NHD-3.12-25664UCY2

Graphic OLED Display Module

NHD-	Newhaven Display
$3.12-$	$3.12^{\prime \prime}$ Diagonal Size
$25664-$	256×64 Pixel Resolution
UC-	Model
Y-	Emitting Color: Yellow
2-	$3 V$ power supply

Newhaven Display International, Inc.
2661 Galvin Ct.
Elgin IL, 60124
Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	$5 / 1 / 2011$	Initial Product Release	-
1	$2 / 22 / 2013$	Electrical characteristics and mechanical drawing updated	JN
2	$5 / 2 / 16$	Supply Current Updated	SB
3	$4 / 2 / 20$	Mechanical Characteristics Updated	SB
4	$8 / 4 / 20$	Reformatted 2D Mechanical Drawings	AS

Functions and Features

- 256×64 Pixel resolution
- Built-in SSD1322 controller
- Parallel or serial MPU interface
- Single, low voltage power supply
- RoHS compliant

E Notes:

1. Display Color: Yellow
2. Supply: 3.0V
3. Driver IC:
4. Interface:

SSD1322
Parallel (8080 or 6800) or SPI (3 or 4 Wire)

5. Luminance: $\quad 80 \mathrm{~cd} / \mathrm{m}^{2}$

Common A0 (Row 64)
Common A63
(Row 1)

Segment 112
(Column 1)

Interface Description

Parallel Interface:

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	6800-interface: Read/Write select signal, R/W=1: Read; R/W: =0: Write 8080-interface: Active LOW Write signal.
6	E or /RD	MPU	6800-interface: Operation enable signal. Falling edge triggered. 8080-interface: Active LOW Read signal.
7-14	DB0 - DB7	MPU	8-bit Bi-directional data bus lines.
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS1	MPU	MPU Interface Select signal.
20	BSO	MPU	MPU Interface Select signal.

Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	V SS 2	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data Tie LOW for 3-wire Serial Interface.
$5-6$	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal.
8	SDIN	MPU	Serial Data Input signal.
9	NC	-	No Connect
$10-14$	VSS	Power Supply	Ground
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS1	MPU	MPU Interface Select signal.
20	BSO	MPU	MPU Interface Select signal.

MPU Interface Pin Selections

Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	3-wire Serial Interface	4-wire Serial Interface
BS1	1	1	0	0
BS0	1	0	1	0

Bus Interface	Data/Command Interface								Control Signals				
	D7	D6	D5	D4	D3	D2	D1	D0	E	R/W	/CS	D/C	/RES
8-bit 6800	D[7:0]								E	R/W	/CS	D/C	/RES
8-bit 8080	D[7:0]								/RD	/WR	/CS	D/C	/RES
3-wire SPI	Tie LOW					NC	SDIN	SCLK		OW	/CS	Tie LOW	/RES
4-wire SPI	Tie LOW					NC	SDIN	SCLK		OW	/CS	D/C	/RES

Wiring Diagrams

[6]

Electrical Characteristics

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Operating Temperature Range	Top	Absolute Max	-40	-	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tst	Absolute Max	-40	-	+90	${ }^{\circ} \mathrm{C}$
Supply Voltage	VDD	-	2.8	3.0	3.3	V
Supply Current (logic)	IDD	$\mathrm{T}_{\text {OP }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}$	1	5	6	mA
Supply Current (display)	Icc	$50 \% \mathrm{ON}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	100	155	165	mA
		100\% ON, V $\mathrm{V}_{\text {D }}=3.0 \mathrm{~V}$	150	250	265	mA
Sleep Mode Current	IdD+ICC_SLEEP	-	-	-	110	$\mu \mathrm{A}$
"H" Level input	V_{IH}	-	0.8 * V ${ }_{\text {DD }}$	-	VDD	V
"L" Level input	VIL	-	Vss	-	0.2 * $V_{\text {DD }}$	V
"H" Level output	VoH	-	0.9 * $V_{\text {DD }}$	-	$V_{\text {DD }}$	V
"L" Level output	Vol	-	Vss	-	0.1 * $V_{\text {DD }}$	V

