

NHD-2.8-25664UCB2

Graphic OLED Display Module

NHD- Newhaven Display 2.8- 2.8" Diagonal Size

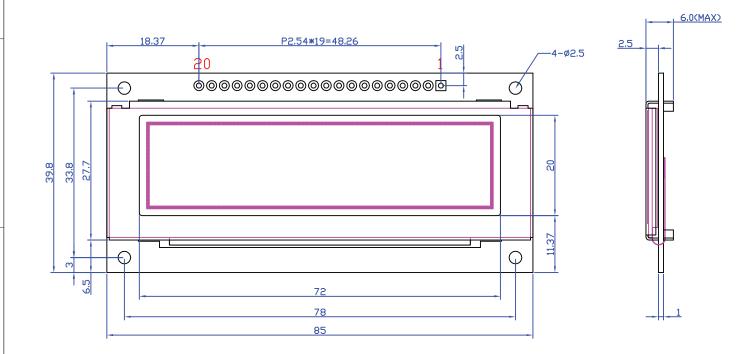
25664- 256 x 64 Pixel Resolution

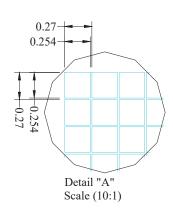
UC- Model

B- Emitting Color: Blue2- 3V Power Supply

Newhaven Display International, Inc.

2661 Galvin ct. Elgin IL, 60124


Ph: 847-844-8795 Fax: 847-844-8796


Document Revision History

Revision	Date	Description	Changed by
0	5/1/11	Initial Product Release	-
1	2/21/13	Electrical characteristics and mechanical drawing updated	JN
2	3/16/20	Electrical Characteristics & Segment Layout Updated	SB
3	10/23/20	Updated Supply Voltage Range:	AS
		(3V/3.3V/3.5V) to (2.8V/3V/3.3V)	

Functions and Features

- 256 x 64 Pixel resolution
- Built-in SSD1322 controller
- Parallel or serial MPU interface
- Single, low voltage power supply
- RoHS compliant

Notes:

В

D

1. Driver: 1/64 Duty

2. Display Type: PMOLED

3. Voltage: 3V VDD

4. Emitting Color: Blue

5. Driver IC: SD1322

6. Interface: 8-Bit 68XX/80XX Parallel,

3-/4-Wire SPI

1 2 3 4

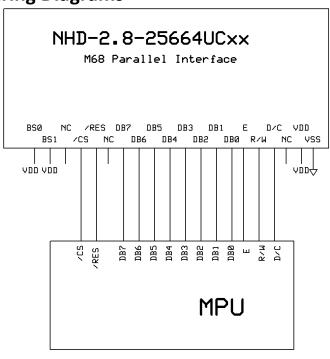
Interface Description

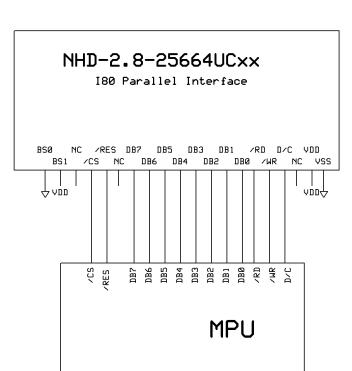
Parallel Interface:

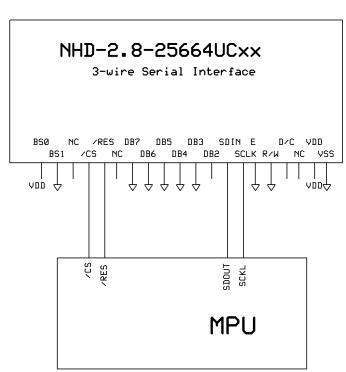
Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	6800-interface:
			Read/Write select signal, R/W=1: Read R/W: =0: Write
			8080-interface:
			Active LOW Write signal.
6	E or /RD	MPU	6800-interface:
			Operation enable signal. Falling edge triggered.
			8080-interface:
			Active LOW Read signal.
7-14	DB0 – DB7	MPU	8-bit Bi-directional data bus lines.
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/cs	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS1	MPU	MPU Interface Select signal.
20	BS0	MPU	MPU Interface Select signal.

