurance of the display by	10-22Hz , 15mm amplitude.	3
	applying vibration to simulate	22-500Hz, 1.5G	
	transportation and use.	30min in each of 3 directions	
		X,Y,Z	
Atmospheric Pressure test	Test the endurance of the display by	115mbar, 40hrs	3
	applying atmospheric pressure to simulate		
	transportation by air.		
Static electricity test	Test the endurance of the display by	VS=800V, RS=1.5kΩ, CS=100pF	
	applying electric static discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Newhaven Display International, Inc. reserves the right to alter this product or specification at any time without notification.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for OLED Displays & Accessories category:

Click to view products by Newhaven Display manufacturer:

Other Similar products are found below:

OLED-100H008A-RPP5N00000 OLED-100H016B-RPP5N00000 OLED-200H016A-LPP5N00000 OLED-100H008A-GPP5N00000 OLED-100H008A-GPP5N00000 OLED-100H008A-LPP5N00000 OLED-100H016A-LPP5N00000 OLED-100H016A-LPP5N00000 OLED-100H016A-LPP5N00000 OLED-100H016A-LPP5N00000 OLED-128Y032A-WPP3N00000 OLED-100H016A-WPP5N00000 OLED-100H016H-GPP5N00000 OLED-096Y064B-LPP3N00000 OLED-096Y064A-LPP3N00000 OLED-096Y064B-BPP3N00000 OLED-128Y064C-LPP3N00000 OLED-096Y064B-LPP3N00000 OLED-128Y032A-LPP3N00000 OLED-096Y064B-BPP3N00000 REX009616AWPP3N00000 REG010016FBPP5N00100 REG010016FGPP5N00100 REG010016FWPP5N00100 REG010032AWPP5N00100 REX064128AWPP3N0V000 14747 REG010032BYPP5N00000 REG010008AWPP5N00000 REG010016CRPP5N00000 REG010016DBPP5N00000 REG010016ERPP5N00000 REG010032BYPP5N00000 REX012832EWAP3N00000 DEP 100032A-W DEP 100032A-Y DEP 128064J-Y DEP 16202-Y DEP 20203-Y DEP 20401-Y 17009 OLED-016N002B-RPP5N00000 OLED-016N002B-WPP5N00000 OLED-016N002H-RPP5N00000 OLED-100H016C-RPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016B-BPP5N00000 OLED-100H016B-WPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016H-LPP5N00000