Optical Characteristics

Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Optimal Viewing Angles	Top	$\varphi \mathrm{Y}+$		80	-	-	0
	Bottom	φY -		80	-	-	0
	Left	$\theta \mathrm{X}$ -		80	-	-	0
	Right	ӨX+		80	-	-	0
Contrast Ratio		CR	-	2000:1	-	-	-
Response Time	Rise	TR	-	-	10	-	us
	Fall	T_{F}	-	-	10	-	us
Brightness ${ }^{2}$		Lv	Top $=25^{\circ} \mathrm{C}$	60	80	-	$\mathrm{cd} / \mathrm{m}^{2}$
Lifetime ${ }^{1}$		-	50\% Checkerboard	40,000	60,000	-	Hrs.

Note:

1) Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as hours until half-brightness. The Display OFF command can be used to extend the lifetime of the display.
2) Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly. Using a screensaver is highly recommended.

Built-in SSD1322 controller

Instruction Table

Instruction	Code										Description
	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Enable Grayscale Table	0	00	0	0	0	0	0	0	0	0	Enable the Grayscale table settings. (see con
Set Column Address	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} 15 \\ \mathrm{~A}[6: 0] \\ \mathrm{B}[6: 0] \end{gathered}$	0	$\begin{gathered} \hline 0 \\ \text { A6 } \\ \text { B6 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A5 } \\ \text { B5 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 11 } \\ \text { A4 } \\ \text { B4 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A3 } \\ \text { B3 } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { A2 } \\ \text { B2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{~A} 1 \\ \mathrm{~B} 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \\ \text { BO } \end{gathered}$	Set column start and end address A[6:0]: Column start address. Range: 0-119d $\mathrm{B}[6: 0]$: Column end address. Range: 0-119d
Write RAM Command	0	5C	0	1	0	1	1	1	0	0	Enable MCU to write Data into RAM
Read RAM Command	0	5D	0	1	0	1	1	1	0	1	Enable MCU to read Data from RAM
Set Row Address	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$		0	$\begin{gathered} \hline 1 \\ \text { A6 } \\ \text { B6 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A5 } \\ \text { B5 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A4 } \\ \text { B4 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A3 } \\ \text { B3 } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { A2 } \\ \text { B2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A1 } \\ \text { B1 } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { AO } \\ \text { BO } \\ \hline \end{gathered}$	Set row start and end address A[6:0]: Row start address. Range: 0-127d $\mathrm{B}[6: 0]$: Row end address. Range: 0-127d
Set Remap	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} A 0 \\ A[5: 0] \\ B[4] \end{gathered}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & * \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & * \end{aligned}$	$\begin{gathered} 1 \\ \text { A5 } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~A} 4 \\ \mathrm{B4} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \text { A2 } \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A1 } \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \\ 1 \end{gathered}$	A[0] = 0; Horizontal Address Increment $A[0]=1$; Vertical Address Increment $A[1]=0$; Disable Column Address remap A[1] = 1; Enable Column Address remap A[2] $=0$; Disable Nibble remap A[2] $=1$; Enable Nibble remap $\mathrm{A}[4]=0$; Scan from COMO to COM[$\mathrm{N}-1$] A[4] = 1; Scan from COM[N-1] to COMO A[5] = 0; Disable COM split Odd/Even A[5] = 1; Enable COM split Odd/Even $B[4]=0$; Disable Dual COM mode $B[4]=1$; Enable Dual COM mode Note: $\mathrm{A}[5]$ must be 0 if $\mathrm{B}[4]$ is 1 .
Set Display Start Line	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} 1 \\ \mathrm{~A}[6: 0] \end{gathered}$	1	$\begin{gathered} 0 \\ \text { A6 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	Set display RAM display start line register fr
Set Display Offset	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} 2 \\ \mathrm{~A}[6: 0] \end{gathered}$	1	$\begin{gathered} 0 \\ \text { A6 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A} 1 \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	Set vertical shift by COM from 0~127.
Display Mode	0	A4/A7	1	0	1	0	0	X2	X1	X0	0xA4 = Entire display OFF OxA5 = Entire display ON, all pixels Grayscal 0xA6 = Normal display $0 \times A 7=$ Inverse display
Enable Partial Display	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} 8 \\ \mathrm{~A}[6: 0] \\ \mathrm{B}[6: 0] \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { 0 } \\ \text { A6 } \\ \text { B6 } \end{gathered}$	$\begin{gathered} \text { 1 } \\ \text { A5 } \\ \text { B5 } \end{gathered}$	$\begin{gathered} \text { 0 } \\ \text { A4 } \\ \text { B4 } \end{gathered}$	$\begin{gathered} \text { 11 } \\ \text { A3 } \\ \text { B3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \\ \text { B2 } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A} 1 \\ \mathrm{~B} 1 \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \\ \text { BO } \end{gathered}$	Turns ON partial mode. A[6:0] = Address of start row $B[6: 0]=$ Address of end row ($B[6: 0]>A[6: 0]$