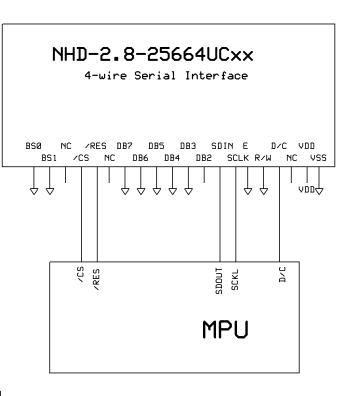
Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
			Tie LOW for 3-wire Serial Interface.
5-6	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal.
8	SDIN	MPU	Serial Data Input signal.
9	NC	-	No Connect
10-14	VSS	Power Supply	Ground
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/cs	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS1	MPU	MPU Interface Select signal.
20	BS0	MPU	MPU Interface Select signal.


MPU Interface Pin Selections


Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	3-wire Serial Interface	4-wire Serial Interface
BS1	1	1	0	0
BS0	1	0	1	0


MPU Interface Pin Assignment Summerv


Bus		Data/Command Interface							Control Signals				
Interface	D7	D7 D6 D5 D4 D3 D2 D1 D0							E	R/W	/cs	D/C	/RES
8-bit 6800		D[7:0]							Е	R/W	/CS	D/C	/RES
8-bit 8080					D[7:0]			/RD	/WR	/CS	D/C	/RES
3-wire SPI		Tie LOW		NC	SDIN	SCLK	Tie	LOW	/CS	Tie LOW	/RES		
4-wire SPI		Tie LOW		NC	SDIN	SCLK	Tie LOW		/CS	D/C	/RES		

Wiring Diagrams

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-40	-	+85	°C
Storage Temperature Range	T _{ST}	Absolute Max	-40	-	+90	°C
Supply Voltage	V_{DD}		2.8	3.0	3.3	V
Supply Current (display)		50% ON, VDD=3.0V	-	150	175	mA
Supply Current (display)	I _{DD}	100% ON, VDD=3.0V	-	250	275	mA
"H" Level input	ViH		0.8*VDD	-	VDD	V
"L" Level input	VIL		VSS	-	0.2*VDD	V
"H" Level output	Voh		0.9*VDD	-	VDD	V
"L" Level output	V _{OL}		VSS	-	0.1*VDD	V

Optical Characteristics

	Item			Condition	Min.	Тур.	Max.	Unit
Omtimod	Тор		φΥ+		1	80	1	0
Optimal	Bottom		φΥ-		1	80	1	0
Viewing Angles	Left		θХ-	-	-	80	-	0
Aligies	Righ	nt	θХ+		-	80	-	0
Contrast Rat	io		CR	-	2000:1	-	-	-
Dosponso T	ima	Rise	T _R	-	-	10	-	us
Response T	ime	Fall	T _F	-	-	10	-	us
Brightness		Lv	$T_{OP} = 25^{\circ}C$	60	80	-	cd/m ²	
Lifetime			-	50% Checkerboard	10,000	20/000	1	Hrs.

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. The Display OFF command can be used to extend the lifetime of the display.

Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

Controller Information

Built in SSD1322 Controller

For detailed information please download datasheet: http://www.newhavendisplay.com/app notes/SSD1322.pdf

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/cs	D/C
Write Command	\rightarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/cs	D/C
Write Command	1		0	0
Read Status	1	1	0	0
Write Data	1	\uparrow	0	1
Read Data	1	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/cs	D/C
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	↑	1

Serial Interface (4-wire)

The 4-wire serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	←
Write Data	Tie LOW	Tie LOW	0	1	\uparrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0.

D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock.

Note: Read is not available in serial mode.

Serial Interface (3-wire)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, R/W, and D/C should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	\uparrow
Write Data	Tie LOW	Tie LOW	0	Tie LOW	1

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0).

Note: Read is not available in serial mode.

For detailed protocol information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1322.pdf