Exit Partial Display	0	A9	1	0	1	0	1	0	0	1	Exit Partial Display mode
Function Selection	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \hline A B \\ A[0] \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	$\begin{aligned} & \mathrm{A}[0]=0 \text {; External VDD } \\ & \mathrm{A}[0]=1 \text {; Internal VDD regulator } \end{aligned}$
Set Sleep Mode ON/OFF	0	AE~AF	1	0	1	0	1	1	1	X0	OxAE = Sleep Mode ON (display OFF) 0xAF = Sleep Mode OFF (display ON)
Set Phase Length	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~A}[7: 0] \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A7 } \end{gathered}$	$\begin{gathered} \hline 0 \\ \text { A6 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	A[3:0] = P1. Phase 1 period of 5-31 DCLK clo A[7:4] = P2. Phase 2 period of 3-15 DCLK clo
Set Display Clock Divide Ratio / Oscillator Frequency	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{B} 3 \\ \mathrm{~A}[7: 0] \end{gathered}$	$\begin{gathered} 1 \\ \text { A7 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A6 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	A[3:0] = 0000; divide by 1 A[3:0] = 0001; divide by 2 $\mathrm{A}[3: 0]=0010$; divide by 4 A[3:0] = 0011; divide by 8 $\mathrm{A}[3: 0]=0100$; divide by 16 $A[3: 0]=0101$; divide by 32 $\mathrm{A}[3: 0]=0110$; divide by 64 A[3:0] = 0111; divide by 128 A[3:0] = 1000; divide by 256 A[3:0] = 1001; divide by 512 A[3:0] = 1010; divide by 1024 A[3:0] >= 1011; invalid A[7:4] = Set the Oscillator Frequency. Freque value of $\mathrm{A}[7: 4]$. Range 0000b~1111b.
Set GPIO	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \text { B5 } \\ \mathrm{A}[3: 0] \end{gathered}$	$\begin{aligned} & 1 \\ & * \end{aligned}$	0	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	A[1:0] = 00; GPIO0 input disabled A[1:0] = 01; GPIOO input enabled $\mathrm{A}[1: 0]=10$; GPIOO output LOW A[1:0] = 11; GPIOO output HIGH A[3:2] = 00; GPIO1 input disabled A[3:2] = 01; GPIO1 input enabled $A[3: 2]=10$; GPIO1 output LOW A[3:2] = 11; GPIO1 output HIGH
Set Second Precharge Period	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{B} 6 \\ \mathrm{~A}[3: 0] \end{gathered}$	1	0	1	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A2 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	Sets the second precharge period $\mathrm{A}[3: 0]=\mathrm{DCLKs}$
Set Grayscale Table	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	B8 A1[7:0] A2[7:0] \cdot \cdot \cdot A14[7:0] A15[7:0]	1 A17 A27 A147 A157	$\begin{gathered} 0 \\ \text { A1 } 6 \\ \text { A2 }{ }_{6} \\ . \\ . \\ . \\ \text { A14 } \\ \text { A15 } \end{gathered}$	1 A15 A25 A145 A155	1 Al_{4} A2 ${ }_{4}$ A144 A154	$\begin{gathered} 1 \\ \text { A13 } \\ \mathrm{A}_{3} \\ \cdot \\ \cdot \\ \cdot \\ \text { A14 } \\ \text { A15 }_{3} \end{gathered}$	0 A12 A2 2 A142 A152	$\begin{gathered} \hline \mathbf{0} \\ \mathbf{A 1} 1_{1} \\ \mathbf{A} \mathbf{1}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{A 1 4} \\ \mathbf{A} 1_{1} \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~A} 1_{0} \\ \mathrm{~A} \mathbf{2}_{0} \\ \cdot \\ \cdot \\ \text {. } \\ \mathrm{A} 14_{0} \\ \mathrm{~A} 15_{0} \end{gathered}$	Sets the gray scale pulse width in units of DC A1[7:0] = Gamma Setting for GS1 A2[7:0] = Gamma Setting for GS2 A14[7:0] = Gamma Setting for GS14 A15[7:0] = Gamma Setting for GS15 Note: $0<G S 1<G S 2<G S 3$... < GS14 < GS15 The setting must be followed by command
Select Default	0	B9	1	0	1	1	1	0	0	1	Sets Linear Grayscale table

Linear Gray Scale Table											GSO pulse width $=0$ GSO pulse width $=0$ GSO pulse width $=8$ GSO pulse width $=16$ GSO pulse width $=104$ GSO pulse width = 112
Set Precharge Voltage	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{BB} \\ \mathrm{~A}[4: 0] \end{gathered}$	$\begin{aligned} & \hline 1 \\ & * \end{aligned}$	0	1	$\begin{gathered} 1 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	Set precharge voltage level. $\mathrm{A}[4: 0]=0 \times 00 ; 0.20 * \mathrm{VCC}$ $\mathrm{A}[4: 0]=0 \times 3 \mathrm{E} ; 0.60^{*} \mathrm{VCC}$
Set VCOMH Voltage		$\begin{gathered} \mathrm{BE} \\ \mathrm{~A}[3: 0] \end{gathered}$	$\begin{aligned} & 1 \\ & * \end{aligned}$	0	1	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{gathered} 1 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	Sets the VCOMH voltage level $\mathrm{A}[3: 0]=0 \times 00 ; 0.72^{*} \mathrm{VCC}$ $\mathrm{A}[3: 0]=0 \times 04 ; 0.8^{*} \mathrm{VCC}$ $\mathrm{A}[3: 0]=0 \times 07 ; 0.86 * \mathrm{VCC}$
Set Contrast Control	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \text { C1 } \\ \mathrm{A}[7: 0] \end{gathered}$	$\begin{gathered} 1 \\ \text { A7 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A6 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	Double byte command to select 1 out of 25 Contrast increases as the value increases.
Master Contrast Control	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{C7} \\ \mathrm{~A}[3: 0] \end{gathered}$	$\begin{aligned} & \hline \mathbf{1} \\ & * \end{aligned}$	$\begin{aligned} & \hline \mathbf{1} \\ & * \end{aligned}$	0	0	$\begin{gathered} \mathrm{O} \\ \text { A3 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A0 } \end{gathered}$	A[3:0] = 0x00; Reduce output for all colors t $\mathrm{A}[3: 0]=0 \times 01$; Reduce output for all colors t $\mathrm{A}[3: 0]=0 \times 0 \mathrm{E}$; Reduce output for all colors t $\mathrm{A}[3: 0]=0 \times 0 F$; no change
Set Multiplex Ratio	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{CA} \\ \mathrm{~A}[6: 0] \end{gathered}$	1	$\begin{gathered} \hline 1 \\ \text { A6 } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~A} 5 \end{gathered}$	$\begin{gathered} 0 \\ \text { A4 } \end{gathered}$	$\begin{gathered} 1 \\ \text { A3 } \end{gathered}$	$\begin{gathered} 0 \\ \text { A2 } \end{gathered}$	$\begin{gathered} \hline 1 \\ \text { A1 } \end{gathered}$	$\begin{gathered} 0 \\ \text { AO } \end{gathered}$	Set MUX ratio to $\mathrm{N}+1$ MUX $\mathrm{N}=\mathrm{A}[6: 0$]; from 16 MUX to 128 MUX (0 to 14
Set Command Lock	0 1	$\begin{gathered} \mathrm{FD} \\ \mathrm{~A}[2] \end{gathered}$	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	1	$\begin{gathered} 1 \\ \text { A2 } \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\mathrm{A}[2]=0$; Unlock OLED to enable commands $\mathrm{A}[2]=1$; Lock OLED from entering commanc