Example Initialization Sequence:

```
Set Command Lock(0x12);
                                      // Unlock Basic Commands (0x12/0x16)
Set_Display_On_Off(0x00);
                                      // Display Off (0x00/0x01)
Set Column Address(0x1C,0x5B);
Set Row Address(0x00,0x3F);
Set Display Clock(0x91);
                                      // Set Clock as 80 Frames/Sec
Set Multiplex Ratio(0x3F);
                                      // 1/64 Duty (0x0F~0x3F)
Set_Display_Offset(0x00);
                                      // Shift Mapping RAM Counter (0x00~0x3F)
                                      // Set Mapping RAM Display Start Line (0x00~0x7F)
Set Start Line(0x00);
Set_Remap_Format(0x14);
                                      // Set Horizontal Address Increment
                                          Column Address 0 Mapped to SEG0
                                      //
                                          Disable Nibble Remap
                                          Scan from COM[N-1] to COM0
                                          Disable COM Split Odd Even
                                      //
                                          Enable Dual COM Line Mode
Set GPIO(0x00);
                                      // Disable GPIO Pins Input
Set_Function_Selection(0x01);
                                      // Enable Internal VDD Regulator
Set Display Enhancement A(0xA0,0xFD);
                                             // Enable External VSL
Set_Contrast_Current(0x9F);
                                      // Set Segment Output Current
Set Master Current(0x0F);
                                      // Set Scale Factor of Segment Output Current Control
                                      // Set Pulse Width for Gray Scale Table
//Set_Gray_Scale_Table();
Set_Linear_Gray_Scale_Table();
                                      //set default linear gray scale table
Set_Phase_Length(0xE2);
                                      // Set Phase 1 as 5 Clocks & Phase 2 as 14 Clocks
                                      // Enhance Driving Scheme Capability (0x00/0x20)
Set_Display_Enhancement_B(0x20);
Set Precharge Voltage(0x1F);
                                      // Set Pre-Charge Voltage Level as 0.60*VCC
Set_Precharge_Period(0x08);
                                      // Set Second Pre-Charge Period as 8 Clocks
Set VCOMH(0x07);
                                      // Set Common Pins Deselect Voltage Level as 0.86*VCC
Set Display Mode(0x02);
                                      // Normal Display Mode (0x00/0x01/0x02/0x03)
                                      // Disable Partial Display
Set Partial Display(0x01,0x00,0x00);
Set_Display_On_Off(0x01);
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high	+90°C, 240hrs	2
	storage temperature.		
Low Temperature storage	Test the endurance of the display at low	-40°C, 240hrs	1,2
	storage temperature.		
High Temperature	Test the endurance of the display by	+85°C, 240hrs	2
Operation	applying electric stress (voltage & current)		
	at high temperature.		
Low Temperature	Test the endurance of the display by	-40°C, 240hrs	1,2
Operation	applying electric stress (voltage & current)		
	at low temperature.		
High Temperature /	Test the endurance of the display by	+60°C, 90% RH, 240hrs	1,2
Humidity Operation	applying electric stress (voltage & current)		
	at high temperature with high humidity.		
Thermal Shock resistance	Test the endurance of the display by	-40°C,30min -> 25°C,5min ->	
	applying electric stress (voltage & current)	85°C,30min = 1 cycle	
	during a cycle of low and high	100 cycles	
	temperatures.		
Vibration test	Test the endurance of the display by	10-22Hz, 15mm amplitude.	3
	applying vibration to simulate	22-500Hz, 1.5G	
	transportation and use.	30min in each of 3 directions	
		X, Y, Z	
Atmospheric Pressure test	Test the endurance of the display by	115mbar, 40hrs	3
	applying atmospheric pressure to simulate		
	transportation by air.		
Static electricity test	Test the endurance of the display by	VS=800V, RS=1.5kΩ, CS=100pF	
	applying electric static discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for OLED Displays & Accessories category:

Click to view products by Newhaven Display manufacturer:

Other Similar products are found below:

OLED-100H008A-RPP5N00000 OLED-100H016B-RPP5N00000 OLED-200H016A-LPP5N00000 OLED-100H008A-GPP5N00000 OLED-100H008A-LPP5N00000 OLED-100H032A-BPP5N00000 DEP 128160A-W OLED-100H016F-RPP5N00000 OLED-100H016A-LPP5N00000 OLED-100H016A-LPP5N00000 OLED-128Y032A-WPP3N00000 OLED-100H016A-WPP5N00000 OLED-100H016H-GPP5N00000 OLED-016O002B-BPP5N00000 OLED-096Y064A-LPP3N00000 OLED-096Y064A-BPP3N00000 OLED-128Y064C-LPP3N00000 OLED-096Y064B-LPP3N00000 OLED-128Y032A-LPP3N00000 OLED-096Y064B-BPP3N00000 REX009616AWPP3N00000 REG010016FBPP5N00100 REG010016FGPP5N00100 REG010016FWPP5N00100 REG010032AWPP5N00100 REX064128AWPP3N0Y000 14747 REG010032BYPP5N00000 REG01008AWPP5N00000 REG010016CRPP5N00000 REG010016DBPP5N00000 REG010016ERPP5N00000 REG010032BYPP5N00000 REX012832EWAP3N00000 DEP 100032A-W DEP 100032A-Y DEP 128064J-Y DEP 16202-Y DEP 20203-Y DEP 20401-Y 17009 OLED-016N002B-RPP5N00000 OLED-016N002B-WPP5N00000 OLED-016N002H-RPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016B-BPP5N00000 OLED-100H016B-WPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016B-BPP5N00000 OLED-100H016B-WPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016H-LPP5N00000