For detailed instruction information, see datasheet: h http://www.newhavendisplay.com/app notes/SSD1322.pdf

MPU Interface

For detailed timing information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1322.pdf

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.
A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.
A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/CS	D/C
Write Command	\downarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.
A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. A rising edge of /RS input serves as a data read latch signal while /CS is LOW.
A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/CS	D/C
Write Command	1	\uparrow	0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	\uparrow	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/CS	$\mathbf{D / C ~}$
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	\uparrow	1

Serial Interface (4-wire)

The 4-wire serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.
DO acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	\uparrow
Write Data	Tie LOW	Tie LOW	0	1	\uparrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0.
D / C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock.
Note: Read is not available in serial mode.

Serial Interface (3-wire)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN, and /CS.
D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, R/W, and D/C should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	\uparrow
Write Data	Tie LOW	Tie LOW	0	Tie LOW	\uparrow

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D / C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM ($D / C=1$) or the command register ($D / C=0$).
Note: Read is not available in serial mode.

For detailed protocol information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1322.pdf

Example Initialization Sequence:

Set_Command_Lock(0x12); // Unlock Basic Commands (0x12/0x16)
Set_Display_On_Off(0x00); // Display Off (0x00/0x01)
Set_Column_Address(0x1C,0x5B);
Set_Row_Address(0x00,0x3F);
Set_Display_Clock(0x91); // Set Clock as 80 Frames/Sec
Set_Multiplex_Ratio(0x3F); // 1/64 Duty (0x0F~0x3F)
Set_Display_Offset(0x00); // Shift Mapping RAM Counter (0x00~0x3F)
Set_Start_Line(0x00); // Set Mapping RAM Display Start Line ($0 \times 00 \sim 0 \times 7 F$)
Set_Remap_Format(0x14); // Set Horizontal Address Increment
// Column Address 0 Mapped to SEGO
// Disable Nibble Remap
// Scan from COM[N-1] to COMO
// Disable COM Split Odd Even
// Enable Dual COM Line Mode
Set_GPIO(0x00); // Disable GPIO Pins Input
Set_Function_Selection(0x01); // Enable Internal VDD Regulator
Set_Display_Enhancement_A(0xA0,0xFD); // Enable External VSL
Set_Contrast_Current(0x9F); // Set Segment Output Current
Set_Master_Current(0xOF); // Set Scale Factor of Segment Output Current Control
//Set_Gray_Scale_Table(); // Set Pulse Width for Gray Scale Table
Set_Linear_Gray_Scale_Table(); //set default linear gray scale table
Set_Phase_Length(0xE2); // Set Phase 1 as 5 Clocks \& Phase 2 as 14 Clocks
Set_Display_Enhancement_B(0×20); // Enhance Driving Scheme Capability ($0 \times 00 / 0 \times 20$)
Set_Precharge_Voltage(0x1F); // Set Pre-Charge Voltage Level as 0.60*VCC
Set_Precharge_Period(0x08); // Set Second Pre-Charge Period as 8 Clocks
Set_VCOMH(0x07); // Set Common Pins Deselect Voltage Level as 0.86*VCC
Set_Display_Mode(0x02); // Normal Display Mode (0x00/0x01/0x02/0x03)
Set_Partial_Display(0x01,0x00,0x00); // Disable Partial Display
Set_Display_On_Off(0x01);

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high storage temperature.	$+90^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	2
Low Temperature storage	Test the endurance of the display at low storage temperature.	$-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	1,2
High Temperature Operation	Test the endurance of the display by applying electric stress (voltage \& current) at high temperature.	$+85^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	2
Low Temperature Operation	Test the endurance of the display by applying electric stress (voltage \& current) at low temperature.	$-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	1,2
High Temperature / Humidity Operation	Test the endurance of the display by applying electric stress (voltage \& current) at high temperature with high humidity.	$+60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 240 \mathrm{hrs}$	1,2
Thermal Shock resistance	Test the endurance of the display by applying electric stress (voltage \& current) during a cycle of low and high temperatures.	$\begin{aligned} & -40^{\circ} \mathrm{C}, 30 \mathrm{~min}->25^{\circ} \mathrm{C}, 5 \mathrm{~min}-> \\ & 85^{\circ} \mathrm{C}, 30 \mathrm{~min}=1 \text { cycle } \\ & 100 \text { cycles } \end{aligned}$	
Vibration test	Test the endurance of the display by applying vibration to simulate transportation and use.	$10-22 \mathrm{~Hz}, 15 \mathrm{~mm}$ amplitude. $22-500 \mathrm{~Hz}, 1.5 \mathrm{G}$ 30min in each of 3 directions X, Y, Z	3
Atmospheric Pressure test	Test the endurance of the display by applying atmospheric pressure to simulate transportation by air.	115mbar, 40hrs	3
Static electricity test	Test the endurance of the display by applying electric static discharge.	$\mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega, \mathrm{CS}=100 \mathrm{pF}$ One time	

Note 1: No condensation to be observed.
Note 2: Conducted after 2 hours of storage at $25^{\circ} \mathrm{C}, 0 \% \mathrm{RH}$.
Note 3: Test performed on product itself, not inside a container.
Evaluation Criteria:
1: Display is fully functional during operational tests and after all tests, at room temperature.
2: No observable defects.
3: Luminance $>50 \%$ of initial value.
4: Current consumption within 50% of initial value

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms \& Conditions

http://www.newhavendisplay.com/index.php?main page=terms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for OLED Displays \& Accessories category:
Click to view products by Newhaven Display manufacturer:
Other Similar products are found below :
OLED-100H008A-RPP5N00000 OLED-100H016B-RPP5N00000 OLED-200H016A-LPP5N00000 OLED-100H008A-GPP5N00000 OLED-100H008A-LPP5N00000 OLED-100H032A-BPP5N00000 DEP 128160A-W OLED-100H016F-RPP5N00000 OLED-100H016ALPP5N00000 OLED-128Y032A-WPP3N00000 OLED-100H016A-WPP5N00000 OLED-100H016H-GPP5N00000 OLED-016O002BBPP5N00000 OLED-096Y064A-LPP3N00000 OLED-096O064A-BPP3N00000 OLED-128Y064C-LPP3N00000 OLED-096Y064BLPP3N00000 OLED-128Y032A-LPP3N00000 OLED-096Y064B-BPP3N00000 REX009616AWPP3N00000 REG010016FBPP5N00100 REG010016FGPP5N00100 REG010016FWPP5N00100 REG010032AWPP5N00100 REX064128AWPP3N0Y000 14747 REG010008AGPP5N00000 REG010008AWPP5N00000 REG010016CRPP5N00000 REG010016DBPP5N00000 REG010016ERPP5N00000 REG010032BYPP5N00000 REX012832EWAP3N00000 DEP 100032A-W DEP 100032A-Y DEP 128064J-Y DEP 16202-Y DEP 20203-Y DEP 20401-Y 17009 OLED-016N002B-RPP5N00000 OLED-016N002B-WPP5N00000 OLED-016N002H-RPP5N00000 OLED-020N004BWPP5N00000 OLED-100H008A-WPP5N00000 OLED-100H016B-BPP5N00000 OLED-100H016B-WPP5N00000 OLED-100H016CRPP5N00000 OLED-100H016C-WPP5N00000 OLED-100H016H-LPP5N00000

